Skip to main content

Advertisement

Log in

High energy concentration by symmetric shock focusing

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

High-energy concentrations in gas are achieved experimentally in a specially constructed shock tube facility at KTH Mechanics. The high-energy concentration is manifested by a formation of a hot, light-emitting gas core. Experimental, numerical and theoretical investigations show that the shape of the imploding shock is of pivotal importance for the final energy concentration. Cylindrical shocks are unstable. Symmetric polygonal shocks are shown to be dynamically stable and are produced by various methods, e.g. thin wing profiles placed radially in the test section. Such symmetric polygonal shocks are able to produce extremely high energy levels at the focal point. Spectral data from 60 nanosecond short intervals of 8 microsecond light pulse give temperatures in the range of 6,000  K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Apazidis, N., Lesser, M.B.: On generation and convergence of polygonal-shaped shock waves. J. Fluid Mech. 309, 301–319 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Apazidis, N., Lesser, M.B., Tillmark, N., Johansson, B.: An experimental and theoretical study of converging polygonal shock waves. Shock Waves 12, 39–58 (2002)

    Article  MATH  Google Scholar 

  3. Apazidis, N.: Focusing of strong shocks in an elliptic cavity. Shock Waves 13, 91–101 (2003)

    Article  MATH  Google Scholar 

  4. Eliasson, V., Apazidis, N., Tillmark, N., Lesser, M.B.: Focusing of strong shocks in an annular shock tube. Shock Waves 15, 205–217 (2006)

    Article  Google Scholar 

  5. Eliasson, V., Apazidis, N., Tillmark, N.: Controlling the form of strong converging shocks by means of disturbances. Shock Waves 17, 29–42 (2006)

    Article  Google Scholar 

  6. Eliasson, V., Kjellander, M., Apazidis, N.: Regular versus Mach reflection for converging polygonal shocks. Shock Waves 17, 43–50 (2007)

    Article  Google Scholar 

  7. Eliasson, V., Tillmark, N., Szeri, A.J., Apazidis, N.: Light emission during shock wave focusing in air and argon. Phys. Fluids 19, 106106 (2007)

    Article  Google Scholar 

  8. Flanningan, D.J., Suslick, K.S.: Plasma formation and temperature measurement during single-bubble cavitation. Nature 434, 52–55 (2005)

    Article  Google Scholar 

  9. Glass, I.I., Saige, D.: Application of explosivedriven implosions to fusion. Phys. Fluids 25, 269–270 (1982)

    Article  Google Scholar 

  10. Guderley, G.: Starke kugelige und zylindrische Verdichtungsstöße in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrtforschung 19, 302–313 (1942)

    MathSciNet  Google Scholar 

  11. Kjellander, M., Tillmark, N., Apazidis, N.: Thermal radiation from a converging shock implosion. Phys. Fluids 22, 046102 (2010)

    Article  Google Scholar 

  12. Kjellander, M., Tillmark, N., Apazidis, N.: Shock dynamics of strong imploding cylindrical and sherical shock waves with real gas effects. Phys. Fluids 22, 116102 (2010)

    Article  Google Scholar 

  13. Knystautas, R., Lee, B.H.K., Lee, J.H.S.: Diagnostic Experiments on converging detonations. Phys. Fluids Suppl I, 165–168 (1969)

  14. Knystautas, R., Lee, J.H.S.: Experiments on the stability of converging cylindrical detonations. Combust. Flame 16, 61–73 (1971)

    Article  Google Scholar 

  15. Matsuo, H., Nakamura, Y.: Experiments on cylindrically converging blast waves in atmospheric air. J. Appl. Phys. 51, 3126–3129 (1980)

    Article  Google Scholar 

  16. Matsuo, H., Nakamura, Y.: Cylindrically converging blast waves in air. J. Appl. Phys. 52, 4503–4507 (1981)

    Article  Google Scholar 

  17. Matsuo, H.: Cylindrically converging shock and detonation waves. Phys. Fluids. 26, 1755 (1983)

    Google Scholar 

  18. Matsuo, H., Ebihara, K., Ohya, Y., Sanematsu, H.: Spectroscopic study of cylindrically converging shock waves. J. Appl. Phys. 58, 2487–2491 (1985)

    Article  Google Scholar 

  19. Perry, R.W., Kantrowitz, A.: The production of converging shock waves. J. Appl. Phys. 22, 878–886 (1951)

    Article  Google Scholar 

  20. Roberts, D.E., Glass, I.I.: Spectroscopic Investigation of Combustion-Driven Spherical Implosion Waves. J. Appl. Phys. 14, 1662–1670 (1971)

    Google Scholar 

  21. Saito, T., Glass, I.I.: Temperature measurements at an implosion focus. Proc. R. Soc. Lond. A 384, 217–231 (1982)

    Article  Google Scholar 

  22. Schwendeman, D.W., Whitham, G.B.: On converging shock waves. Proc. R. Soc. Lond. A 413, 297–311 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sun, M., Takayama, K.: An artificially upstream flux vector splitting scheme for the Euler equations. J. Comput. Phys. 189, 305–329 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Takayama, K., Onodera, O., Hoshizawa, Y.: Experiments on the stability of converging cylindrical shock waves. Theor. Appl. Mech. 32, 305–329 (1984)

    Google Scholar 

  25. Takayama, K., Kleine, H., Grönig, H.: An experimental investigation of the stability of converging cylindrical shock waves in air. Exps. Fluids 5, 315–322 (1987)

    Article  Google Scholar 

  26. Terao, K.: Experimental study on cylindrical and spherical implosions. Jpn. J. Appl. Phys 23, 27–33 (1984)

    Article  Google Scholar 

  27. Watanabe, M., Takayama, K.: Stability of converging cylindrical shock waves. Shock Waves 1, 149–160 (1991)

    Article  Google Scholar 

  28. Wu J.H.T., Elabdin M.N., Neemeh R.A., Ostrowski P.P.: Production of converging cylindrical shock waves by finite element conical contractions. In: Shock tube and shock wave research: Proceedings of the 11th International Symposium on Shock Tubes and Waves, pp. 107–114, University of Washington Press, Seattle (1977)

Download references

Acknowledgments

Financial support from the Swedish Research Council (VR) is gratefully acknowledged. The experimental equipment was manufactured and acquired using the means from the The Göran Gustafsson Foundation which is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Apazidis.

Additional information

Communicated by R. Bonazza and K. Kontis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apazidis, N., Kjellander, M. & Tillmark, N. High energy concentration by symmetric shock focusing. Shock Waves 23, 361–368 (2013). https://doi.org/10.1007/s00193-013-0442-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-013-0442-y

Keywords

Navigation