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Abstract It has been generally accepted that the noise
in continuous GPS observations can be well described by
a power-law plus white noise model. Using maximum like-
lihood estimation (MLE) the numerical values of the noise
model can be estimated. Current methods require calculating
the data covariance matrix and inverting it, which is a signifi-
cant computational burden. Analysing 10 years of daily GPS
solutions of a single station can take around 2 h on a regu-
lar computer such as a PC with an AMD Athlon™ 64 X2
dual core processor. When one analyses large networks with
hundreds of stations or when one analyses hourly instead
of daily solutions, the long computation times becomes a
problem. In case the signal only contains power-law noise,
the MLE computations can be simplified to a O(N log N )
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process where N is the number of observations. For the
general case of power-law plus white noise, we present a
modification of the MLE equations that allows us to reduce
the number of computations within the algorithm from a
cubic to a quadratic function of the number of observations
when there are no data gaps. For time-series of three and eight
years, this means in practise a reduction factor of around 35
and 84 in computation time without loss of accuracy. In addi-
tion, this modification removes the implicit assumption that
there is no environment noise before the first observation.
Finally, we present an analytical expression for the uncer-
tainty of the estimated trend if the data only contains power-
law noise.

Keywords GPS · Power-law · Correlated noise ·
Time-series analysis

1 Introduction

Error analysis of the estimates of continuous GPS positions
have received a lot of attention in the last few years (Zhang
et al. 1997; Mao et al. 1999; Williams et al. 2004). It is now
established that GPS residuals show temporal correlation and
that this has to be taken into account to produce realistic error
bars on the GPS-derived velocities. This temporal correla-
tion in the noise is usually described by a power-law plus
white noise model. The latter has equal power at all frequen-
cies, while the power-law is defined by its power spectrum
P (Agnew 1992; Kasdin 1995):

P( f ) = P0

f α
(1)

where f is the frequency, P0 a constant and α the spectral
index.
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The problem is then reduced to estimating the spectral
index of the power-law and the estimation of the amplitudes
of the power-law and white noise random variables. Mao et al.
(1999) showed that the most accurate results are obtained
with maximum likelihood estimation (MLE). However, the
current formulation of the MLE for GPS time-series data is
computationally intensive and grows with the cube of the
number of observations.

This paper presents a simple modification of the MLE
equations, which enables us to reduce the required number
of operations to a quadratic function when there are no data
gaps. At the same time, the new algorithm avoids the stan-
dard implicit assumption that there is no noise before the first
observation has been made.

2 Review of current GPS error analysis techniques

If each data point xi is independent, normally distributed and
if it has a standard deviation of σi , then the following equa-
tion follows a χ2 probability distribution with N −M degrees
of freedom:

χ2 =
N∑

i=1

(
xi − x̂i

σi

)2

(2)

where N is the number of observations and M is the number
of parameters used to estimate x̂.

Since Eq. (2) involves taking the difference between the
observations and the estimated model, it produces an indica-
tion of the goodness of fit. For a large number of data points,
say 30, the value χ2 is approximately N − M . The reduced
chi-square is defined as χ2/(N − M) and consequently has a
value around one. When the reduced χ2 value is much larger
than one, it indicates that the estimated model is wrong or
that the assumed errors are too small.

GPS analysis software provides standard deviations for
each estimated station position, but in almost all cases these
are too small to be realistic. To get better error values, they
are usually scaled by

√
χ2/(N − M). This empirical reduced

chi-square method is widely used within the geodetic com-
munity, but is not the correct solution to improve the error
bars. The problem is that one assumes that the GPS residuals
are independent from each other, while in reality they show a
strong correlation in time (Johnson and Agnew 1995). Mao
et al. (1999) have shown that after applying the reduced χ2

value, the real error can still be underestimated by a factor of
5–11.

Figure 1 shows the North component of the GPS time-
series at Kootwijk (KOSG), The Netherlands. It also shows
the residuals after subtracting the least-squares estimated lin-
ear motion. From these residuals, the power-spectrum was
computed and is shown in Fig. 2. It illustrates the need for an
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Fig. 1 The upper panel shows the North component of the GPS posi-
tion time-series at KOSG. The lower panel shows the same data set
after subtraction of a linear trend, a yearly signal and one offset
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Fig. 2 Power spectrum of the GPS residuals at KOSG, North compo-
nent. The circles denote the spectrum computed from the observations
and the solid line is the fitted power-law plus white noise model

improved noise model. In the high frequencies, the noise is
flat (property of white noise), while for the lower frequencies,
the spectrum seems to obey a power-law. The slope of the
power-law is around one, which is sometimes called flicker
noise. Williams et al. (2004) have shown that the power spec-
tra in Fig. 2 is representative for many GPS residuals.

Following Langbein and Johnson (1997) and Kasdin
(1995), the spectral index is represented by α. A power-law
noise time-series, say r, with a spectral index between −1
and 1 can be generated by convolving it with independent
and identically distributed (IID) noise wk (Hosking 1981):

rk =
∞∑

i=0

hi wk−i (3)
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where, following Kasdin (1995)

h0 = 1

hi =
(α

2
+ i − 1

) hi−1

i

(4)

These relations follow from Hosking’s definition of the
fractional difference operation:

(1 − B)α/2 =
∞∑

i=0

(
α/2

i

)
(−B)i

=
∞∑

i=0

Γ (α/2 + 1)

Γ (α/2 − i + 1) i ! (−B)i

= 1 − α

2
B − 1

2

α

2

(
1 − α

2

)
B2 − · · · (5)

where Γ is the Gamma function and B is the backward-shift
operator (Bxk = xk−1). From this definition, one can deduce
that:

(1 − B)α/2rk = wk (6a)

(1 − B)−α/2wk = rk (6b)

In order to apply the backward-shift operator, Eq. (6a)
assumes the existence of an infinite amount of r before rk ,
while Eq. (6b) assumes the same for w.

In this research, since we observe a finite amount of signal
with coloured noise r, we will concern ourselves mostly with
Eq. (6b). The covariance between rk and rl only depends on
τ = l − k. It thus forms a Toeplitz matrix, which can be
written as Cov(rk, rl) = γ (τ). A Toeplitz matrix is a matrix
in which each descending diagonal from left to right is con-
stant. If one assumes an infinite sequence of zero-mean white
noise w, with variance σ 2

pl , then the covariance is (Hosking
1981; Appendix A):

γ (0) = σ 2
pl

Γ (1 − α)

(Γ (1 − α
2 ))2

γ (τ) =
α
2 + τ − 1

−α
2 + τ

γ (τ − 1) for τ > 0 (7)

The covariance of Eq. (7) only exists for α < 1. For α ≥ 1,
the noise is not stationary and therefore produces an infi-
nite variance. Since the power-law noise in GPS may have a
spectral index larger than one, this causes a problem. For this
reason, one usually assumes that wi = 0 for i < 0, which
means that the sum only runs to k to produce finite covari-
ance values. With this assumption, the covariance between
rk and rl with l > k is:

Cov(rk, rl) = σ 2
pl

k∑

i=0

hi hi+(l−k) (8)

Equation (8) can also be written as a matrix multiplication
C = UT U. Matrix U is an upper triangular matrix and looks

like:

U =

⎛

⎜⎜⎜⎝

h0 h1 . . . hN

0 h0 hN−1
...

. . .
...

0 0 . . . h0

⎞

⎟⎟⎟⎠ (9)

Using Eq. (3) and again assuming that wi = ri = 0 for i < 0,
one has the following relations:

r = UT w (10a)

w = U−T r (10b)

For clarity, we have omitted the scaling factor ∆T α/2 used by
Williams (2003), where ∆T is the sampling interval, since
we will only discuss daily GPS solutions here.

To get the total noise, pure white noise with variance σ 2
w

has to be added to the power-law noise. Writing Eq. (8) as a
matrix E(α) and using I for the unit matrix, the new covari-
ance matrix C for the GPS data can be written as (Langbein
and Johnson, 1997; Langbein, 2004; Williams, 2003):

C = σ 2
wI + σ 2

plE(α) (11)

The east, north and up components all have a separate
covariance matrix C. The GPS solutions provide a spatial cor-
relation between the components but this is normally
neglected when Eq. (11) is considered because they are small
compared to the temporal correlations. Furthermore, it is
assumed that, for each component, the variances are equal
at each data point. This condition is mostly met in practise.

2.1 Maximum likelihood estimation

To estimate the parameters that describe the trend in the GPS
observations and the parameters of the noise model, we must
maximise the probability p that their values have occurred for
given observations x. If a Gaussian distribution is assumed,
then this probability is:

p(x) = 1

(2π)
N
2 det

1
2 (C)

× exp

[
−1

2
(x − Hθ̂ot )

T C−1(x − Hθ̂ot )

]
(12)

where the vector θ̂ot contains the parameters for the nomi-
nal value, which is the offset of the whole time-series and
the trend. The observation matrix H has N rows and 2 col-
umns. The first contains solely ones, while the second col-
umn contains a linear trend. Langbein (2004) notes that it
is straightforward to include also a yearly signal and offsets
in the estimation process. Note that the observed minus the
estimated trend will produce the residuals r discussed in the
Sect. 2: r = x − Hθ̂ot .
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In practise, the maximum of the logarithm of this probabil-
ity p is computed, which is an equivalent problem because
the logarithm is a monotonically increasing function. The
covariance matrix C depends on the noise and not on θ̂ot .
Therefore, the maximum can be found by setting the deriva-
tive of the logarithm of Eq. (12) to zero.

After some rearrangement, one finds:

θ̂ot =
(

HT C−1H
)−1

HT C−1x (13)

This is the formula for weighted least squares. Using Eq. (13),
the values for the noise parameters α, σpl and σw must be
found by numerically maximising:

ln(p(x)) = −1

2

[
N ln(2π) + ln det(C)

+ (x − Hθ̂ot )
T

C−1(x − Hθ̂ot )

]
(14)

Details about this computation are given by Langbein and
Johnson (1997) and Langbein (2004).

3 Remaining problems

MLE provides a reliable error estimate for the trend (Mao
et al. 1999). However, its main disadvantage is the compu-
tation time. Analysing the North, East and Up component
of 10 years of daily GPS solutions of one station can take as
long as two hours on a regular computer such as a PC with
an AMD Athlon™ 64 X2 Dual Core Processor. The error
analysis of large networks or the analysis of hourly solutions
can therefore take several days.

The causes of the relatively long computation time are the
construction of the covariance matrix and the computation of
Eqs. (13) and (14), all requiring O(N 3) operations. For this
reason, the spectral index is often a priori fixed to a value of
one to accelerate the process.

Another approach is to estimate the noise properties
directly from the power-spectrum (Mao et al. 1999), which is
extremely fast because the power-spectrum can be computed
with only O(N log N ) operations for evenly spaced data.
However, we prefer the MLE method because it allows con-
sistent estimates of the components of the covariance func-
tion and the parameters of the time-dependent model of the
data (Langbein 2004).

4 Fast power-law noise analysis

If the noise consists only of pure power-law noise, then the
logarithm of the determinant of the covariance matrix is, for
all α, equal to 2N ln σpl . To compute the likelihood func-
tion (Eq. 14), it would be desirable to have a fast way to

compute C−1. Hosking (1981) describes how the moving
average equation for the noise can be rewritten as an autore-
gressive representation:

wk =
∞∑

i=0

pirk−i (15)

where

p0 = 1

pi =
(
−α

2
+ i − 1

) pi−1

i

(16)

The advantage of this formulation is that it allows us to
compute the inverse of the covariance matrix C directly.
Remember that we had assumed that wi = ri = 0 for
i < 0, which has the consequence that the summation of
Eq. (15) must be truncated to k. Furthermore, using the rela-
tion C−1 = U−1U−T and Eq. (10b), we get with pi = 0 for
i < 0:

(Cov(rk, rl))
−1 =

N−k∑

i=0

pi pi+(k−l) (17)

In the likelihood function (Eq. 14), we need to compute
rT C−1r. If one writes the elements pi in a lower triangu-
lar matrix L = U−T , this becomes: (Lr)T (Lr). A major
reduction in computation time is achieved by taking advan-
tage of the fact that Lr is a convolution operation with filter
pi , which ‘whitens’ the residuals r. In Eq. (13) the same
filter operation is applied to each column of H. Press et al.
(1988) describe how this can be efficiently computed with
fast Fourier transform in O(N log N ) operations. Thus the
MLE for pure power-law noise can be reduced from O(N 3)

to O(N log N ) operations for this special case.
Before ending this section, we will present the inverse of

the covariance matrix C when the number of observations
goes to infinity. This inverse is well behaved for α > −1 and
converges to the following Toeplitz matrix, Cov−1(rk, rl) =
γ −1(τ ), with τ = l − k:

γ −1(0) = 1

σ 2
pl

Γ (1 + α)
(
Γ (1 + α

2 )
)2

γ −1(τ ) = τ − 1 − α
2

τ + α
2

γ −1(τ − 1) for τ > 0 (18)

Using Eqs. (6a) and (6b), one can see that this is the result
of changing α/2 with −α/2 in Eq. (7). Equation (18) only
represents the approximation of the inverse of the covariance
matrix when the number of observations grows to infinity.
Thus, in practise one still has to use Eq. (17) where the sum-
mations are taken up to N − k since wk , and therefore rk , are
zero for k < 0.

If there really is no noise before the first observation is
made, it would be better to stop and restart the observations
as often as possible to avoid any power-law noise to develop
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in the time-series. Intuitively this is incorrect since the start
of the observations has no physical effect on the GPS monu-
mentation, which Langbein and Johnson (1997) consider to
be the cause of some of the power-law noise. This problem
is solved in the next section.

5 A fast alternative

In Sect. 2, it was stated that power-law noise can be gener-
ated by convolving white noise with a transfer function h.
Since we do not know anything about the signal before the
first observation, the convolution in Eq. (3) was taken only
over all the available data points. However, now we make the
assumption that the noise is present prior to the start of the
observations and that the convolution summation needs be
taken to infinity.

Unfortunately, for α ≥ 1, the noise is non-stationary and
the summation would grow to infinity. For this reason, Agnew
(1992) used a structure function that is defined as the differ-
ence between two observations at time t and time t + T .
Here, only the discrete case will be discussed and the differ-
ence of the GPS residuals will be restricted to one time step,
∆rk = rk+1−rk . Using Eq. (3), this can be written as (Kasdin
1995)

∆rk = wk+1 +
(α

2
− 1

) k∑

i=0

hi

i + 1
wk−i (19)

The same difference can be taken between the points rl+1

and rl . The power-law covariance between these two first
differences is, with τ = k − l, k ≥ l:

Cov (∆rk,∆rl)

= σ 2
pl

[
1 +

(α

2
− 1

)2 l∑

i=0

h2
i

(i + 1)2

]
for k = l

= σ 2
pl

[(α

2
− 1

) hτ−1

τ
+

(α

2
− 1

)2

×
l∑

i=0

hi+τ hi

(i + τ + 1)(i + 1)

]
for k �= l (20)

Equation (20) is the exact equivalent to the covariance matrix
of Eq. (8), but for first-differenced data.

Let us now apply our assumption that the first observation
is already affected by noise and that this noise, because we
took the first difference, is stationary. In this case, we can
extend our summations in Eq. (20) to infinity. Using Eq. (4)
and some hypergeometric function relations (Abramowitz
and Stegun 1965) the covariance Cov(∆rk,∆rl) = Cov(∆rl ,

∆rk) = γpl(τ ) can be written as, see Appendix A:

γpl(0) = σ 2
pl

Γ (3 − α)

(Γ (2 − α
2 ))2

γpl(τ ) =
α
2 + τ − 2

1 − α
2 + τ

γpl(τ − 1) for τ > 0 (21)

Equation (21) is the same as Eq. (7) but with α/2 replaced
by α/2−1, which causes it to be valid for α < 3. The advan-
tage of the covariance matrix given by Eq. (21) is that its con-
struction takes O(N ) instead of O(N 3) operations because
only the vector γpl needs to be known to describe the whole
matrix. Looking back at Eq. (6a), one can see that Eq. (21) is
the result of rewriting the definition of the fractional differ-
ence:

(1 − B)α/2r = (1 − B)α/2−1 (1 − B)r

= (1 − B)α/2−1∆r (22)

The covariance between two first differenced white noise
observations is:

γw(0) = 2σ 2
w

γw(1) = −σ 2
w

γw(τ) = 0 for τ > 1. (23)

The sum of power-law and white noise still produces a
Toeplitz matrix. Using the algorithm of Bojanczyk et al.
(1995), the Cholesky decomposition of the Toeplitz covari-
ance matrix can be performed in O(N 2) operations. Let us
write this decomposition as C = UT U, where U is an upper
triangular matrix. A further reduction in computation time
can be obtained by rewriting Eq. (13) as

θ̂ot =
(

HT (UT U)−1H
)−1

HT (UT U)−1x

=
(

AT A
)−1

AT y (24)

where

UT A = H (25a)

UT y = x (25b)

Equations (25a) and (25b) can be directly solved by back-
substitution because U is an upper triangular matrix. Also
note that H and x now represent the first-differenced design
matrix and the first-differenced observations.

Finally, one can compute the determinant and matrices
A and y while performing the Cholesky factorisation. The
factorisation computes each column i of matrix U with only
the information of the column i − 1, except for the first col-
umn which is computed directly using γ [Eq. (21) plus Eq.
(23)]. Thus only two columns of U need to be stored during
the Cholesky decomposition, which is again beneficial for
reducing the computation time. The full algorithm is given
in Appendix B.
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It must be noted that the first-differenced design matrix H
no longer contains the nominal value of the whole time-series
because we took the difference of the observations. Since this
was a nuisance parameter, this is only to our advantage. Fur-
thermore, the observation matrix can easily be extended to
include other signals such as, for example, a yearly signal.

6 Analytical expressions for the slope uncertainty

The variance of the estimated slope can be computed with:

σ 2
r̂ =

(
HT C−1H

)−1
(26)

Let us assume that the data only contains power-law noise.
The design matrix H consists for first-differenced data only
out of one column with ones. Using Eq. (21), one can now
derive the following recurrence relations for the slope uncer-
tainty σr̂ , for a time-series with N observations:

σ 2
r̂ (2) = σ 2

pl

∆T 2− α
2

Γ (3 − α)

Γ (2 − α
2 )2

σ 2
r̂ (N ) = N − 2

N + 1 − α
σ 2

r̂ (N − 1) for N > 2 (27)

Note that we have introduced here the scaling factor ∆T ,
the sampling period, to facilitate the comparison with earlier
results. The explicit form of Eq. (27) is:

σ 2
r̂ = σ 2

pl

∆T 2− α
2

Γ (3 − α)Γ (N − 1)Γ (4 − α)

(Γ (2 − α
2 ))2Γ (N + 2 − α)

(28)

For large values of N , the Gamma function is difficult to
compute. A good approximation, however, can be obtained
with the use of Stirling’s formula (Abramowitz and Stegun
1965). Using this approximation, we get the following equa-
tion for the variance of the estimated slope:

σ 2
r̂ ≈ σ 2

pl

∆T 2− α
2

Γ (3 − α)Γ (4 − α)(N − 1)α−3

(Γ (2 − α
2 ))2 (29)

By setting α = 0, one can verify that Eq. (28) produces the
same expression for white noise as calculated by Zhang et al.
(1997) among others:

σ 2
r̂ = 12σ 2

pl

∆T 2(N 3 − N )
(30)

and the same expression for random walk noise (α = 2):

σ 2
r̂ = σ 2

pl

∆T (N − 1)
(31)

Thus, for these two special cases, there is no effect when
taking into account the noise before the first observation. This
can be explained by the fact that white noise does not depend
on past values, while the random walk noise before t = 0 will
only cause a change in the nominal value. However, for all

0.60

0.80

1.00

1.20

1.40

1.60

100 101 102 103 104 105

fr
ac

tio
n

Length of time-series (days)

Eq. (32)
Williams, 2003

Eq. (29), Stirling

Fig. 3 Trend uncertainties computed using different formulas, divided
by our reference trend uncertainty as defined in the text. All for flicker
noise (α = 1)

other values of the spectral index, there is a slight difference.
A new result is that we now have an analytical expression for
the case of flicker noise (α = 1):

σ 2
r̂ = 8σ 2

pl

π∆T
3
2 (N 2 − N )

(32)

Equations (29) and (32) are new results, and it is interest-
ing to compare them with the standard trend uncertainty that
is computed, without taking first-differences, by construct-
ing the covariance matrix using Eq. (8) and inserting it into
Eq. (26). As was mentioned before, flicker noise is the most
common type of power-law noise observed in GPS data, thus
α will be set to one. This standard trend uncertainty will be
our reference to which the new equations will be compared.

Williams (2003) provided an approximation for the ref-
erence trend uncertainty, which will also be included in the
comparison. Figure 3 shows the standard deviation of the esti-
mated slope using Eq. (32), the Stirling approximation Eq.
(29) and the approximation of Williams (2003) as function of
the length of the time-series. These three trend uncertainties
have been divided by our reference trend uncertainty to make
it easier to see their differences.

Figure 3 shows that after 100 days, the Williams approx-
imation is in very good agreement with our reference trend
uncertainty because the fraction goes to unity. After 100 days,
the Stirling approximation, Eq. (29), is in good agreement
with Eq. (32). Figure 3 also shows that the new method gives,
for time-series longer than 1,000 days, a value for the trend
uncertainty that is around 15–20% larger than the reference
trend uncertainty. One could argue that the reference trend
uncertainty is in fact 15–20% too small and that the new
method, with its associated uncertainty, is in fact more real-
istic because the original method does not account for noise
before the start of the series.

Figure 4 shows the error in the estimated trend as function
of the data span using the noise properties that are observed
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Fig. 4 The trend uncertainty at KOSG for the North component as
function of the observation span, using the white plus power-law noise
properties observed in these data. The solid line is computed using un-
differenced data, the dashed line for first-differenced data. The points
have been computed under the assumption that only power-law noise is
present

in the North component of the GPS time-series at KOSG.
In Fig. 4, the uncertainty was computed using Eq. (26) with
the normal covariance matrix of Eq. (11) and the first-differ-
enced covariance matrix, which is the sum of Eqs. (21) and
(23). The trend uncertainty was also computed using only
power-law noise (Eq. 29).

As was observed in Fig. 3, Fig. 4 shows that the new
covariance matrix for first-differenced data produces a larger
trend uncertainty than the reference trend uncertainty. Fig-
ure 4 also shows that, after 2 years, the trend uncertainties
for first-differenced data of the power-law noise only and the
power-law plus white noise are equal. Thus after 2 years, the
power-law noise completely dominates the uncertainty, and
the contribution of the white noise can be neglected.

Mao et al. (1999) concluded that the velocity error in
time-series could be underestimated by factors of 5–11 if
a pure white noise model is assumed. Taking into account
that Eq. (32) produces larger values than the reference trend
uncertainty used by Mao et al. (1999), these factors can grow
up to 6–13.

7 Numerical results

Section 6 presented analytical expressions for the trend uncer-
tainty for given noise parameters of the power-law noise. In
reality, we are confronted with power-law plus white noise
in the GPS data of which the parameter values are unknown.
To test the performance of the normal MLE and the new
first-differenced MLE approach, one hundred synthetic time-
series with 1,000 and 3,000 days were generated, which have
the same trend values and noise properties as observed in the
North component of KOSG data.

The mean values of the estimated parameters and their
observed standard deviation using the two MLE approaches

are given in Table 1. These values were obtained by imple-
menting the algorithms described in Sects. 2 and 5 and using
the BLAS and LAPACK libraries (Anderson et al. 1999),
which are optimised for matrix computations.

From Table 1, one can see that for time-series of 1,000
days, both MLE methods underestimate the spectral index.
This was already observed by Williams et al. (2004) and is
attributed to the fact that the trend will absorb some of the
very long periods of the power-law noise. For time-series of
3,000 days, this bias is less.

For a very large number of synthetic time-series, the
observed standard deviation of the trend value should be
equal to the predicted one for given values of the spectral
index and the variances of the power-law and white noise.
Table 1 shows that, using 100 time-series of 1,000 days,
both methods have an ensemble mean trend value of 15.56
mm/year with a standard deviation of 0.473 and 0.489 mm/
year for the normal and first-differenced MLE respectively.
Using the estimated noise properties, Eqs. (11), (21), (23) and
(26), the mean predicted errors are 0.398 and 0.456 mm/year,
again for the normal and first-differenced MLE, respectively.

The predicted errors from the first-differenced MLE are
much closer to the standard deviation of the trends for both
methods, again reinforcing the notion that the new method is
more realistic. Taking the uncertainty in the predicted errors
into account, the observed and predicted trend uncertainties
are in good agreement. For time-series of 3,000 days, the
agreement is even better.

Table 1 also lists the computation time, and shows that the
new method is indeed significantly faster. The computer used
for these computations contained an AMD Athlon™ 64 X2
Dual Core Processor 4200+, with 2 Gbyte of memory. The
computation times for the normal MLE and the first-differ-
enced MLE methods for different lengths of the time-series
are plotted in Fig. 5.
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Fig. 5 The computation time of the normal and first-differenced MLE
methods for different lengths of the time-series
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Table 1 The results of estimating the trend and noise parameters in 100
time-series of 1,000 and 3,000 days where the spectral index α = 1.105,
the standard deviation of the power-law noise σpl = 0.691 mm, the

standard deviation of the white noise σw = 1.393 mm and the trend is
15.621 mm/year

1,000 days 3,000 days

Normal MLE Differenced MLE Normal MLE Differenced MLE

Parameter Mean σ Mean σ

α 0.917 ± 0.233 0.950 ± 0.224 1.058 ± 0.095 1.067 ± 0.093

σpl (mm) 0.858 ± 0.232 0.827 ± 0.223 0.724 ± 0.096 0.717 ± 0.093

σw (mm) 1.283 ± 0.171 1.304 ± 0.152 1.372 ± 0.051 1.375 ± 0.050

Trend (mm/year) 15.560 ± 0.473 15.564 ± 0.489 15.631 ± 0.171 15.632 ± 0.180

Predicted error (mm/year) 0.398 ± 0.155 0.456 ± 0.172 0.154 ± 0.032 0.178 ± 0.037

Mean time (s) 76 2 1348 16

The mean time indicates the average computation time of each run

8 Data gaps

So far, we have not mentioned data gaps, which are unfortu-
nately present in most GPS time-series. To correct for these
gaps, one can construct, both for the normal and the first-
differenced MLE method, first the full covariance matrix for
the complete time-series and afterwards delete the rows and
columns for which no data are available (Williams 2003).

Unfortunately, the deletion of rows and columns destroys
the Toeplitz structure of the covariance matrix for the first-
differenced MLE method and with that one loses the gain
in computation speed. The exact solution of this problem is
outside the scope of this research, but we have experimented
with two possible remedies.

The first one is simply filling the data gaps by linear inter-
polation. We analysed 164 GPS stations with a wide range
in the length of the observation span and interpolated the
data gaps. For 90% of the stations, the trends estimated by
the normal and the first-differenced method differed by less
than one standard deviation from each other for all three
components. Another approach is to ignore the gaps in the
stochastic model and keep the Toeplitz covariance matrix. In
this solution approximately 94% of the trends differed from
the normal method by less than one standard deviation.

These results show that already with some simple meth-
ods, the data gap problem can be solved in a satisfactory
manner.

9 Conclusions

It has been demonstrated that if there is only power-law noise
in a continuous GPS time-series, then the normal MLE equa-
tions can be computed with O(N log N ) operations. Fur-
thermore, by taking the first difference of the observations,
power-law noise with a spectral index value around one,

which is commonly observed in GPS observations (Williams
et al. 2004), is made stationary. The new covariance matrix
can be written as a convenient recursive expression, the con-
struction of which only takes O(N ) operations.

Another advantage of the new covariance matrix is that it
is a Toeplitz matrix. The Cholesky factorisation of this type
of matrices can be performed in O(N 2) operations, instead of
O(N 3) for positive definite matrices. Finally, the likelihood
function can be computed without the explicit construction
of the covariance matrix or its Cholesky factorisation, which
again reduces the computation time. It has been shown that
for time-series of 1,000 and 3,000 days, a reduction factor of
around 35 and 84 respectively in computation time can be
achieved.

The modification also removed the implicit assumption
of no noise before the first observation. This generalisation
made it possible to derive an analytical expression for the
uncertainty of the estimated trend in the case of pure power-
law noise. Using these expressions, we conclude that the
trend uncertainty for flicker noise presented by Williams
(2003) is 15–20% too small for time-series longer than three
years and that the new method, with its associated uncer-
tainty, is more realistic.
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Appendix A Derivation of the covariance

The coefficients hi of Eq. (4) can be written as (Kasdin 1995):

hi = (α
2 )i

(1)i
= Γ (α

2 + i)Γ (1)

Γ (α
2 )Γ (1 + i)

= Γ (α
2 + i)

Γ (α
2 ) i ! (33)
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where (a)i = 1 × a × (a + 1) × · · · × (a + i − 1) denotes
the Pochammer symbol. Furthermore, the hypergeometric
function is defined as (Abramowitz and Stegun 1965):

F(a, b; c; z) =
∞∑

i=0

(a)i (b)i

(c)i

zi

i !

= Γ (c)

Γ (a)Γ (b)

∞∑

i=0

Γ (a + i)Γ (b + i)

Γ (c + i)

zi

i ! (34)

Thus, Eq. (8) can be written as:

∞∑

i=0

hi hi+τ = 1
(
Γ (α

2 )
)2

∞∑

i=0

Γ (α
2 + i)Γ (α

2 + τ + i)

Γ (1 + τ + i)

1i

i !
(35)

Using the following relation (Abramowitz and Stegun 1965):

F(a, b; c; 1) = Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)
(36)

Eq. (35) can be written as:

∞∑

i=0

hi hi+τ = Γ (α
2 + τ)Γ (1 − α)

Γ (α
2 )Γ (1 + τ − α

2 )Γ (1 − α
2 )

(37)

Finally, with the relation Γ (τ +1) = τΓ (τ), one obtains Eq.
(7). A similar derivation produces Eq. (21) from Eq. (20).

Appendix B New algorithm

Bojanczyk et al. (1995) describe a algorithm for performing
a Cholesky factorisation of Toeplitz matrices. However, as
shown in the text, we only need to know the determinant of
the covariance matrix and the matrices A and y to compute
our likelihood function; see Eqs. (14) and (24).

The determinant can be computed by multiplying the diag-
onal elements of the Cholesky decomposition. Matrix A and y
are formed with back substitution using the Cholesky decom-
position. The following algorithm, in GNU Octave notation
(also provided as Electronic Supplementary Material with
this article), computes the logarithm of the determinant and
the required matrices for given covariance matrixgamma_x:
sum of Eqs. (21) and (23) and first-differenced matrices H
and x. n is the number of observations and m the number of
columns of H.

function [lndeterminant,A,y] =
mactrick(gamma_x,H,x)

U = zeros(n,2); % C = U’*U
V = zeros(n,2);
dummyH = zeros(n,m);
dummyx = zeros(n,1);
A = zeros(n,m);
y = zeros(n,1);

%--- define the generators u and v
U(:,1) = gamma_x/sqrt(gamma_x(1));
V(2:n,1) = U(2:n,1);

%--- First element on diagonal
lndeterminant = log(U(1,1));

%--- First solution vector values
A(1,:) = H(1,:)/U(1,1);
y(1,1) = x(1,1)/U(1,1);
dummyH(2:n,:) = U(2:n,1)*A(1,:);
dummyx(2:n,1) = U(2:n,1)*y(1,1);

k_old =1;
k_new =2;
for k=1:n-1
sin_theta = V(k+1,k_old)/U(k,k_old);
cos_theta = sqrt(1.0-sin_thetaˆ2);
U(k+1:n,k_new) = ( U(k:n-1,k_old) - \

sin_theta*V(k+1:n,k_old))/cos_theta;
V(k+1:n,k_new) = ( V(k+1:n,k_old) - \

sin_theta*U(k:n-1,k_old))/cos_theta;

%--- Update determinant
lndeterminant += log(U(k+1,k_new));

%--- Extend back-substitution
A(k+1,:)=1/U(k+1,k_new)* \

(H(k+1,:)-dummyH(k+1,:));
y(k+1,1)=1/U(k+1,k_new)* \

(x(k+1,1)-dummyx(k+1,1));
dummyH(k+2:n,:)+=U(k+2:n,k_new)*A(k+1,:);
dummyx(k+2:n,1)+=U(k+2:n,k_new)*y(k+1,1);

k_old = 3-k_old;
k_new = 3-k_new;

end

lndeterminant *= 2.0; % remember C=U’*U !!

For example, assume one has the following observations
x and design matrix H:

x =
⎛

⎝
3.5
1.1
0.4

⎞

⎠ H =
⎛

⎝
1 −1
1 0
1 1

⎞

⎠ (38)

The first-differenced observations and design matrix are:

∆x =
(−2.4

−0.7

)
∆H =

(
1
1

)
(39)

Assuming, for example, that α = 1, σpl = 0.7 and σw = 1.4,
one gets using Eqs. (21) and (23) for the covariance matrix:

γ =
(

4.543
2.168

)
C =

(
4.543 −2.168

−2.168 4.543

)
(40)

Inserting ∆x, ∆H and γ into the above algorithm, one
obtains ln(det(C)) = 2.7693 and:

y =
(−1.126

−0.985

)
A =

(
0.469
0.788

)
(41)
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One can verify that Eq. (24) holds:
(
∆HT C−1∆H

)−1
∆HT C−1∆x =

(
AT A

)−1
AT y = −1.55

(42)
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