Skip to main content
Log in

Tuning the physisorption of molecular hydrogen: binding to aromatic, hetero-aromatic and metal-organic framework materials

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present a study on the binding properties of molecular hydrogen to several polar aromatic molecules and to a model for the metal-oxide corner of the metal organic framework materials recently investigated as promising supports for hydrogen storage. Density functional theory employing the Perdew Wang exchange-correlation functional and second order Møller-Plesset calculations are used to determine the equilibrium structures of complexes with molecular hydrogen and their stability. It is found that for most hetero-aromatics the edge sites for molecular hydrogen physisorption have stabilities comparable to the top sites. The DFT predicted binding energies compare favorably with those estimated at MP2 level, and get closer to the MP2 results for increased electrostatic contributions (induced by the polar aromatics) to the intermolecular interaction. Vibrational frequencies are also computed at the DFT level, and infrared activities of the H2 stretching frequency are compared for the various complexes. Pyrrole, pyridine and n-oxide pyridine are predicted to form the more stable complexes among one-ring aromatics. The computed binding energies to metal-organic framework materials are in good agreement with experimental observations. It is suggested that replacement of the organic linker in MOF materials with some of the more efficient aromatics investigated here might contribute to enhance the H2 storage properties of mixed inorganic–organic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schlapbach L, Zuttel A (2001). Nature 414:353–358

    Article  CAS  Google Scholar 

  2. Schimmel HG, Kearley GJ, Nijkamp MG, Visserl CT, de Jong KP, Mulder FM (2003). Chem Eur J 9:4764–4770

    Article  CAS  Google Scholar 

  3. Vidali G, Ihm G, Kim HY, Cole MW (1991). Surf Sci Rep 12:133–181

    Article  CAS  Google Scholar 

  4. Mattera L, Rosatelli F, Salvo C, Tommasini F, Valbusa U, Vidali G (1980). Surf Sci 93:515–525

    Article  CAS  Google Scholar 

  5. Hirscher M, Becher M, Haluska M, von Zeppelin F, Chen XH, Dettlaff-Weglikowska U, Roth S (2003). J Alloys Compd 356:433–437

    Article  CAS  Google Scholar 

  6. Tran F, Weber J, Wesolowski TA, Cheikh F, Ellinger Y, Pauzat F (2002). J Phys Chem B 106:8689–8696

    Article  CAS  Google Scholar 

  7. Heine T, Zhechkov L, Seifert G (2004). Phys Chem Chem Phys 6:980–984

    Article  CAS  Google Scholar 

  8. Hubner O, Gloss A, Fichtner M, Klopper W (2004). J Phys Chem A 108:3019–3023

    Article  CAS  Google Scholar 

  9. Sagara T, Klassen J, Ganz E (2004). J Chem Phys 121:12543–12547

    Article  CAS  Google Scholar 

  10. Sagara T, Klassen J, Ortony J, Ganz E (2005). J Chem Phys 123:014701

    Article  CAS  Google Scholar 

  11. Buda C, Dunietz BD(2006). J Phys Chem B 110:10479–10484

    Article  CAS  Google Scholar 

  12. Sagara T, Ortony J, Ganz E(2005). J Chem Phys 123:214707

    Article  CAS  Google Scholar 

  13. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003). Science 300:1127–1129

    Article  CAS  Google Scholar 

  14. Rowsell JLC, Yaghi OM (2005). Angew Chem, Int Ed Engl 44:4670–4679

    Article  CAS  Google Scholar 

  15. Wong-Foy AG, Matzger AJ, Yaghi OM (2006). J Am Chem Soc 128:3494–3495

    Article  CAS  Google Scholar 

  16. Rowsell JLC, Eckert J, Yaghi OM (2005). J Am Chem Soc 127:14904–14910

    Article  CAS  Google Scholar 

  17. Yildirim T, Hartman MR (2005). Phys Rev Lett 95:art. n. 215504

  18. Spencer EC, Howard JAK, McIntyre GJ, Rowsell JLC, Yaghi OM (2006). Chem Comm 278–280

  19. Bordiga S, Vitillo JG, Ricchiardi G, Regli L, Cocina D, Zecchina A, Arstad B, Bjorgen M, Hafizovic J, Lillerud KP (2005). J Phys Chem B 109:18237–18242

    Article  CAS  Google Scholar 

  20. Perdew JP, Wang Y (1992). Phys Rev B 45:13244–13249

    Article  Google Scholar 

  21. Tsuzuki S, Luthi HP (2001). J Chem Phys 114:3949–3957

    Article  CAS  Google Scholar 

  22. Dunning THJ (1989). J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  23. Carpenter JE, Weinhold F (1988). Theochem J Mol Struct 169:41–62

    Article  Google Scholar 

  24. Boys SF, Bernardi F (1970). Mol Phys 19:553

    Article  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, Gaussian, Inc., Pittsburgh (2003)

  26. Weigend F, Furche F, Ahlrichs R (2003). J Chem Phys 119:12753–12762

    Article  CAS  Google Scholar 

  27. Tang CC, Bando Y, Ding XX, Qi SR, Golberg D (2002). J Am Chem Soc 124:14550–14551

    Article  CAS  Google Scholar 

  28. Zhou Z, Zhao JJ, Chen ZF, Gao XP, Yan TY, Wen B, Schleyer PV (2006). J Phys Chem B 110:13363–13369

    Article  CAS  Google Scholar 

  29. Sun Q, Wang Q, Jena P (2005). Nano Lett 5:1273–1277

    Article  CAS  Google Scholar 

  30. Rowsell JLC, Yaghi OM (2006). J Am Chem Soc 128:1304–1315

    Article  CAS  Google Scholar 

  31. Wang ZH, Enkelmann V, Negri F, Mullen K (2004). Angew Chem Int Ed Engl 43:1972–1975

    Article  CAS  Google Scholar 

  32. Zecchina A, Arean CO, Palomino GT, Geobaldo F, Lamberti C, Spoto G, Bordiga S (1999). Phys Chem Chem Phys 1:1649–1657

    Article  CAS  Google Scholar 

  33. Hay PJ, Wadt WR (1985). J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  34. Wadt WR, Hay PJ (1985). J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizia Negri.

Additional information

Contribution to the Fernando Bernardi Memorial Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negri, F., Saendig, N. Tuning the physisorption of molecular hydrogen: binding to aromatic, hetero-aromatic and metal-organic framework materials. Theor Chem Account 118, 149–163 (2007). https://doi.org/10.1007/s00214-007-0254-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0254-1

Keywords

Navigation