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Abstract

We investigate the equation (ut + (f(u))x)x = f ′′(u)(ux)
2/2 where f(u) is

a given smooth function. Typically f(u) = u2/2 or u3/3. This equation mod-
els unidirectional and weakly nonlinear waves for the variational wave equation
utt − c(u)(c(u)ux)x = 0 which models some liquid crystals with a natural sinu-
soidal c. The equation itself is also the Euler-Lagrange equation of a variational
problem. Two natural classes of solutions can be associated with this equa-
tion. A conservative solution will preserve its energy in time, while a dissipative
weak solution loses energy at the time when singularities appear. Conservative
solutions are globally defined, forward and backward in time, and preserve in-
teresting geometric features, such as the Hamiltonian structure. On the other
hand, dissipative solutions appear to be more natural from the physical point of
view.

We establish the well-posedness of the Cauchy problem within the class of
conservative solutions, for initial data having finite energy and assuming that
the flux function f has Lipschitz continuous second-order derivative. In the
case where f is convex, the Cauchy problem is well-posed also within the class of
dissipative solutions. However, when f is not convex, we show that the dissipative
solutions do not depend continuously on the initial data.
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Keywords: Existence, uniqueness, mass transfer, semigroup, conservative solution,
dissipative solution, Camassa-Holm equation, liquid crystal, measure-valued solution,
vanishing viscosity, action principle.
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1 Introduction

A nonlinear variational wave equation whose wave speed is a sinusoidal function of the
wave amplitude arises in the study of nematic liquid crystals. It is given by

∂2t ψ − c(ψ)∂x(c(ψ)∂xψ) = 0, (1.1)

with
c2(ψ) = α sin2(ψ) + β cos2(ψ), (1.2)

where α and β are positive physical constants. We refer the reader to [11], [12], [14]
for background information on the equation. Glassey, Hunter, and Zheng [10] have
shown that singularities can form from smooth data for equation (1.1)-(1.2). Assuming
that the wave speed c(·) is a monotone increasing function, the global existence of
(dissipative) weak solutions has been established in [19], [20], [21], [23]. The general
problem of the global existence and uniqueness of conservative solutions to the Cauchy
problem of equation (1.1) will be addressed in a forthcoming paper [3].

The study of solutions to (1.1)-(1.2) consisting of a small-amplitude and high-
frequency perturbation of a constant state has greatly contributed to the understanding
of this equation [10], [19], [20], [21], [23]. Hunter and Saxton first studied these waves
in [12]. Given a constant state a, these perturbed solutions take the form

ψ(t, x) = a + ǫu(ǫt, x− c(a)t) +O(ǫ2).

Hunter and Saxton found that u(·, ·) satisfies

(ut + unux)x =
1

2
nun−1u2x (1.3)

up to a scaling and reflection of the independent variables, assuming that a is such
that c(k)(a) = 0, k = 1, 2, . . . n− 1, but c(n)(a) 6= 0, for an integer n ≥ 1. In connection
with our sinusoidal function c modeling nematic liquid crystals in (1.2), the relevant
approximations in (1.3) are those with n = 1, 2. The case n = 1 yields the first-order
asymptotic equation

(ut + uux)x =
1

2
u 2
x , (1.4)

for which existence and uniqueness of admissible conservative and dissipative weak
solutions have both been established, see [13] and [16], [17], [18]. This equation is also
an asymptotic equation of the Camassa-Holm equation [4], describing the motion of
solitary waves in shallow water. For recent literature on the Camassa-Holm equation,
we refer the reader to [5], [6], [7], [8], [9], [15] and in particular [2].

The case n = 2 yields the second-order asymptotic equation

(ut + u2ux)x = uu2x . (1.5)

In [22] Zhang and Zheng established that dissipative solutions exist for (1.5) with BV
data. In the analysis of (1.1), a major difficulty is concentration of energy at points
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where c′ = 0, as in the example on p. 70 of [10]. We hope that investigation of
singularities of the same type for the second-order asymptotic equation will be helpful
toward the understanding of the original equation (1.1).

Rather than (1.3), in the present paper we study a somewhat more general class of
equations, having the form

(ut + f(u)x)x =
1

2
f ′′(u)u2x . (1.6)

Here u = u(t, x) is a scalar function defined for (t, x) ∈ R+ × R+ where R+
.
= [0,∞[ ,

and f is a C2 function. More restrictions on f will be specified later. As initial and
boundary data we take

u(0, x) = ū(x) , u(t, 0) = 0 . (1.7)

Integrating equation (1.6) w.r.t. x, we obtain

ut + f(u)x =
1

2

∫ x

0

f ′′(u)u2x dx . (1.8)

It is now clear that, to make sense of this equation, we should require that the function
u(t, ·) be absolutely continuous with derivative ux(t, ·) locally square integrable, for
every fixed time t. Moreover, to satisfy the boundary condition at x = 0, one needs
the nonnegativity of the characteristic speed at u = 0, namely

f ′(0) ≥ 0. (1.9)

The local integrability assumption ux(t, ·) ∈ L2
loc(R+) imposes a certain degree of

regularity on the function u. Therefore, there is no need to consider weak solutions in
distributional sense and a stronger concept of solution can be adopted.

Definition 1.1 A function u = u(t, x)) defined on [0, T ] × R+ is a solution of the
initial-boundary value problem (1.7) –(1.9) if the following holds.

(i) The function u is locally Hölder continuous w.r.t both variables t, x. The initial and
boundary conditions (1.7) hold pointwise. For each time t, the map x 7→ u(t, x) is
absolutely continuous with ux(t, ·) ∈ L2

loc(R+).
(ii) For any M > 0, consider the restriction of u to the interval x ∈ [0,M ]. Then the
map t 7→ u(t, ·) ∈ L2([0,M ]) is absolutely continuous and satisfies the equation

d

dt
u(t, ·) = −f ′(u)ux +

1

2

∫ ∗

0

f ′′(u) u2x dx (1.10)

for a.e. t ∈ [0, T ]. Here equality is understood in the sense of functions in L2([0,M ]).

In spite of the regularity assumptions, the requirements contained in the above
definition are still not enough to single out a unique solution. Let us consider a simple
example.
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Example 1. Consider the flux f(u) = u2 and choose the initial data

u(0, x) =

{
−x, 0 ≤ x ≤ 1,
−1, x > 1.

For t ∈ [0, 1[ , a solution to (1.8) can be constructed by the method of characteristics,
namely

u(t, x) =

{
−x/(1 − t), 0 ≤ x ≤ (1− t)2,
−(1− t), x ≥ (1− t)2.

Notice that the norm of the gradient ‖ux(t)‖L∞ blows up as t → 1. For t = 1 we
have u(1, x) = 0 for all x ≥ 0. At this stage, there are infinitely many ways to further
prolong the solution. For example, we could set

u(t, x) ≡ 0 t ≥ 1 x ≥ 0 . (1.11)

Or else we could choose an arbitrary point b ≥ 0, an arbitrary amount of energy k > 0
and a time τ ≥ 1 and define

u(t, x) = 0 for 1 ≤ t ≤ τ ,

while, for t > τ ,

u(t, x) =





0 0 ≤ x ≤ b,
(x− b)/(t− τ) b ≤ x ≤ k(t− τ)2 + b,
k(t− τ) x > b+ k(t− τ)2.

Among all these solutions, two in particular can be singled out. If we insist that the
future configurations u(t, ·) for t > 1 should be entirely determined only by the present
configuration u(1, ·), then the only reasonable choice is (1.11). On the other hand, if
we look for solutions that satisfy the additional conservation equation

(u2x)t + (2u u2x)x = 0 ,

the natural choice should be

u(t, x) =

{
x/(t− 1), 0 ≤ x ≤ (t− 1)2

t− 1, x ≥ (t− 1)2
t > 1 .

To express the fact that at time t = 1 this solution is different from the null solution,
in some way we should think its derivative ux as being not the zero function but the
square root of a Dirac distribution at the origin.

In the following, we say that a solution u = u(t, x) is dissipative if the family of
absolutely continuous measures {µ(t) ; t ≥ 0} defined by dµ(t) = u2x(t) dx provides a
measure-valued solution to

wt + (f ′(u)w)x ≤ 0. (1.12)
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More precisely, we require that

∫
φ(t, ·) dµ(t)

∣∣∣
t2

t1

≤
∫ t2

t1

[∫
[φt(t, ·) + φx(t, ·) f ′(u(t, ·))] dµ(t)

]
dt (1.13)

for every t2 > t1 ≥ 0 and any function φ ∈ C1
c , φ ≥ 0.

On the other hand, to define a semigroup of conservative solutions we need to
consider a domain D of couples (u, µ) where u : R+ 7→ R is an absolutely continuous
function with square integrable derivative and µ is a nonnegative measure on R+.
Decomposing µ = µa + µs as a sum of an absolutely continuous and a singular part
(w.r.t. Lebesgue measure), we shall require that dµa = u2x dx. We say that a map
t 7→ (u(t), µ(t)) ∈ D is a conservative solution of (1.7)-(1.9) if u is a solution
according to Definition 1.1 and (1.13) is satisfied as an equality, for all t2 > t1 ≥ 0 and
φ ∈ C1

c .
As mentioned earlier, Zhang and Zheng have established in [22] the finite-time

singularity formation in smooth solutions and the global existence of a dissipative weak
solution to (1.7)–(1.9) with initial data ū(x) whose derivative is in BV , for f(u) = u3/3.

In the present paper, we consider a general flux f with Lipschitz continuous second-
order derivative such that f ′(0) ≥ 0. The initial data are chosen in the set of absolutely
continuous functions ū, with ū(0) = 0 and ūx ∈ L2(R+). Our main results can be
summarized as follows.

1. A flow of conservative solutions can be globally defined, forward and backward in
time (Theorem 3.1). The conservative solution of the initial-boundary value problem
(1.7)–(1.9) is unique, provided that a suitable non-degeneracy condition is satisfied
(Theorem 4.1).

2. Assuming, in addition, that the flux f is convex, then there also exists a continuous
semigroup of dissipative solutions. The dissipative solution of the initial-boundary
value problem (1.7)–(1.9) is unique (see Theorem 5.1).

3. If the flux f is not convex, the dissipative solutions do not depend continuously on
the initial data, in general (see Example 2 in Section 6).

Before proving the main results in Section 3, we briefly discuss the action principle
and some admissibility conditions, whose aim is to identify a unique physically relevant
solution to equations (1.7)–(1.9).

2 Remarks on admissibility conditions

The decay estimate
ux(t, x) ≤ 2/t
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was used as an admissibility criterion for dissipative solutions of the first-order asymp-
totic equation in [13], [16], [17] and [18]. We remark, however, that this is not appro-
priate in connection with dissipative solutions of (1.6). Indeed, for a solution of the
second-order asymptotic equation, the gradient ux can approach +∞ as well as −∞.

Another common criteria for selecting physically admissible solutions is by vanishing
viscosity. One might conjecture that dissipative solutions are precisely the limits of
vanishing viscosity approximations. We believe this is indeed the case when the flux
function f is convex, see some proofs in [13] [15] for f = u2/2. On the other hand,
when f is not convex, the dissipative solutions do not depend continuously on the
initial data (see Section 6). We observe that the set of vanishing viscosity limits is
closed, connected and depends on the initial data in an upper semicontinuous way.
Therefore, by a topological argument, the vanishing viscosity criterion cannot single
out a unique limit, in general.

Concerning the vanishing dispersion limit, numerical experiments performed with a
convex f seem to indicate that vanishing dispersion selects the conservative solutions,
see [13].

Next, we discuss the admissibility of solutions in terms of a variational principle.
For all asymptotic equations (1.3) we have the action functionals

An
.
=

∫ t2

t1

∫
[uxut + un(ux)

2] dx dt . (2.1)

In other words, the Euler-Lagrange equations satisfied by functions u that render sta-
tionary the action An are precisely the asymptotic equations (1.3). These can be
derived from the nonlinear variational wave equation (1.1)

ψtt − c(ψ)(c(ψ)ψx)x = 0 (2.2)

by a perturbation argument. Notice that (2.2) is the Euler-Lagrange equation corre-
sponding to the Lagrangean

L = ψ2
t − c2(ψ)ψ2

x. (2.3)

This arises often in physical models. For weakly nonlinear waves of the form

ψ = ψ0 + ǫu(τ, θ) + ǫ2v(τ, θ) +O(ǫ3)

with
τ = ǫt , θ = x− c0t , c0

.
= c(ψ0) ,

assuming that c′0
.
= c′(ψ0) 6= 0 we have

ψtt − c(ψ)(c(ψ)ψx)x = −2c0ǫ
2
{
(uτ + c′0uuθ)θ −

1

2
c′0u

2
θ

}
+O(ǫ3) .

Moreover
ψ2
t − c2(ψ)ψ2

x = −2c0ǫ
3[uτuθ + c′0uu

2
θ] +O(ǫ4).
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Therefore, u satisfies the first order asymptotic equation. The corresponding La-
grangean, approximated to order O(ǫ3), is −(uτuθ + c′0uu

2
θ).

At first sight, one might hope that the physically relevant solutions to the equations
(1.3) are those which maximize (or minimize) the action in (2.1). Unfortunately this is
not the case, because the action An is not coercive. For any smooth solution u of (1.3)
one can find compactly supported perturbations u+ ǫv which increase the value of An,
and others which decrease it. The extremality of the action thus cannot be used as a
selective criterion.

3 Conservative solutions

We consider the evolution problem described by the equation

ut + f(u)x =
1

2

∫ x

0

f ′′(u)u2x dx for all t ≥ 0 , x ≥ 0, (3.1)

together with the boundary conditions

u(t, 0) = 0 for all t ≥ 0 . (3.2)

We assume that f ∈ C2(R) and

f ′(0) ≥ 0, |f ′′(u)− f ′′(v)| ≤ L|u− v|, ∀u, v ∈ R (3.3)

for a constant L.
One easily checks that every smooth solution satisfies the additional conservation

law for the “energy” u2x, namely

(u2x)t +
[
f ′(u)(u2x)

]
x
= 0 . (3.4)

It is therefore natural to seek a continuous flow associated with (3.1)-(3.2) which pre-
serves the energy

∫∞

0
u2x(t, x) dx. However, Example 1 in the Introduction already

pointed out a basic difficulty which one encounters while constructing a semigroup in
the space H1

loc . Indeed, when the gradient ux blows up, all the energy is concentrated
at a single point, so that the measure u2x dx approaches a Dirac mass.

Motivated by this example, to the equations (3.1)-(3.2) we will associate an evolu-
tion semigroup on a domain D defined as follows. An element of D is a couple (u, µ),
where u : R+ 7→ R is a continuous function with u(0) = 0 and whose distributional
derivative ux lies in L2, while µ = µa + µs is a bounded nonnegative Radon measure
on R+ , whose absolutely continuous part (w.r.t. Lebesgue measure) satisfies

dµa = u2x dx . (3.5)

In the following, on the family of Radon measures on R+ we consider the distance

d(µ, µ̃)
.
= sup

ϕ

∣∣∣∣
∫
ϕdµ−

∫
ϕdµ̃

∣∣∣∣ , (3.6)
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where the supremum is taken over all smooth functions ϕ with |ϕ| ≤ 1, |ϕx| ≤ 1.
We recall that a semigroup S on a domain D is a map S : D × [0,∞[ 7→ D such

that S0w = w and Ss(Stw) = Ss+tw for every s, t ≥ 0 and w ∈ D.

Theorem 3.1 Assume that the flux function f satisfies condition (3.3). Then there
exists a semigroup S : D × [0,∞[ 7→ D with the following properties. Calling t 7→
St(ū, µ̄) = (u(t), µ(t)) the trajectory corresponding to an initial data (ū, µ̄) ∈ D, one
has:

(i) The function u = u(t, x) is locally Hölder continuous in R+ ×R+. It provides a
solution of (3.1)-(3.2) in the sense of Definition 1.1 with initial condition

u(0, x) = ū(x) . (3.7)

(ii) The assignment t 7→ µ(t) provides a measure valued solution to the linear trans-
port equation

wt + [f ′(u)w]x = 0 , w(0) = µ̄ . (3.8)

Moreover, the singular part of the measure f ′′(u(t)) ·µ(t) vanishes at almost every time
t ≥ 0:

f ′′(u(t))µs
(t) = 0, a. e. t. (3.9)

(iii) (Temporal continuity) For every M > 0, the above solution u and the corre-
sponding measure µ satisfy the Lipschitz continuity property:

∫ M

0

|u(t, x)− u(s, x)| dx ≤ C|t− s|, (3.10)

d(µ(t) , µ(s)) ≤ C|t− s|,
where the constant C depends only on M , on the flux function f , and on the total
energy µ̄(R+) <∞.

(iv) (Continuous dependence on the initial data) Finally, consider a sequence of
initial conditions (ūn, µ̄n) ∈ D with ūn → ū uniformly on bounded sets and d(µ̄n, µ̄) → 0
as n→ ∞, for some (ū, µ̄) ∈ D. Then the corresponding solutions satisfy

un(t, x) → u(t, x) (3.11)

uniformly for t, x in bounded sets, while

d(µn
(t), µ(t)) → 0 (3.12)

for every t > 0.
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Proof. We treat here the case where µ̄ has compact support, say contained in the
interval [0, R], so that ū is constant for x > R. The general case follows by an easy
approximation argument. The proof will be given in several steps.

1. Construction of the solution. Let an initial data (ū, µ̄) ∈ D be given. Set
ξ̄
.
= µ̄(R+) <∞. On the semi-infinite strip

{
t ≥ 0 , ξ ∈ [0, ξ̄]

}
we construct a function

U = U(t, ξ) by first setting

U(0, ξ) = U(ξ)
.
= ū (ȳ(ξ)) , (3.13)

where
ȳ(ξ)

.
= inf

{
x ≥ 0 ; µ̄ ([0, x]) ≥ ξ

}
(3.14)

for 0 < ξ ≤ ξ̄, while
ȳ(0) = sup{x ; µ̄ ([0, x]) = 0} . (3.15)

Observe that the map ξ 7→ ȳ(ξ) is nondecreasing and left continuous, but it may well
have upward jumps. The provision (3.15) makes it continuous at the point ξ = 0. In
any case, the composed function ξ 7→ ū(ȳ(ξ)) is always continuous. For positive times,
the function U is then defined to be the solution of

∂U

∂t
(t, ξ) =

1

2

∫ ξ

0

f ′′(U(t, η)) dη (3.16)

with initial data (3.13). By the assumption of Lipschitz continuity of f ′′, the function
U can be obtained as the unique fixed point of a contractive transformation. Details
will be given at the next step.

Having constructed U(t, ξ), the characteristic curves are obtained by solving the
equation

y(0, ξ) = ȳ(ξ) ,
∂y

∂t
(t, ξ) = f ′(U(t, ξ)) . (3.17)

Explicitly:

y(t, ξ) = ȳ(ξ) +

∫ t

0

f ′(U(τ, ξ)) dτ. (3.18)

Notice that t 7→ U(t, ξ) yields the values of our solution u along the characteristic
curve t 7→ y(t, ξ) starting at ȳ(ξ). A remarkable feature of equation (3.1) is that, if the
energy is conserved, then these values can be determined in advance, before computing
the actual position of the characteristic curve. The image of the mapping

ξ → (y(t, ξ), U(t, ξ))

is now contained inside the graph of the desired solution u(t, ·). More precisely, for any
given (t, x) we define

u(t, x) = U(t, ξ(t, x)), (3.19)

where
ξ(t, x)

.
= sup {ξ ; y(t, ξ) ≤ x} .
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Finally, at time t the corresponding measure µ(t) is defined as the push-forward of
the Lebesgue measure on [0, ξ̄ ] through the mapping ξ 7→ y(t, ξ). For each Borel set
J ⊂ R+ we thus define

µ(t)(J)
.
= meas

{
ξ ∈ [0, ξ̄ ] ; y(t, ξ) ∈ J

}
. (3.20)

2. A contractive transformation. Consider the space of continuous functions
C([0,∞[×[0, ξ̄ ]), with the equivalent weighted norm

‖U‖∗ .
= sup

t≥0, ξ∈[0,ξ̄ ]

e−Lξ̄t |U(t, ξ)| , (3.21)

where L is a Lipschitz constant for the function f ′′. The transformation U 7→ T U is
defined as

T U (t, ξ)
.
= ū(ȳ(ξ)) +

1

2

∫ t

0

∫ ξ

0

f ′′(U(s, η)) dη ds . (3.22)

If now ‖U − V ‖∗ = δ, then

∣∣∣f ′′(U(τ, η))− f ′′(V (τ, η))
∣∣∣ ≤ L|U(τ, η)− V (τ, η)| ≤ LeLξ̄τδ .

For every t ≥ 0 and ξ ∈ [0, ξ̄ ] we thus have

|(T U − T V )(t, ξ)| ≤ 1

2

∫ t

0

[∫ ξ

0

LeLξ̄τ δ dη

]
dτ ≤ 1

2

∫ t

0

Lξ eLξ̄τ δ dτ <
1

2
eLξ̄t δ .

By the above inequality we conclude

‖T U − T V ‖∗ ≤
1

2
‖U − V ‖∗ ,

proving the contractivity of the map T . By the contraction mapping theorem, it
admits a unique fixed point U = U(t, ξ), defined on R+ × [0, ξ̄ ] . In turn, the function
u = u(t, x) and the measures µ(t) are well defined by (3.19)-(3.20).

3. Absolute continuity. We prove here that the map ξ 7→ U(t, ξ) is absolutely
continuous, for each t ≥ 0. Indeed, consider first the case t = 0. Let [ξk, ξ

′
k], with

k = 1, . . . , N , be disjoint intervals contained in [0, ξ̄ ]. Assume that

∑

k

|ξ′k − ξk| ≤ ε .

Call I1 the set of indices k such that

|U(ξ′k)− U(ξk)|
y(ξ′k)− y(ξk)

≤ √
ε

10



and let I2 be the set of indices where the above quantity is >
√
ε. Then

∑

k∈I1

|U(ξ′k)− U(ξk)| ≤
√
ε ·

∑

k∈I1

|y(ξ′k)− y(ξk)| ≤
√
εR ,

while

∑

k∈I2

|U(ξ′k)− U(ξk)| ≤
1√
ε

∑

k∈I2

|U(ξ′k)− U(ξk)|2
y(ξ′k)− y(ξk)

≤ 1√
ε
·
∑

k∈I2

∫ y(ξ′
k
)

y(ξk)

u2x dx

≤ 1√
ε

∑

k∈I2

|ξ′k − ξk| ≤
√
ε .

Together, the two above inequalities yield

N∑

k=1

|U(ξ′k)− U(ξk)| ≤ (1 +R)
√
ε ,

proving the absolute continuity of the map ξ 7→ U(0, ξ).
For t > 0, the absolute continuity of U(t, ·) follows from the absolute continuity of

U(0, ·) together with (3.16). Indeed,

|U(t, ξ′)− U(t, ξ)| ≤ |U(0, ξ′)− U(0, ξ)|+ |ξ′ − ξ| · t
2
sup
u

|f ′′(u)| .

As a consequence, the partial derivative Uξ exists at a.e. (t, ξ). By (3.16), it satisfies
the evolution equation

∂

∂t
Uξ(t, ξ) =

1

2
f ′′(U(t, ξ)) . (3.23)

On the other hand, the map ξ 7→ y(t, ξ) can be discontinuous. However, if

lim
ξ→ξ∗−

y(t, ξ) = y1 < y2 = lim
ξ→ξ∗+

y(t, ξ) ,

then the function u(t, ·) must be constant on the interval [y1, y2].

4. Measure transformations. To proceed, we first need to analyse the regular
and the singular part of the push-forward of Lebesgue measure, under a continuous
non-decreasing transformation.

Lemma 1. Let U : [0, ξ̄] 7→ R be absolutely continuous with square integrable deriva-
tive. Let ξ 7→ y(ξ) be such that

y(ξ) = y(0) +

∫ ξ

0

U2
ξ (ζ) dζ . (3.24)
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For x ∈ [y(0), y(ξ̄)] define the function u = u(x) implicitly by

u(y(ξ))
.
= U(ξ) . (3.25)

Let µ be the push-forward of Lebesgue measure on [0, ξ̄] through the map y, i.e.

µ(J)
.
= meas {ξ ∈ [0, ξ̄] ; y(ξ) ∈ J} . (3.26)

Then the absolutely continuous and the singular part of µ w.r.t. Lebesgue measure
are respectively given by

µa(A) = meas {ξ ∈ [0, ξ̄] ; y(ξ) ∈ A , Uξ(ξ) 6= 0} . (3.27)

µs(A) = meas {ξ ∈ [0, ξ̄] ; y(ξ) ∈ A , Uξ(ξ) = 0} . (3.28)

In addition, on the set [y(0), y(ξ̄)] one has

dµa = u2x dx . (3.29)

Viceversa, if both U and the map y are absolutely continuous and (3.25), (3.26), (3.29)
are valid, then (3.24) must hold.

Proof. By (3.24), the image of a set I ⊆ [0, ξ̄]

Iε
.
= {ξ ∈ [0, ξ̄ ] ; |Uξ(ξ)| ≤ ε}

under the mapping ξ 7→ y(ξ) has Lebesgue measure

meas (y(I)) =

∫

I

U2
ξ (ξ) dξ .

It is thus clear that the singular part of µ is the push-forward of Lebesgue measure on
the set

I0
.
= {ξ ∈ [0, ξ̄ ] ; Uξ(ξ) = 0}

Next, for any fixed ε > 0 take a measurable set J ⊂ [0, ξ̄ ] such that

U2
ξ (ξ) ≥ ε for all ξ ∈ J .

Then

∫

y(J)

u2x(x) dx =

∫

J

[
Uξ

dξ

dy

]2
dy

dξ
· dξ =

∫

J

[
Uξ U

−2
ξ

]2
U2
ξ · dξ = meas (J) .

Since ε > 0 was arbitrary, this proves (3.27), (3.29). To prove the last statement,
assume (3.25), (3.26) and (3.29). Call

Jε
.
= {ξ ∈ [0, ξ̄ ] ; yξ(ξ) ≥ ε} .

12



Observe that, for ξ ∈ Jε. the chain rule yields

ux(y(ξ)) yξ(ξ) = Uξ(ξ) . (3.30)

For 0 < a < b < ξ̄ we now obtain
∫

[y(a),y(b)]∩y(Jε)

u2x(x) dx =

∫

[a,b]∩Jε

u2x(y(ξ)) yξ(ξ) dξ = meas ([a, b] ∩ Jε) (3.31)

Since a, b were arbitrary, this implies

yξ(ξ) = [u2x(y(ξ))]
−1 (3.32)

for ξ ∈ Jε. Together with (3.30) this yields

ux(y(ξ)) = U−1
ξ (ξ) , yξ(ξ) = U2

ξ (ξ) (3.33)

for all ξ ∈ Jε. Since ε > 0 is arbitrary, we conclude

y(ξ) = y(0) +

∫ ξ

0

yξ(ζ) dζ = y(0) + lim
ε→0

∫

[0,ξ]∩Jε

yξ(ζ) dζ = y(0) +

∫ ξ

0

U2
ξ (ζ) dζ ,

proving (3.24).

5. A class of regular solutions. Having constructed the trajectory t 7→ (u(t, ·), µ(t)),
we still need to prove that it satisfies equation (3.1), coupled with the initial and
boundary conditions (3.7), (3.2). We carry out the analysis first assuming that the
map ξ 7→ ȳ(ξ) is absolutely continuous. At the end, this assumption will be removed.

For each t ≥ 0 and ξ ∈ [0, ξ̄ ] define

y(t, 0) = ȳ(0) + t f ′(0) , y(t, ξ) = y(t, 0) +

∫ ξ

0

U2
ξ (t, ζ) dζ . (3.34)

By (3.23) this implies

∂

∂t
yξ(t, ξ) =

∂

∂t
U2
ξ (t, ξ) = f ′′(U(t, ξ))Uξ(t, ξ) . (3.35)

We now check that the function y = y(t, ξ) defined at (3.34) coincides with the one
defined at (3.18). Indeed, by the second part of Lemma 1, their derivatives yξ coincide
at time t = 0 and satisfy the same equation (3.35). In particular, from (3.34) it is clear
that the map t 7→ y(t, ξ) is non-decreasing. In particular, characteristics never cross
each other.

We begin by observing that the boundary condition (3.2) is clearly satisfied, because

u(t, 0) = U(t, 0) = U(0, 0) +

∫ t

0

Ut(τ, 0) dτ = 0 .

13



Moreover, the initial condition (3.7) holds because of the definitions (3.13)-(3.14).
To check that the limit function u satisfies (3.1), fix a time t > 0. Since u(t, x) ≡ 0

for x ∈ [0, y(t, 0)], in this region the equation (3.1) trivially holds. For almost every
x ∈ [y(t, 0), y(t, ξ̄)], there exists a unique ξ ∈ [0, ξ̄ ] such that x = y(t, ξ). In this case,
our construction yields

ut + f ′(u)ux = Ut(t, ξ) =
1

2

∫ ξ

0

f ′′(U(t, ζ)) dζ =
1

2

∫ y(t,ξ)

0

f ′′(u(t, ·)) dµ(t) .

This implies (3.1), provided that we can show the identity of measures

f ′′(u) u2x dx = f ′′(u) dµ(t) (3.36)

for almost every time t ≥ 0. We shall now work toward a proof of (3.36).
Since the function u is continuous, by covering the open region

{
(t, x) ∈ R+ × R+ ; f ′′(u(t, x)) 6= 0

}

with countably many sets of the form

Γ
.
=

{
(t, x) ; t ∈ [t1, t2] , x ∈ [y(t, a), y(t, b)]

}

it suffices to prove the following statement.
Assume that

f ′′(u(t, x)) > δ > 0 (t, x) ∈ Γ .

Then, for a.e. t ∈ [t1, t2], the restriction of the measure µ(t) to the interval [y(t, a), y(t, b)]
is absolutely continuous w.r.t. Lebesgue measure and satisfies dµ(t) = u2x dx.

By construction, as long as U ranges in a region where f ′′ > δ we have

∂

∂t
Uξ(t, ξ) >

δ

2
. (3.37)

Hence, for any ε > 0,

meas
(
{(t, ξ) ∈ Γ ; |Uξ(t, ξ)| < ε}

)
<

4ξ̄

δ
ε .

Since ε > 0 here is arbitrary, we conclude that there exists a set of times N of measure
zero such that

meas
(
{ξ ∈ [a, b] ; Uξ(t, ξ) = 0}

)
= 0

for all times t /∈ N . By Lemma 1, t /∈ N thus implies that the restriction of µ(t) to the
interval [y(t, a), y(t, b)] is absolutely continuous w.r.t. Lebesgue measure. Furthermore,
by (3.34), Lemma 1 shows that its density is dµ(t) = u2x(t) dx. This concludes the proof
of (i) and (ii) in Theorem 3.1, at least in the case where the function ξ 7→ ȳ(ξ) is
absolutely continuous.
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6. General initial data. We now consider a more general initial data (ū, µ̄) ∈ D.
In this case, the map ξ 7→ ȳ(ξ) is non-decreasing, left continuous but not necessarily
continuous. Its distributional derivative is thus a measure, say Dξȳ = σ = σa +σs. By
the assumptions, the absolutely continuous part satisfies

dσa = U
2

ξ dξ ,

so that

ȳ(ξ) = ȳ(0) +

∫ ξ

0

U
2

ξ(ζ) dζ + σs([0, ξ[ ) .

Consider a new initial condition (ū∗, µ̄∗) defined by setting

ȳ∗(ξ) = ȳ(0) +

∫ ξ

0

U
2

ξ(ζ) dζ , ū∗(ȳ∗(ξ)) = U(ξ)

µ̄∗(J) = meas {ξ ; ȳ∗(ξ) ∈ J} .
By construction, for this new initial data the function ξ 7→ y∗(0, ξ) = ȳ∗(ξ) is abso-
lutely continuous. Hence, by the previous analysis, the corresponding function u∗(t, x)
provides a solution to the initial-boundary value problem (3.1)-(3.2) with initial data
(ū∗, µ̄∗). It is now easy to check that the function constructed in (3.16)–(3.19) for the
original initial data ū satisfies

u
(
t, y(t, ξ) + σs([0, ξ[)

)
= U(t, ξ) .

More precisely,

u(t, x) = U(t, ξ) where ξ = inf {ζ ; y(t, ζ) + σs([0, ζ ]) ≥ x} .

By the previous analysis, u∗ provides a solution. Hence the same is true of u.

7. Continuity properties. Recall that ξ̄ = µ̄(R+) < ∞ is the total mass of each of
the measures µ(t). We have

Tot.Var.{u(t, ·) ; [0,M ] } ≤
√
ξ̄M .

Since u(t, 0) = 0, for any x ∈ [0,M ] we have

|u(t, x)| ≤
√
ξ̄M .

This implies the Lipschitz continuity property w.r.t. time:

∫ M

0

|u(t, x)− u(s, x)| dx ≤ |t− s| ·
{
sup
ω

|f ′(ω)| ·
√
ξ̄M +

ξ̄M

2
· sup

ω

|f ′′(ω)|
}

(3.38)

where both sup are taken over |ω| ≤
√
ξ̄M .
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Next, consider a convergent sequence of initial data (ūm, µ̄m)m≥0. The assumption
of Theorem 3.1 implies that the corresponding functions Ūn satisfy

U
m
(ξ) → Ū(ξ)

uniformly on [0, ξ̄]. Therefore Um(t, ξ) → U(t, ξ) uniformly on the domain [0, T ]×[0, ξ̄ ] ,
for any T > 0. In turn, this implies the convergence (3.11)-(3.12).

8. Hölder continuity. We show that u(t, x) is Hölder continuous locally in (t, x).
First we know by Sobolev embedding that u is Hölder continuous in x for each fixed
time t with exponent α = 1/2. In the time direction, we know that the derivative
of u along a characteristic is bounded, thus u is Lipschitz continuous in time along a
characteristic. The characteristic speed is u which is locally bounded, thus the distance
traveled in the x direction is order one of time. Combining the two parts, we conclude
that u is Hölder continuous locally in both space and time.

This completes the proof of Theorem 3.1.

Remark. The previous construction of solutions to (3.1)-(3.2) works equally well for
negative times. The semigroup S can thus be extended to a group Ψ : D × R 7→ D.

4 Characterization of semigroup trajectories

In the previous section, a solution u to the initial-boundary value problem (3.1)-(3.2),
(3.7), was obtained as the fixed point of a contractive transformation. Hence, any other
solution which provides a fixed point to the same transformation necessarily coincides
with u. A straightforward uniqueness result can be stated as follows.

Theorem 4.1 Assume that f satisfies (3.3). Consider a function u = u(t, x) and a
family of measures µ(t) satisfying (i) and (ii) in Theorem 3.1. Moreover, calling

y(t, ξ)
.
= inf

{
x ≥ 0 ; µ(t) ([0, x]) ≥ ξ

}
, (4.1)

U(t, ξ)
.
= u(t, y(t, ξ)), (4.2)

assume that for a.e. ξ the map t 7→ U(t, ξ) is absolutely continuous and satisfies the
differential equation (3.16). Then one has the identity

(u(t), µ(t)) = St(ū, µ̄). (4.3)

In particular, the solution which satisfies the above conditions is unique.

We conjecture that a uniqueness result remains valid even without the assumption
(3.16) on the corresponding function U . The basic ingredient toward a uniqueness
result is the assumption

f ′′(u) dµa(t) = f ′′(u) u2x(t) dx . (4.4)
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for a.e. t. We now show that this is indeed the case under the additional condition
f ′′ > 0.

Theorem 4.2 In addition to assumption (3.3), let f ′′(·) > 0. Consider a function
u = u(t, x) and a family of measures µ(t) satisfying (i) and (ii) in Theorem 3.1. Then
identity (4.3) holds.

Indeed, observe that the flow on L1([0, ξ̄]) generated by the evolution equation
(3.16) is Lipschitz continuous w.r.t. time and to the initial data. Adopting a semigroup
notation, call t 7→ V (t) = StV the trajectory corresponding to the initial data V ∈
L1([0, ξ̄]). Since the couple (u(t), µ(t)) can be entirely recovered from the function
U(t, ·) and the initial mapping ξ 7→ ȳ(ξ), to prove uniqueness, it thus suffices to show
that

lim
h→0+

1

h

∫ ξ̄

0

∣∣∣U(t + h, ξ)− (ShU(t))(ξ)
∣∣∣ dξ = 0 (4.5)

for almost every time t > 0 (see Theorem 2.9 in [1]). Since f ′′ > 0, our assumption
implies that the singular part of µ(t) vanishes at a.e. t. Choose a time t where µs

(t) = 0.
Then

Uξ(t, ξ) 6= 0 for a.e. ξ ∈ [0, ξ̄ ] . (4.6)

Consider the map ξ 7→ y(t, ξ). Since

u2x dy = dξ , Uξ = ux ·
dy

dξ
=

1

ux
,

by (4.6) the pre-image of a set of measure zero through the map ξ 7→ y(t, ξ) has measure
zero.

If now u = u(t, x) is differentiable at the point (t, y(t, ξ)), we have the identity

∂
∂t
U(t, ξ) =

[
ut + f ′(u)ux

]
(t, y(t, ξ))

= 1
2

∫ y(t,ξ)

0
f ′′(u) u2x(t, x) dx = 1

2

∫ ξ

0
f ′′(U(t, η)) dη .

(4.7)

Observing that u(t, ·) is differentiable at a.e. x, we conclude that (4.7) holds at
a.e. ξ ∈ [0, ξ̄ ]. In turn, this implies (4.5), proving the theorem.

Notice how the condition on the vanishing of the singular part is essential to ensure
uniqueness. Otherwise, in Example 1 the solution u(t, x) ≡ 0 for t ≥ 1, with µ(t)

containing a unit mass at the origin, would satisfy all the other requirements of the
theorem.
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5 A semigroup of dissipative solutions

Next, we examine dissipative solutions. A major difference with the conservative case
is that here the Cauchy problem is well-posed if the flux function f is strictly convex,
but ill posed otherwise, as shown in the next section.

In this section, our main concern will be the construction of a semigroup of dissi-
pative solutions under the additional assumption that f ′′ ≥ 0. As domain D of our
semigroup we choose the space

D .
=

{
u : R+ 7→ R , u is absolutely continuous, u(0) = 0 , ux ∈ L2

}
.

Theorem 5.1 Assume that the flux function f satisfies (3.3) and f ′′ ≥ 0. Then
there exists a semigroup S : D × [0,∞[ 7→ D with the following properties. Calling
t 7→ u(t) = Stū the trajectory corresponding to an initial data ū ∈ D, one has:

(i) The function u = u(t, x) is Hölder continuous. It provides a solution of (3.1)-
(3.2) with initial condition u(0, x) = ū(x).

(ii) For everyM > 0, the above solution u satisfies the Lipschitz continuity property
in time: ∫ M

0

|u(t, x)− u(s, x)| dx ≤ C|t− s|, (5.1)

(iii) Given a sequence of initial conditions ūn ∈ D, assume that

‖ūnx − ūx‖L2([0,M ]) → 0

for every M > 0. Then the corresponding solutions satisfy

un(t, x) → u(t, x) (5.2)

uniformly for t, x in bounded sets.

Proof. Consider an initial condition ū ∈ D. For simplicity, we again assume that ū
is constant outside a bounded interval, say [0, R]. The general case follows from an
approximation argument.

To construct the corresponding trajectory we begin by setting

ξ̄
.
=

∫ R

0

|u2x(x)| dx .

Then we define the initial data

U(ξ)
.
= ū(ȳ(ξ)) ,
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where

ȳ(ξ)
.
= inf

{
x ≥ 0 ;

∫ x

0

u2x(x) dx ≥ ξ
}
. (5.3)

By the analysis in Section 3, the map ξ 7→ U(ξ) is absolutely continuous, hence its
derivative

Z(ξ) =
∂

∂ξ
U(ξ)

is a well defined function in L1([0, ξ̄ ]).
Define the subset

J− .
=

{
ξ ∈ [0, ξ̄ ] ; Z(ξ) ≤ 0

}
.

Let L be a Lipschitz constant for f ′′. On the space of continuous functions Y : R+ 7→
L1([0, ξ̄ ]) with weighted norm

‖Y ‖∗ .
= sup

t

e−Lξ̄t‖Y (t)‖L1 ,

we now define a continuous transformation Y 7→ T Y as follows.

T Y (t, ξ) .= Z(ξ) +

∫ t

0

1

2
f ′′

(∫ ξ

0

Φ(η, Y (s, η)) dη

)
ds , (5.4)

where
Φ(η, Y ) = min{Y, 0} if η ∈ J− ,

Φ(η, Y ) = Y if η ∈ [0, ξ̄ ] \ J− .

To check that T is a strict contraction, assume that ‖Y − Ỹ ‖∗ = κ, so that

∫ ξ̄

0

|Y (t, ξ)− Ỹ (t, ξ)| dξ ≤ κ eLξ̄t

for all t ≥ 0. Then for every s ≥ 0

∫ ξ

0

∣∣∣Φ(η, Y (s, η))− Φ(η, Ỹ (s, η))
∣∣∣ dη ≤ κ eLξ̄s,

and therefore

∫ ξ̄

0

|(T Y − T Ỹ )(t, ξ)|dξ ≤
∫ ξ̄

0

∫ t

0

Lκ

2
eLξ̄s ds dξ ≤ κ

2
eLξ̄t.

By the definition of our weighted norm, this implies

‖T Y − T Ỹ ‖∗ ≤
1

2
‖Y − Ỹ ‖∗ .

19



Let now Y = Y (t, ξ) be the unique fixed point of the transformation T . Then one
easily checks that the function

Z(t, ξ)
.
= Y (t, ξ) if ξ /∈ J− ,

Z(t, ξ)
.
= min{Y (t, ξ), 0} if ξ ∈ J− ,

provides a solution to the equations

Z(0, ξ) = Z(ξ) ,

∂Z

∂t
(t, ξ) =

1

2
f ′′

(∫ ξ

0

Z(t, η) dη

)
if Z(s, ξ) 6= 0 for all s ∈ [0, t] ,

∂Z

∂t
(t, ξ) = 0 if Z(s, ξ) = 0 for some s ∈ [0, t] .

In turn, we can now define

U(t, ξ)
.
=

∫ ξ

0

Z(t, η) dη

and the characteristic curves

y(t, ξ)
.
= ȳ(ξ) +

∫ t

0

f ′(U(s, ξ)) ds .

In a similar way as in Section 3, the dissipative solution u can now be obtained by
setting

u(t, x) = U(t, ξ(t, x)),

where
ξ(t, x)

.
= sup {ξ ; y(t, ξ) ≤ x} .

To see why this construction actually yields a solution to (3.1), consider first the case

where the map ξ 7→ ȳ(ξ) is absolutely continuous. Then yξ(0, ξ) = U
2

ξ(0, ξ) = Z2(0, ξ).
Since

∂

∂t
yξ = f ′′(U)Uξ = f ′′(U)Z =

∂

∂t
Z2

for all t, ξ we deduce the identity

yξ(t, ξ) = Z2(t, ξ) = U2
ξ (t, ξ).

Moreover, (3.34) again holds. As in the proof of Theorem 3.1, we obtain the relations

Z(t, ξ) =
1

ux(t, y(t, ξ))
, [yξ(t, ξ)]

−1 = u2x(t, y(t, ξ)). (5.5)

For almost every x ∈ [y(t, 0) , y(t, ξ̄)] , if x = y(t, ξ), then

[ut + f ′(u)ux](t, x) =
d

dt
u(t, y(t, ξ)) =

∂

∂t
U(t, ξ) =

∫ ξ

0

∂

∂t
Z(t, η) dη
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=
1

2

∫ ξ

0

f ′′(U(t, η)) dη =
1

2

∫ x

0

f ′′(u(t, y)) u2x(t, y) dy .

The second identity in (5.5) was used here to change the variable of integration.
The extension to the case of general initial data, where the map ξ 7→ y(t, ξ) is not

necessarily absolutely continuous, is carried out as in the earlier proof of Theorem 3.1.
We skip the details.

6 Instability of dissipative solutions for non-convex

flux

In this section, we show that if the convexity assumption f ′′ ≥ 0 is dropped, then the
Cauchy problem for the equation (3.1)-(3.2) is ill posed, in general.

Example 2. Consider the flux function f(u) = u3. Let U = U(t, ξ) be a solution of
(3.16), with ξ ∈ [0, 3], such that at some time t0 > 0 there holds

U(t0, ξ) =





ξ, ξ ∈ [0, 1] ,
2− ξ, ξ ∈ [1, 2] ,
0, ξ ∈ [2, 3] .

Consider first the conservative solution u = u(t, x). This is well defined forward and
backward in time. At time t = t0, its explicit values are

u(t0, x) =






x , x ∈ [0, 1] ,
2− x , x ∈ [1, 2] ,
0 , x > 2

while a unit mass is concentrated at the point x = 2. Assuming t0 sufficiently small,
we have

Ut(t, ξ) =

∫ ξ

0

3U(t, η) dη > 0

for all t ∈ [0, t0] and ξ ∈ ]0, 3]. Hence

∂

∂t
Uξ(t, ξ) = 3U < 0, Uξ(t, ξ) < 0 for t ∈ [0, t0[ , 2 < ξ < 3 .

Next, consider a dissipative solution v coinciding with u at time t = 0. This means

v(0, x) = u(0, x) = U(0, ξ) for x = y(0, ξ) . (6.1)

We recall that

y(t, ξ) =

∫ ξ

0

U2
ξ (t, η) dη .
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Clearly, v will still coincide with u as long as its gradient remains bounded (equivalently,
as long as Uξ remains bounded away from zero). On the other hand, for t > t0, the
dissipative solution v = v(t, x) coincides with the conservative one only on the interval
where x ≤ y(t, 2), while v is constant for x ≥ y(t, 2). In other words,

v(t, x) = u(t, x) if t ∈ [0, t0] ,

v(t, x) =

{
u(t, x) 0 ≤ x ≤ y(t, 2) ,
u(t, y(t, 2)) x > y(t, 2) ,

if t ∈ [t0, 2t0] .

Energy dissipation occurs at time t = t0, namely

∫ ∞

0

v2x(t, x) dx =

{
3 t ∈ [0, t0[,
2 t ≥ t0.

Next, consider a family of perturbed initial conditions, say

Uε(0, ξ) = U(0, ξ) + εφ(ξ) ,

where φ is a non-negative smooth function, whose support is contained in [0, 1]. Since
U 7→ f ′′(U) = 6U is a monotone increasing function, by a comparison argument from
(3.16) we deduce

Uε(t, ξ) ≥ U(t, ξ)

for all ε, t > 0, ξ ∈ [0, 3]. In fact, for a nontrivial φ we can assume a strict inequality:

Uε(t, ξ) > U(t, ξ) t > 0 , ξ ∈ [2, 3] .

For 2 < ξ < 3 we now use the relations

∂

∂t
Uε
ξ (t, ξ) = 3Uε(t, ξ) > 3U(t, ξ) =

∂

∂t
Uξ(t, ξ) , Uε

ξ (0, ξ) = Uξ(0, ξ) ,

and deduce
Uε
ξ (t, ξ) > Uξ(t, ξ) ≥ 0 t ∈ [0, t0] .

Moreover, for t ≥ t0 and 2 < ξ < 3 one has

∂

∂t
Uε
ξ (t, ξ) = 3Uε(t, ξ) > 3U(t, ξ) ≥ 0 .

Therefore, for each ε > 0, the quantity Uε
ξ (t, ξ) is still strictly positive at time t = t0

and increases afterwards. It thus remains uniformly bounded away from zero.
Since ux = U−1

ξ , the above implies that, for any fixed ε > 0, the corresponding
conservative solution uε = uε(t, x) has a uniformly bounded gradient. The dissipative
solution thus coincides with the conservative one. As ε → 0, at time t = 0 our
construction yields

‖uε(0)− u(0)‖C0 → 0 , ‖uεx(0)− ux(0)‖L2 → 0 .
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However, when t > t0 and x > y(t, 2) the previous analysis yields

lim
ε→0+

uε(t, x) = u(t, x) 6= v(t, x) ,

where u, v are respectively the conservative and the dissipative solutions of (3.1)-(3.2),
with the same initial data (6.1). The example proves that dissipative solutions do not
depend continuously on the inital data.

Remark. The previous example also shows that the family of dissipative solutions
may not be closed. Since the set of solutions which are limits of vanishing viscosity
approximations is closed and connected, we see that this set cannot coincide with the
set of dissipative solutions.
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25


