Skip to main content
Log in

Pseudobond ab initio QM/MM approach and its applications to enzyme reactions

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This perspective article mainly focuses on the development and applications of a pseudobond ab initio QM/MM approach to study enzyme reactions. The following aspects of methodology development are discussed: the approaches for the QM/MM covalent boundary problem, an efficient iterative optimization procedure, the methods to determine enzyme reaction paths, and the approaches to calculate free energy change in enzyme reactions. Several applications are described to illustrate the capability of the methods. Finally, future directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warshel A, Levitt M (1976). J Mol Bio 103:227

    Article  CAS  Google Scholar 

  2. Singh UC, and Kollman P (1986). J Comp Chem 7:718

    Article  CAS  Google Scholar 

  3. Field MJ, Bash PA, and Karplus M (1990). J Comp Chem 11:700

    Article  CAS  Google Scholar 

  4. Maseras F, and Morokuma K (1995). J Comp Chem 16:1170

    Article  CAS  Google Scholar 

  5. Warshel A (1991). Computer modeling of chemical reactions in enzymes. Wiley, New York

    Google Scholar 

  6. Aqvist J, and Warshel A (1993). Chem Rev 93:2523

    Article  Google Scholar 

  7. Warshel A (2003). Annu Rev Biophys Biomolec Struct 32:425

    Article  CAS  Google Scholar 

  8. Gao J, and Xia X (1992). Science 258:631

    PubMed  CAS  Google Scholar 

  9. Liu H, Muller-Plathe F, van Gunsteren WF (1996). J Mol Biol 261:454

    Article  PubMed  CAS  Google Scholar 

  10. Bakowies D, and Thiel W (1996). J Phys Chem 100:10580

    Article  CAS  Google Scholar 

  11. Cui Q, Elstner M, Kaxiras E, Frauenheim T, Karplus M (2001). J Phys Chem B 105:569

    Article  CAS  Google Scholar 

  12. Eurenius KP, Chatfield DC, Brooks BR, Hodoscek M (1996). Int J Quantum Chem 60:1189

    Article  CAS  Google Scholar 

  13. Bentzien J, Muller RP, Florian J, Warshel A (1998). J Phys Chem B 102:2293

    Article  CAS  Google Scholar 

  14. Stanton RV, Perakyla M, Bakowies D, Kollman PA (1998). J Am Chem Soc 120:3448

    Article  CAS  Google Scholar 

  15. Zhang Y, Lee TS, Yang W (1999). J Chem Phys 110:46

    Article  CAS  Google Scholar 

  16. Lyne PD, Hodoscek M, Karplus M (1999). J Phys Chem A 103:3462

    Article  CAS  Google Scholar 

  17. Eichinger M, Tavan P, Hutter J, Parrinello M (1999). J Chem Phys 110:10452

    Article  CAS  Google Scholar 

  18. Murphy RB, Philipp DM, Friesner RA (2000). Chem Phys Lett 321:113

    Article  CAS  Google Scholar 

  19. Yarne DA, Tuckerman ME, Martyna GJ (2001). J Chem Phys 115:3531

    Article  CAS  Google Scholar 

  20. Laio A, Vandevondele J, Rothlisberger U, (2002). J Chem Phys 116:6941

    Article  CAS  Google Scholar 

  21. Sherwood P. et al (2003). Theochem J Mol Struct 632:1

    Article  CAS  Google Scholar 

  22. Dewar MJS, Thiel W (1977). J Am Chem Soc 99:4899

    Article  CAS  Google Scholar 

  23. Stewart JJP (1989). J Comp Chem 10:209

    Article  CAS  Google Scholar 

  24. Elstner M. et al (1998). Phys Rev B 58:7260

    Article  CAS  Google Scholar 

  25. Gao J (1995) Methods and applications of combined quantum mechanical and molecular mechanical potentials, In: Review in computational chemistry, vol 7, p 119–185, VCH, New York

  26. Monard G, Merz KM (1999). Accounts Chem. Res. 32:904

    Article  CAS  Google Scholar 

  27. Gao J, Truhlar DG (2002). Annu Rev Phys Chem 53:467

    Article  PubMed  CAS  Google Scholar 

  28. Benkovic SJ, Hammes-schiffer S (2003). Science 301:1196

    Article  PubMed  CAS  Google Scholar 

  29. Shurki A, Warshel A, (2003). Adv Protein Chem 66:249

    Article  PubMed  CAS  Google Scholar 

  30. Hammes-schiffer S (2004). Curr Opin Struct Biol 14:192

    Article  PubMed  CAS  Google Scholar 

  31. Garcia-viloca M, Gao J, Karplus M, Truhlar DG (2004). Science 303:186

    Article  PubMed  CAS  Google Scholar 

  32. Gogonea V, Suarez D, van der Vaart A, Merz KW (2001). Curr Opin Struct Biol 11:217

    Article  PubMed  CAS  Google Scholar 

  33. Field MJ (2002). J Comput Chem 23:48

    Article  PubMed  CAS  Google Scholar 

  34. Zhang Y, Liu H, Yang W (2002) Ab initio qm/mm and free energy calculations of enzyme reactions, In: Schlick e.a.t (ed) Methods for macromolecular Modeling 332–354

  35. Colombo MC et al (2002). Chimia 56:13

    Article  CAS  Google Scholar 

  36. Friesner RA et al (2003). Coord Chem Rev 238:267

    Article  CAS  Google Scholar 

  37. Gao J, Amara P, Alhambra C, Field MJ (1998). J Phys Chem A 102:4714

    Article  CAS  Google Scholar 

  38. Das D et al (2002). J Chem Phys 117:10534

    Article  CAS  Google Scholar 

  39. Amara P, Field MJ (2003). Theor Chem Acc 109:43

    CAS  Google Scholar 

  40. Ferre N, Olivucci M (2003). Theochem-J Mol Struct 632:71

    Article  CAS  Google Scholar 

  41. Hypercube, Inc. (1994) HyperChem users manual, computational chemistry, Hypercube, Inc., Waterloo, Ontario 1994

  42. Kairys V, Jensen JH (2000). J Phys Chem A 104:6656

    Article  CAS  Google Scholar 

  43. Thery V, Rinaldi D, Rivail J-L (1994). J Comp Chem 15:269

    Article  CAS  Google Scholar 

  44. Monard G, Loos M, Thery V, Baka K, Rivail J-L (1996). Int J Quantum Chem 58:153

    Article  CAS  Google Scholar 

  45. Assfeld X, Rivail J-L (1996). Chem Phys Lett 263:100

    Article  CAS  Google Scholar 

  46. Ferre N, Assfeld X, Rivail JL (2002). J Comput Chem 23:610

    Article  PubMed  CAS  Google Scholar 

  47. Pu JZ, Gao J, Truhlar DG (2004). J Phys Chem A 108:632

    Article  CAS  Google Scholar 

  48. Philipp DM, Friesner RA (1999). J Comput Chem 20:1468

    Article  CAS  Google Scholar 

  49. 49. Zhang Y (2005). J Chem Phys 122:024114

    Article  PubMed  CAS  Google Scholar 

  50. Antes I, Thiel W (1999). J Phys Chem A 103:9290

    Article  CAS  Google Scholar 

  51. Dilabio GA, Hurley MM, Christiansen PA (2002). J Chem Phys 116:9578

    Article  CAS  Google Scholar 

  52. Poteau R et al (2001). J Phys Chem A 105:198

    Article  CAS  Google Scholar 

  53. Yasuda K, Yamaki D (2004). J Chem Phys 121:3964

    Article  PubMed  CAS  Google Scholar 

  54. Schlegel HB (1987). Optimization of equilibrium geometries and transition structures. In: Lawley KP (eds) Ab initio methods in quantum chemistry. Advances in chemical physics, vol 67. Wiley, New York, pp. 249–286

    Google Scholar 

  55. Pulay P, Fogarasi G (1992). J Chem Phys 96:2856

    Article  CAS  Google Scholar 

  56. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996). J Comp Chem 17:49

    Article  CAS  Google Scholar 

  57. Ayala PY, Schlegel HB (1997). J Chem Phys 107:375

    Article  CAS  Google Scholar 

  58. Paizs B, Fogarasi G, Pulay P (1998). J Chem Phys 109:6571

    Article  CAS  Google Scholar 

  59. Ponder FM, Richards FM (1987). J Comp Chem 8:1016

    Article  CAS  Google Scholar 

  60. Derreumaux P, Zhang G, Schlick T, Brooks B (1994). J Comp Chem 15:532

    Article  CAS  Google Scholar 

  61. Dembo RS, Steihaug T (1983). Math Program 26:190

    Google Scholar 

  62. Zhang Y, Liu H, Yang W (2000). J Chem Phys 112:3483

    Article  CAS  Google Scholar 

  63. Vreven T, Morokuma K, Farkas O, Schlegel HB, Frisch MJ (2003). J Comput Chem 24:760

    Article  PubMed  CAS  Google Scholar 

  64. Prat-resina X, Bofill JM, Gonzalez-lafont A, Lluch JM (2004). Int J Quantum Chem 98:367

    Article  CAS  Google Scholar 

  65. Dewar MJS, Kirschner S (1971). J Am Chem Soc 93:4291

    Article  CAS  Google Scholar 

  66. Williams IH, Maggiora GM (1982). J Mol Struc 89:365

    Google Scholar 

  67. Zhang Y, Liu H, Yang W (2000). J Chem Phys 112:3483

    Article  CAS  Google Scholar 

  68. Rothman MJ, Lohr LL (1980). Chem Phys Lett 70:405

    Article  CAS  Google Scholar 

  69. Scharfenberg P (1981). Chem Phys Lett 79:115

    Article  CAS  Google Scholar 

  70. Henkelman G, Jonsson H (1999). J Chem Phys 111:7010

    Article  CAS  Google Scholar 

  71. Henkelman G, Uberuaga BP, Jonsson H (2000). J Chem Phys 113:9901

    Article  CAS  Google Scholar 

  72. 72. Chu JW, Trout BL, Brooks BR (2003). J Chem Phys 119:12708

    Article  CAS  Google Scholar 

  73. Trygubenko SA, Wales DJ (2004). J Chem Phys 120:2082

    Article  PubMed  CAS  Google Scholar 

  74. Xie L, Liu H, Yang W (2004). J Chem Phys 120:8039

    Article  PubMed  CAS  Google Scholar 

  75. Liu H, Lu Z, Cisneros GA, Yang W (2004). J Chem Phys 121:697

    Article  PubMed  CAS  Google Scholar 

  76. Cisneros GA, Liu H, Lu Z, Yang W (2005). J Chem Phys 122:114502

    Article  PubMed  CAS  Google Scholar 

  77. Schlegel HB (2003). J Comput Chem 24:1514

    Article  PubMed  CAS  Google Scholar 

  78. Prat-resina X et al (2002). Theor Chem Acc 107:147

    CAS  Google Scholar 

  79. Prat-resina X, Gonzalez-lafont A, Lluch JM (2003). Theochem J Mol Struct 632:297

    Article  CAS  Google Scholar 

  80. Liu H, Zhang Y, Yang W (2000). J Am Chem Soc 122:6560

    Article  CAS  Google Scholar 

  81. Cisneros GA, Liu H, Zhang Y, Yang W (2003). J Am Chem Soc 125:10384

    Article  PubMed  CAS  Google Scholar 

  82. Cisneros GA, Wang M, Silinski P, Fitzgerald MC, Yang W (2004). Biochemistry 43:6885

    Article  PubMed  CAS  Google Scholar 

  83. Chandrasekhar J, Smith SF, Jorgensen WL (1985). J Am Chem Soc 107:154

    Article  CAS  Google Scholar 

  84. Jorgensen WL (1989). Acc Chem Res 22:184

    Article  CAS  Google Scholar 

  85. Lu Z, Yang W (2004). J Chem Phys 121:89

    Article  PubMed  CAS  Google Scholar 

  86. Wang M, Lu Z, Yang W (2004). J Chem Phys 121:101

    Article  PubMed  CAS  Google Scholar 

  87. Zhang Y, Kua J, McCammon JA (2002). J Am Chem Soc 124:10572

    Article  PubMed  CAS  Google Scholar 

  88. Zhang Y, Kua J, McCammon JA (2003). J Phys Chem B 107:4459

    Article  CAS  Google Scholar 

  89. Cheng Y, Zhang Y, McCammon JA (2005). J Am Chem Soc 127:1553

    Article  PubMed  CAS  Google Scholar 

  90. Poyner RR, Larsen TM, Wong SW, Reed GH (2002). Arch Biochem Biophys 401:155

    Article  PubMed  CAS  Google Scholar 

  91. Metanis N, Brik A, Dawson PE, Keinan E (2004). J Am Chem Soc 126:12726

    PubMed  CAS  Google Scholar 

  92. Thompson MA (1996). J Phys Chem 100:14492

    Article  CAS  Google Scholar 

  93. Gao J (1997). J Comput Chem 18:1061

    Article  CAS  Google Scholar 

  94. Dupuis M, Aida M, Kawashima Y, Hirao K (2002). J Chem Phys 117:1242

    Article  CAS  Google Scholar 

  95. Rick SW, Stuart SJ (2002) Potentials and algorithms for incorporating polarizability in computer simulations, In: Review in computational chemistry, vol 18 p 89–146, VCH, New York

  96. Ponder JW, Case DA (2003). Adv Protein Chem 66:27

    Article  PubMed  CAS  Google Scholar 

  97. Gordon MS et al (2001). J Phys Chem A 105:293

    Article  CAS  Google Scholar 

  98. Ryde U (2003). Curr Opin Chem Biol 7:136

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingkai Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y. Pseudobond ab initio QM/MM approach and its applications to enzyme reactions. Theor Chem Acc 116, 43–50 (2006). https://doi.org/10.1007/s00214-005-0008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0008-x

Keywords

Navigation