Skip to main content
Log in

A definition for the covalent and ionic bond index in a molecule

An approach based on Roby’s atomic projection operators

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Formulae for hermitian operators representing covalent, ionic, and total bond indices are derived. The eigenstates of these operators come in pairs, and can be considered as bonding, anti-bonding and lone-pair orbitals. The form of these operators is derived by generalising the rule that the bond order be defined as the net number of bonding electron pairs. The percentage of covalency and ionicity of a chemical bond may be obtained, and bond indices can also be defined between groups of atoms. The calculation of the bond indices depends only on the electron density operator, and certain projection operators used to represent each atom in the molecule. Bond indices are presented for a series of first and second row hydrides and fluorides, hydrocarbons, a metal complex, a Diels–Alder reaction and a dissociative reaction. In general the agreement between the bond indices is in accord with chemical intuition. The bond indices are shown to be stable to basis set expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pople JA (1999). Angew Chem 38: 1894

    Article  CAS  Google Scholar 

  2. Pauling L (1960). The nature of the chemical bond, 3rd edn. Cornell University Press, New York

    Google Scholar 

  3. Roby KR (1973) In Chissick SS, Price WC, Ravensdale T (eds.) Wave mechanics—the first fifty years. Butterworths, London, pp 38–60

  4. Roby KR (1974). Mol Phys 28: 1441

    Article  CAS  Google Scholar 

  5. Roby KR (1974). Mol Phys 27: 81

    Article  CAS  Google Scholar 

  6. Roby KR (1974). Theor Chem Acc 33: 105

    Article  CAS  Google Scholar 

  7. Davidson ER (1967). J Chem Phys 46: 3320

    Article  CAS  Google Scholar 

  8. Cruickshank DW and Avramides EJ (1982). Phil Trans R Soc Lond A 304: 533

    Article  CAS  Google Scholar 

  9. Heinzmann R and Ahlrichs R (1976). Theor Chem Acc 42: 33

    Article  CAS  Google Scholar 

  10. Ehrhardt C and Ahlrichs R (1985). Theor Chem Acc 68: 231

    Article  CAS  Google Scholar 

  11. Su J, Li XW, Crittendon RC and Robinson GH (1997). J Am Chem Soc 119: 5471

    Article  CAS  Google Scholar 

  12. Su J, Li XW, Crittendon RC, Campana CF and Robinson GH (1997). Organometallics 16: 4511

    Article  CAS  Google Scholar 

  13. Dagani R (1998). Chem Eng News 76: 31

    Google Scholar 

  14. Nguyen T, Sutton AD, Brynda M, Fettinger JC, Long GJ and Power PP (2005). Science 310: 844

    Article  CAS  Google Scholar 

  15. Frenking G (2005). Science 310: 796

    Article  CAS  Google Scholar 

  16. Coppens P (1997) X-ray charge densities and chemical bonding. In: IUCr texts on crystallography vol. 4, 1st edn. Oxford University Press, Oxford

  17. Jayatilaka D (1998). Phys Rev Lett 80: 798

    Article  CAS  Google Scholar 

  18. Grimwood DJ and Jayatilaka D (2001). Acta Cryst A 57: 87

    Article  CAS  Google Scholar 

  19. Savin A, Nesper R, Wengert S and Fassler TE (1997). Angew Chem 36: 1808

    Article  CAS  Google Scholar 

  20. Silvi B and Savin A (1994). Nature 371: 683

    Article  CAS  Google Scholar 

  21. Sannigrahi AB (1992). Adv Quantum Chem 23: 301

    Article  CAS  Google Scholar 

  22. Coulson CA (1939). Proc R Soc (Lond) A 169: 413

    CAS  Google Scholar 

  23. Chirgwin BH and Coulson CA (1950). Proc R Soc (Lond) A 201: 196

    Article  CAS  Google Scholar 

  24. McWeeny R (1951) J Chem Phys 19:164

    Google Scholar 

  25. McWeeny R (1960). J Chem Phys 20: 920

    Article  Google Scholar 

  26. Mulliken RS (1955). J Chem Phys 23: 1833

    Article  CAS  Google Scholar 

  27. Mulliken RS (1955). J Chem Phys 23: 1841

    Article  CAS  Google Scholar 

  28. Wiberg K (1968) Tetrahedron Lett 24:1083

  29. Mayer I (1983) Chem Phys Lett 97:270

    Google Scholar 

  30. Natiello MA, Medrano JA (1984) Chem Phys Lett 105:180

    Google Scholar 

  31. Ángyán JG, Rosta E, Surjan PR (1999) Chem Phys Lett 299:1

    Google Scholar 

  32. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

  33. Cioslowski J, Mixon ST (1991) J Am Chem Soc 113:4142

    Google Scholar 

  34. Cioslowski J, Mixon ST (1993) Inorg Chem 32:3209

  35. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

  36. Ángyán JG, Loos M, Mayer I (1994) J Phys Chem 98:5244

    Google Scholar 

  37. Raub S, Jansen G (2001) Theor Chem Acc 106:223

    Google Scholar 

  38. Fulton RL (1993) J Phys Chem 97:7516

    Google Scholar 

  39. Fulton RL, Mixon ST (1993) J Phys Chem 97:7530

    Google Scholar 

  40. Yamasaki T, Mainz DT and Goddard WA (2000). J Phys Chem A 104: 2221

    Article  CAS  Google Scholar 

  41. Löwdin PO (1998). Linear algebra for quantum theory. Wiley, New York

    Google Scholar 

  42. Araki H (1971). Publ RIMS Kyoto Univ 6: 385

    Google Scholar 

  43. Amos AT, Hall GG (1961) Proc R Soc (Lond) A263:483

  44. Mayer I (1997). Int J Quantum Chem 63: 31

    Article  CAS  Google Scholar 

  45. King HF, Stanton RE, Kim H, Wyatt RE and Parr RG (1967). J Chem Phys 47: 1936

    Article  CAS  Google Scholar 

  46. Baushlicher CW and Taylor PR (1988). Theor Chem Acc 74: 63

    Article  Google Scholar 

  47. Frisch MJ et al (1998) Gaussian 98. Technical report, Gaussian, Inc., Pittsburgh, PA

  48. Dunning TH (1970). J Chem Phys 53: 2823

    Article  CAS  Google Scholar 

  49. Dunning TH and Hay PJ (1977). In: Schaefer HF III (ed) Methods of electronic structure theory, vol 3. Plenum Press, New York

    Google Scholar 

  50. Schaftenaar G, Noordik JH (2000) J Comput-Aided Mol Design 14:123

    Google Scholar 

  51. Koutsantonis GA, Selegue JP (1991) J Am Chem Soc 113:2136

    Google Scholar 

  52. Merzbacher E (1998). Quantum mechanics 3rd edn. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gould, M.D., Taylor, C., Wolff, S.K. et al. A definition for the covalent and ionic bond index in a molecule. Theor Chem Account 119, 275–290 (2008). https://doi.org/10.1007/s00214-007-0282-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0282-x

Keywords

Navigation