Skip to main content
Log in

Additional peaks in the cluster size distribution of amphiphile + water systems: a clue for shape/phase transition or statistical uncertainty

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In some works on the lattice Monte Carlo simulation of amphiphilic systems additional peaks in the cluster size distribution has been interpreted as a clue for the phase or shape transition of micellar aggregates. On the other hand, some other works showed that the additional peaks are a result of finite size of the lattice box. In this paper using calculating energy-auto-correlation function and statistical error in correlated data, it is shown that how these apparently contradictory results are the same. To do this, we have simulated a pure system containing amphiphile and water molecules. A simple model of potential containing the main feature for these systems (the hydrophobicity of surfactant molecules) that cause the aggregates to be formed is considered to avoid any synthetic results due to additional non-real parameters. To relax the initial configuration faster, configurational bias Monte Carlo move is used in addition to reptation move. Periodic boundary condition and self-avoiding walks are used as former published works in this field. It is shown that the additional peaks is a result of the statistical errors for averaged cluster size distribution and can not be interpreted as a clue for shape or phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frenkel D and Smit B (1996). Understanding molecular simulation: from algorithms to applications. Academic, London

    Google Scholar 

  2. Allen MP and Tildesley DJ (1987). Computer simulation of liquids. Clarendon, Oxford

    Google Scholar 

  3. Binder K (1992) In: Marcel JB (Ed) Computational modeling of polymers. Dekker, New York

  4. Doye JPK, Sear RP and Frenkel D (1998). J Chem Phys 108: 2134

    Article  CAS  Google Scholar 

  5. Bohbot Y, Ben-Shaul A, Granek R and Gelbart WM (1995). J Chem Phys 103: 8764

    Article  CAS  Google Scholar 

  6. Mackie AD, Onur K and Panagiotopoulos AZ (1996). J Chem Phys 104: 3718

    Article  CAS  Google Scholar 

  7. Larson RG, Scriven LE and Davis T (1985). J Chem Phys 83: 2411

    Article  CAS  Google Scholar 

  8. Larson RG (1989). J Chem Phys 91: 2479

    Article  CAS  Google Scholar 

  9. Behjatmanesh-Ardakani R (2005). J Chem Phys 122: 204903

    Article  Google Scholar 

  10. Bhattacharya A and Mahanti SD (2001). J Phys C 13: L861

    CAS  Google Scholar 

  11. Nelson PH, Rutledge GC and Hatton TA (1997). J Chem Phys 107: 10777

    Article  CAS  Google Scholar 

  12. Bhattacharya A, Mahanti SD and Chakrabati A (1998). J Chem Phys 108: 10281

    Article  CAS  Google Scholar 

  13. Bourov GK and Bhattacharya A (2003). J Chem Phys 119: 9219

    Article  CAS  Google Scholar 

  14. Groot RD and Warren PB (1997). J Chem Phys 107: 4423

    Article  CAS  Google Scholar 

  15. Bourov GK and Bhattacharya A (2005). J Chem Phys 122: 044702

    Article  Google Scholar 

  16. Bernardes AT, Henriques VB and Bisch PM (1994). J Chem Phys 101: 645

    Article  CAS  Google Scholar 

  17. Nelson PH (1998) Simulation of self-assembled polymer and surfactant systems. Ph.D. Thesis Massachusetts Institute of Technology

  18. Talsania SK, Rodriguez-Guadarrama LA, Mohanty KK and Rajagopalan R (1998). Langmuir 14: 2684

    Article  CAS  Google Scholar 

  19. Lisal M, Hall CK, Gubbins KE and Panagiotopoulos AZ (2002). J Chem Phys 116: 1171

    Article  CAS  Google Scholar 

  20. Talsania SK, Wang Y, Rajagopalan R and Mohanty KK (1997). J Colloid Interfac Sci 190: 92

    Article  CAS  Google Scholar 

  21. Gharibi H, Behjatmanesh-Ardakani R, Hashemianzadeh SM, Mousavi-Khoshdel SM, Javadian S and Sohrabi B (2006). Theor Chem Acc 115: 1

    Article  CAS  Google Scholar 

  22. Tanford C (1973). The hydrophobic effects. Wiley, New York

    Google Scholar 

  23. Siepmann JI and Frenkel D (1992). Mol Phys 75: 59

    Article  CAS  Google Scholar 

  24. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH and Teller E (1953). J Chem Phys 21: 1087

    Article  CAS  Google Scholar 

  25. Flyvbjerg H and Petersen HG (1989). J Chem Phys 91: 461

    Article  CAS  Google Scholar 

  26. Gharibi H, Behjatmanesh-Ardakani R, Hashemianzadeh M and Mousavi-Khoshdel M (2006). J Phys Chem B 110: 13547

    Article  CAS  Google Scholar 

  27. Gharibi H, Behjatmanesh-Ardakani R, Hashemianzadeh SM, Sohrabi B and Javadian S (2006). Bull Chem Soc Jpn 79: 1355

    Article  CAS  Google Scholar 

  28. Ben-Naim A and Stillinger FH (1980). J Phys Chem 84: 2872

    Article  CAS  Google Scholar 

  29. Goldstein RE (1986). J Chem Phys 84: 3367

    Article  CAS  Google Scholar 

  30. Ruckenstein E and Nagarajan R (1975). J Phys Chem 79: 2622

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Behjatmanesh-Ardakani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behjatmanesh-Ardakani, R. Additional peaks in the cluster size distribution of amphiphile + water systems: a clue for shape/phase transition or statistical uncertainty. Theor Chem Account 118, 799–805 (2007). https://doi.org/10.1007/s00214-007-0327-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0327-1

Keywords

Navigation