Skip to main content
Log in

Multi-objective optimization algorithms for flow shop scheduling problem: a review and prospects

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Since multi-objective flow shop scheduling problem (MFSP) plays a key role in practical scheduling, there has been an increasing interest in MFSP according to the literature. However, there still have been wide gaps between theories and practical applications, and the review research of multi-objective optimization algorithms in MFSP (objectives > 2) field is relatively scarce. In view of this, this paper provides a comprehensive review of both former and the state-of-the-art approaches on MFSP. Firstly, we introduce a broad description and the complexity of MFSP. Secondly, a taxonomy of multi-objective optimizations and an analysis of the publications on MFSP are presented. It is noteworthy that heuristic and meta-heuristic methods and hybrid procedures are proven much more useful than other methods in large and complex situations. Finally, future research trends and challenges in this field are proposed and analyzed. Our survey shows that algorithms developed for MFSP continues to attract significant research interest from both theoretical and practical perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi RF (2008) Current progress in evolutionary algorithm based multi-objective production scheduling. Journal of Jishou University (Natural Science Edition) 29(6):42–46 (in Chinese)

    Google Scholar 

  2. Nagar A, Heragu SS, Haddock J (1995) Mutiple and bi-criteria scheduling: a literature survey. Eur J Oper Res 81:88–104

    Article  MATH  Google Scholar 

  3. T’kindt V, Billaut JC (2001) Multicriteria scheduling problems: a survey. Rairo Oper Res 35:143–163

    Article  MathSciNet  MATH  Google Scholar 

  4. Jones DF, Mirrazavi SK, Tamiz M (2002) Multiobjective metaheuristics: an overview of the current state-of-the-art. Eur J Oper Res 137:1–94

    Article  MATH  Google Scholar 

  5. Hoogeveen H (2005) Multicriteria scheduling. Eur J Oper Res 167:592–623

    Article  MathSciNet  MATH  Google Scholar 

  6. Minella G, Ruiz R, Ciavotta M (2008) A review and evaluation of multiobjective algorithms for the flowshop scheduling problem. Informs J Comput 20(3):451–471

    Article  MathSciNet  Google Scholar 

  7. Pinedo ML (2008) Scheduling: theory, algorithm, and systems, 3rd edn. Springer, Berlin

    Google Scholar 

  8. Graham RL, Lawler EL, Lenstra JK, Rinnooy Kan AHG (1979) Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann Discrete Math 5:287–326

    Article  MathSciNet  MATH  Google Scholar 

  9. Garey MR, Johnson DS, Sethi R (1976) The complexity of flowshop and job shop scheduling. Math Oper Res 1:117–129

    Article  MathSciNet  MATH  Google Scholar 

  10. Gonzalez T, Sahni S (1978) Flowshop and jobshop schedules: complexity and approximation. Oper Res 26:36–52

    Article  MathSciNet  MATH  Google Scholar 

  11. Du J, Leung JYT (1990) Minimizing total tardiness on one machine is NP-hard. Math Oper Res 15:483–495

    Article  MathSciNet  MATH  Google Scholar 

  12. T’kindt V, BILLANT J (2005) Multicriteria scheduling: theory models and algorithms [M], 2nd edn. Springer, Berlin

    Google Scholar 

  13. Carlos Coello, Gary Lamont, David Veldhuizen (2007) Evolutionary algorithms for solving multi-objective problems, 2nd edn, vol 2. Springer, New York, pp 5–60

  14. Fourman MP (1985) Compaction of symbolic layout using genetic algorithms. In: Grefenstette JJ (ed) Genetic and algorithms and their applications: Proceedings of the First International Conference on Genetic Algorithms. Lawrence Erlbaum, Hillsdale, pp 141–153

    Google Scholar 

  15. T’kindt V, Gupta JND, Billaut JC (2003) Two-machine flowshop scheduling with a secondary criterion. Comput Oper Res 30:505–526

    Article  MATH  Google Scholar 

  16. Gupta JND, Neppalli VR, Werner F (2001) Minimizing total flow time in a two-machine flowshop problem with minimum makespan. Int J Prod Econ 69:323–338

    Article  Google Scholar 

  17. Lemesre J, Dhaenens C, Talbi EG (2007) An exact parallel method for a biobjective permutation flowshop problem. Eur J Oper Res 177:1641–1655

    Article  MathSciNet  MATH  Google Scholar 

  18. Naderi B, Zandieh M, Balagh AKG, Roshanaei V (2009) An improved simulated annealing for hybrid flowshops with sequence-dependent setup and transportation times to minimize total completion time and total tardiness. Expert Syst Appl 36:9625–9633

    Article  Google Scholar 

  19. Eren T, Güner E (2006) A bi-criteria flowshop scheduling problem with setup time. Appl Math Comput 183:1292–1300

    Article  MathSciNet  MATH  Google Scholar 

  20. T’kindt V, Monmarche N, Tercinet F, Laugt D (2002) An ant colony optimization algorithm to solve a 2-machine bi-criteria flowshop scheduling problem. Eur J Oper Res 142:250–257

    Article  MathSciNet  MATH  Google Scholar 

  21. Tseng CT, Liao CJ (2008) A discrete particle swarm optimization for lot-streaming flowshop scheduling problem. Eur J Oper Res 191:360–373

    Article  MATH  Google Scholar 

  22. Ravindran D, Haq AN, Selvakuar SJ, Sivaraman R (2005) Flow shop scheduling with multiple objective of minimizing makespan and total flow time. Int J Adv Manuf Technol 25:1007–1012

    Article  Google Scholar 

  23. Murata T, Ishibuchi H, Tanaka H (1996) Multiobjective genetic algorithm and its applications to flowshop scheduling. Comput Ind Eng 30:957–968

    Article  Google Scholar 

  24. Nagar A, Heragu SS, Haddock J (1995) A branch-and-bound approach for a two-machine flowshop scheduling problem. J Oper Res Soc 46:721–734

    MATH  Google Scholar 

  25. Ishibuchi H, Murata T (1998) A multiobjective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans Syst Man Cybern C 28(3):392–403

    Article  Google Scholar 

  26. Qian B, Wang L, Huang DX, Wang X (2006) Multi-objective flow shop scheduling using differential evolution. Lect Notes Control Inf 345:1125–1136

    Article  Google Scholar 

  27. Tavakkoli-Moghaddam R, Rahimi-Vahed A, Mirzaei AH (2007) A hybrid multi-objective immune algorithm for a flow shop scheduling problem with bi-objectives: weighted mean completion time and weighted mean tardiness. Inf Sci 177:5072–5090

    Article  MathSciNet  MATH  Google Scholar 

  28. Shi RF (2006) Current progress in evolutionary algorithm based multi-objective production scheduling. Journal of Jishou University (Natural Science Edition) 29(6):42–46 (in Chinese)

    Google Scholar 

  29. Brintrup AM, Ramsden J, Tiwari A (2007) An interactive genetic algorithm-based framework for handling qualitative criteria in design optimization. Comput Ind 58:279–291

    Article  Google Scholar 

  30. Tantar E, Dhaenens C, Figueira JR, Talbi EG (2008) A priori landscape analysis in guiding interactive multi-objective metaheuristics. CEC (IEEE World Congress on Computational Intelligence), pp 4104–4111

  31. Kuo CC (2009) Capacitor placement and scheduling using interactive bi-objective programming with valuable trade off approach. Energ Convers Manage 50:995–1003

    Article  Google Scholar 

  32. Land AH, Doig AG (1960) An automatic method for solving discrete programming problems. The Econometric Society 28(3):497–520

    Article  MathSciNet  MATH  Google Scholar 

  33. Liao CJ, Yu WC, Joe CB (1997) Bicriterion scheduling in the two-machine flowshop. J Oper Res Soc 48:929–935

    MATH  Google Scholar 

  34. Sivrikaya-Serifoğlu F, Ulusoy G (1998) A bicriteria two-machine permutation flowshop problem. Eur J Oper Res 107:414–430

    Article  MATH  Google Scholar 

  35. Sayın S, Karabatı S (1999) A bicriteria approach to the two machine flow shop scheduling problem. Eur J Oper Res 113:435–449

    Article  MATH  Google Scholar 

  36. Yeh WC (1999) A new branch-and-bound approach for the n/2/flowshop/αF+βC max flowshop scheduling problem. Comput Oper Res 26:1293–1310

    Article  MathSciNet  MATH  Google Scholar 

  37. Lee WC, Wu CC (2001) Minimizing the total flow time and the tardiness in a two-machine flow shop. Int J Syst Sci 32:365–373

    Article  MathSciNet  MATH  Google Scholar 

  38. Yeh WC (2001) An efficient branch-and-bound algorithm for the two-machine bi-criteria flowshop scheduling problem. J Manuf Syst 20:113–123

    Article  Google Scholar 

  39. Lin BMT, Wu JM (2006) Bi-criteria scheduling in a two-machine permutation flowshop. Int J Prod Res 44:2299–2312

    Article  MathSciNet  Google Scholar 

  40. Metropolis N, Rosenblatt AW, Rosenblatt MN, Teller AH, Teller E (1953) Equation of state calculation by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  Google Scholar 

  41. Kirkpatrick S, Gelatt C, Vecchi P (1983) Optimization by simulated annealing. Science 220:671–679

    Article  MathSciNet  Google Scholar 

  42. Cerny V (1985) Thermodynamics approach to the traveling salesman problem: an efficient simulation algorithm. J Optimiz Theory App 45:41–51

    Article  MathSciNet  MATH  Google Scholar 

  43. Suresh RK, Mohanasundaram KM (2004) Pareto archived simulated annealing for permutation flow shop scheduling with multiple objectives. Proceedings of IEEE Conference on Cybernetics and Intelligent Systems (CIS), vol 2. Singapore, December 1–3, pp 712–717

  44. Loukil T, Teghem J, Tuyttens D (2005) Solving multiobjective production scheduling problems using metaheuristics. Eur J Oper Res 161:42–61

    Article  MathSciNet  MATH  Google Scholar 

  45. Varadharajan TK, Rajendran C (2005) A multiobjective simulated annealing algorithm for scheduling in flowshops to minimize the makespan and total flow time of jobs. Eur J Oper Res 167:772–795

    Article  MathSciNet  MATH  Google Scholar 

  46. Hatami S, Ebrahimnejad S, Tavakkoli-Moghaddam R, Maboudian Y (2010) Two meta-heuristics for three-stage assembly flowshop scheduling with sequence-dependent setup times. Int J Adv Manuf Technol 50:1153–1164

    Article  Google Scholar 

  47. Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper 13(5):533–549

    Article  MathSciNet  MATH  Google Scholar 

  48. Loukil T, Teghem J, Fortemps P (2000) Solving multiobjective production scheduling problems with tabu search. Control Cybern 29(3):819–828

    MathSciNet  MATH  Google Scholar 

  49. Armentano VA, Arroyo JEC (2004) An application of a multiobjective tabu search algorithm to a bi-criteria flowshop problem. J Heuristics 10:463–481

    Article  MATH  Google Scholar 

  50. Eren T, Güner E (2008) A bi-criteria flowshop scheduling with a learning effect. Appl Math Comput 32(9):1719–1733

    MATH  Google Scholar 

  51. Eren T, Güner E (2008) The triceiteria flowshop scheduling problem. Int J Adv Manuf Technol 36:1210–1220

    Article  Google Scholar 

  52. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  53. Neppalli VR, Chen CL, Gupta JND (1996) Genetic algorithms for the two-stage bi-criteria flowshop problem. Eur J Oper Res 95:356–373

    Article  MATH  Google Scholar 

  54. Murata T, Ishibuchi H, Gen M (2001) Specification of genetic search directions in cellular multiobjective genetic algorithms. In: Zitzler E, Deb K, Thiele L, Coello Coello CA, Corne D (eds) First International Conference on Evolutionary Multi-Criterion Optimization. Springer, Lecture Notes in Computer Science No. 1993, pp 82–95

  55. Bagchi TP (2001) Pareto-optimal solutions for multiobjective production scheduling problems. In: Zitzler E, Deb K, Thiele L, Coello Coello CA, Corne D (eds) First International Conference on Evolutionary Multi-Criterion Optimization. Springer, Lecture Notes in Computer Science No. 1993, pp 458–471

  56. Chang PC, Hsieh JC, Lin SG (2002) The development of gradual-priority weighting approach for the multiobjective flowshop scheduling problem. Int J Prod Econ 79:171–183

    Article  Google Scholar 

  57. Dugardin F, Yalaoui F, Amodeo L (2010) New multi-objective method to solve reentrant hybrid flow shop scheduling problem. Eur J Oper Res 203:22–31

    Article  MathSciNet  MATH  Google Scholar 

  58. Karimi N, Zandieh M, Karamooz HR (2010) Bi-objective group scheduling in hybrid flexible flowshop: a multi-phase approach. Expert Syst Appl 37:4024–4032

    Article  Google Scholar 

  59. Sridhar J, Rajendran C (1996) Scheduling in flowshop and cellular manufacturing systems with multiple objectives: a genetic algorithmic approach. Prod Plan Control 7:374–382

    Article  Google Scholar 

  60. Cavalieri S, Gaiardelli P (1998) Hybrid genetic algorithms for a multiple-objective scheduling problem. J Intell Manuf 9:361–367

    Article  Google Scholar 

  61. Yeh WC (2002) A memetic algorithm for the n/2/flowshop/αF+βC max scheduling problem. Int J Adv Manuf Technol 20:464–473

    Article  Google Scholar 

  62. Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans Evol Comput 7:204–223

    Article  Google Scholar 

  63. Ponnambalam SG, Jagannathan H, Kataria M, Gadicherla A (2004) A TSP-GA multiobjective algorithm for flow-shop scheduling. Int J Adv Manuf Technol 23:909–915

    Article  Google Scholar 

  64. Arroyo JEC, Armentano VA (2005) Genetic local search for multiobjective flowshop scheduling problems. Eur J Oper Res 167:717–738

    Article  MathSciNet  MATH  Google Scholar 

  65. Pasupathy T, Rajendran C, Suresh RK (2006) A multiobjective genetic algorithm for scheduling in flow shops to minimize the makespan and total flow time of jobs. Int J Adv Manuf Technol 27:804–815

    Article  Google Scholar 

  66. Melab N, Mezmaz M, Talbi EG (2006) Parallel cooperative meta-heuristics on the computational grid. A case study: the biobjective flow-shop problem. Parallel Comput 32:643–659

    Article  MathSciNet  Google Scholar 

  67. Li BB, Wang L (2007) A hybrid quantum-inspired genetic algorithm for multi-objective flow shop scheduling. IEEE Trans Syst Man Cybern B 37:576–591

    Article  Google Scholar 

  68. Chang PC, Chen SH, Liu CH (2007) Sub-population genetic algorithm with mining gene structures for multi-objective flow shop scheduling problems. Expert Syst Appl 33:762–771

    Article  Google Scholar 

  69. Dorigo M (1992) Optimization, learning and natural algorithms. Dissertation, Dipartimento di Elettronica, Politecnico di Milano, Italy (in Italian)

  70. Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B 26:29–41

    Article  Google Scholar 

  71. Rajendran C, Ziegler H (2004) Ant-colony algorithms for permutation flow shop scheduling to minimize makespan/total flow time of jobs. Eur J Oper Res 155:426–438

    Article  MathSciNet  MATH  Google Scholar 

  72. Stuetzle T (1998) An ant approach for the flow shop problem. Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing (EUFIT_98), vol 3. Verlag Mainz, Aachen, Germany, pp 1560–1564

  73. Merkle D, Middendorf M (2000) An ant algorithm with a new pheromone evaluation rule for total tardiness problems. Proceedings of the EvoWorkshops. Lecture Notes in Computer Science, vol 1803). Springer, Berlin, pp 287–296

  74. Pasia JM, Hartl RF, Doerner KF (2006) Solving a bi-objective flowshop scheduling problem by Pareto-ant colony optimization. In: Dorigo M, Gambardella LM, Birattari M, Martinoli A, Poli R, Stützle T (eds) Lecture Notes in Computer Science, vol 4150. Ant Colony Optimization and Swarm Intelligence, pp 294–305

  75. Yagmahan B, Yenisey MM (2008) Ant colony optimization for multi-objective flow shop scheduling problem. Comput Ind Eng 54:411–420

    Article  Google Scholar 

  76. Marimuthu S, Ponnambalamb SG, Jawahar N (2009) Threshold accepting and ant-colony optimization algorithms for scheduling m-machine flow shops with lot streaming. J Mater Process Technol 209:1026–1041

    Article  Google Scholar 

  77. Huang RH, Yang CL (2009) Solving a multi-objective overlapping flow-shop scheduling. Int J Adv Manuf Technol 42:955–962

    Article  MathSciNet  Google Scholar 

  78. Yagmahan B, Yenisey MM (2010) A multi-objective ant colony system algorithm for flow shop scheduling problem. Expert Syst Appl 37:1361–1368

    Article  Google Scholar 

  79. Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks, 4. IEEE Service Center, Piscataway, NJ, pp 1942–1948

  80. Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann, San Francisco

    Google Scholar 

  81. Guo WZ, Chen GL, Huang M, Chen SL (2007) A discrete particle swarm optimization algorithm for the multi-objective permutation flow shop sequencing problem. Proceeding of International Conference on Fuzzy Information and Engineering, pp 323–331

  82. Rahimi-Vahed AR, Mirghorbani SM (2007) A multiobjective particle swarm for a flow shop scheduling problem. J Comb Optim 13:79–102

    Article  MathSciNet  MATH  Google Scholar 

  83. Li BB, Wang L, Liu B (2008) An effective PSO-based hybrid algorithm for multiobjective permutation flow shop scheduling. IEEE Trans Syst Man Cybern A38(4):818–831

    Google Scholar 

  84. Liao CJ, Tseng CT, Luarn P (2007) A discrete version of particle swarm optimization for flowshop scheduling problems. Comput Oper Res 34:3099–3111

    Article  MATH  Google Scholar 

  85. Sha DY, Lin HH (2009) A particle swarm optimization for multi-objective flowshop scheduling. Int J Adv Manuf Technol 45:749–758

    Article  Google Scholar 

  86. Storn R, Price K (1997) Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. J Glob Optim 11:341–59

    Article  MathSciNet  MATH  Google Scholar 

  87. Qian B, Wang L, Huang DX, Wang X (2009) Mutli-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution. Soft Comput 13:847–869

    Article  Google Scholar 

  88. Qian B, Wang L, Huang DX, Wang WL, Wang X (2009) An effective hybrid DE-based algorithm for multi-objective flow shop scheduling with limited buffers. Comput Oper Res 36:209–233

    Article  MathSciNet  MATH  Google Scholar 

  89. Pan QK, Wang L, Qian B (2009) A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems. Comput Oper Res 36:2498–2511

    Article  MathSciNet  MATH  Google Scholar 

  90. Zheng TM, Yamashiro M (2010) Solving flow shop scheduling problems by quantum differential evolutionary algorithm. Int J Adv Manuf Technol 49:643–662

    Article  Google Scholar 

  91. Forrest S, Javornik B, Smith R, Perelson AS (1993) Using genetic algorithms to explore pattern recognition in the immune system. Evol Comput 1(3):191–211

    Article  Google Scholar 

  92. Yang JG, Ding HM, Li P (2002) An immune scheduling algorithm for solving multi-objective flow-shop problem. Mach Des Res 18(4):28–31 (in Chinese)

    Google Scholar 

  93. Tavakkoli-Moghaddam R, Rahimi-Vahed A, Mirzaei AH (2008) Solving a multi-objective no-wait flow shop scheduling problem with an immune algorithm. Int J Adv Manuf Technol 36:969–981

    Article  Google Scholar 

  94. Chakhlevitch K, Cowling P (2006) Hyperheuristics: recent developments. In: Cotta C, Sevaux M, and Sörensen K (eds) Adaptive and multilevel metaheuristics, studies in computational intelligence, 136. Springer 2008, pp 3–29

  95. Rajendran C (1995) Heuristics for scheduling in flowshop with multiple objectives. Eur J Oper Res 82:540–555

    Article  MATH  Google Scholar 

  96. Ho JC, Chang YL (1991) A new heuristic for the n-job, M-machine flow-shop problem. Eur J Oper Res 52:194–202

    Article  MATH  Google Scholar 

  97. Framinan JM, Leisten R, Ruiz-Usano R (2002) Efficient heuristics for flowshop sequencing with the objectives of makespan and flow time minimisation. Eur J Oper Res 141:559–569

    Article  MATH  Google Scholar 

  98. Allahverdi A (2003) The two- and m-machine flowshop scheduling problems with bi-criteria of makespan and mean flow time. Eur J Oper Res 147:373–396

    Article  MathSciNet  MATH  Google Scholar 

  99. Allahverdi A (2004) A new heuristic for m-machine flowshop scheduling problem with bi-criteria of makespan and maximum tardiness. Comput Oper Res 31:157–180

    Article  MathSciNet  MATH  Google Scholar 

  100. Arroyo JEC, Armentano VA (2004) A partial enumeration heuristic for multiobjective flowshop scheduling problems. J Oper Res Soc 55:1000–1007

    Article  MATH  Google Scholar 

  101. Framinan JM, Leisten R (2006) A heuristic for scheduling a permutation flowshop with makespan objective subject to maximum tardiness. Int J Prod Econ 99:28–40

    Article  Google Scholar 

  102. Gupta JND, Hennig K, Werner F (2002) Local search heuristics for two-stage flow shop problems with secondary criterion. Comput Oper Res 29:123–149

    Article  MATH  Google Scholar 

  103. Geiger MJ (2007) On operators and search space topology in multiobjective flow shop scheduling. Eur J Oper Res 181:195–206

    Article  MathSciNet  MATH  Google Scholar 

  104. Haq AN, Ramanan TR (2006) A bi-criterian flow shop scheduling using artificial neural network. Int J Adv Manuf Technol 30:1132–1138

    Article  Google Scholar 

  105. Shi RF, Zhou H (2007) Escalating evolutionary algorithm with application to bi-objective flow shop scheduling problems. J Manage Sci 10(5):11–20 (in Chinese)

    Google Scholar 

  106. Zhang CK, Li XF, Shao HH, Ren DX (2002) Bi-directional simulation approach for multi-objective scheduling problem of hybrid flow shop. J Shanghai Jiaotong Univ 36(4):547–550 (in Chinese)

    Google Scholar 

  107. Wei Z, Xu XF, Deng SC (2006) Evolutionary algorithm for solving multi-objective hybrid flow-shop scheduling problem. Journal of Nanjing University of Science and Technology 30(3):327–331 (in Chinese)

    Google Scholar 

  108. Behnamian J, Fatemi Ghomi SMT, Zandieh M (2009) A multi-phase covering Pareto-optimal front method to multi-objective scheduling in a realistic hybrid flowshop using a hybrid metaheuristic. Expert Syst Appl 36:11057–11069

    Article  Google Scholar 

  109. Figueira JR, Liefooghe A, Talbi EG, Wierzbicki AP (2010) A parallel multiple reference point approach for multi-objective optimization. Eur J Oper Res 205:390–400

    Article  MathSciNet  MATH  Google Scholar 

  110. Sawik T (2007) A lexicographic approach to bi-objective scheduling of single- period orders in make-to-order manufacturing. Eur J Oper Res 180(3):1060–1075

    Article  MathSciNet  MATH  Google Scholar 

  111. Janiak A, Kozan E, Lichtenstein M, Oguz C (2007) Metaheuristic approaches to the hybrid flow shop scheduling problem with a cost-related criterion. Int J Prod Econ 105(2):407–424

    Article  Google Scholar 

  112. Javadi B, Saidi-Mehrabad M, Haji A, Mahdavi I, Jolai F, Mahdavi-Amiri N (2008) No-wait flow shop scheduling using fuzzy multi-objective linear programming. J Franklin Inst 345:452–467

    Article  MATH  Google Scholar 

  113. Jungwattanakit J, Reodecha M, Chaovalitwongse P, Werner F (2006) Algorithms for flexible flow shop problems with unrelated parallel machines, setup times, and dual criteria. Int J Adv Manuf Technol 37(3–4):354–370

    Google Scholar 

  114. Rahimi-Vahed AR, Javadi B, Rabbani M, Tavakkoli-Moghaddam R (2008) A multi-objective scatter search for a bi-criteria no-wait flow shop scheduling problem. Eng Optim 40(4):331–346

    Article  MathSciNet  Google Scholar 

  115. Rahimi-Vahed A, Dangchi M, Rafiei H, Salimi E (2009) A novel hybrid multi-objective shuffled frog-leaping algorithm for a bi-criteria permutation flow shop scheduling problem. Int J Adv Manuf Technol 41:1227–1239

    Article  Google Scholar 

  116. Behnamian J, Fatemi Ghomi SMT (2010) Hybrid flowshop scheduling with machine and resource-dependent processing times. Appl Math Modell 35:1107–1123

    Article  MathSciNet  Google Scholar 

  117. Naderi B, Tavakkoli-Moghaddam R, Khalili M (2010) Electromagnetism-like mechanism and simulated annealing algorithms for flowshop scheduling problems minimizing the total weighted tardiness and makespan. Knowl Based Syst 23:77–85

    Article  Google Scholar 

  118. Coello Coello CA (2000) Handling preferences in evolutionary multiobjective optimization: a survey. 2000 Congress on Evolutionary Computation 1. IEEE Service Center, Piscataway, New Jersey, pp 30–37

  119. Cvetković D, Parmee IC (2002) Preferences and their application in evolutionary multiobjective optimization. IEEE Trans Evol Comput 6(1):42–57

    Article  Google Scholar 

  120. Junker U (2004) Preference-based search and multi-criteria. Ann Oper Res 130:75–115

    Article  MathSciNet  MATH  Google Scholar 

  121. Ishibuchi H, Nojima Y, Narukawa K, Doi T (2006) Incorporation of decision maker’s preference into evolutionary multiobjective optimization algorithms. Proceedings of Genetic and Evolutionary Computation Conference—GECCO, New York, pp 741–742

  122. Zitzler E, Thiele L, Bader J (2006) SPAM: set preference algorithm for multiobjective optimization. Proceedings of Conference on Parallel Problem Solving from Nature (PPSN X), Springer, pp 847–858

  123. Luque M, Miettinen K, Eskelinen P, Ruiz F (2009) Incorporating preference information in interactive reference point methods for multiobjective optimization. Omega-Int J Manage S 37:450–462

    Article  Google Scholar 

  124. Thiele L, Miettinen K, Korhonen PJ, Molina J (2009) A preference-based evolutionary algorithm for multiobjective optimization. Evol Comput 17(3):411–436

    Article  Google Scholar 

  125. Wang Y, Yang Y (2009) Particle swarm optimization with preference order ranking for multi-objective optimization. Inf Sci 179:1944–1959

    Article  Google Scholar 

  126. Cheng TCE, Wang G (2000) An improved heuristic for two-machine owshop scheduling with an availability constraint. Oper Res Lett 26:223–229

    Article  MathSciNet  MATH  Google Scholar 

  127. Allaoui H, Artiba A (2006) Scheduling two-stage hybrid flow shop with availability constraints. Comput Oper Res 33:1399–1419

    Article  MathSciNet  MATH  Google Scholar 

  128. Breit J (2006) A polynomial-time approximation scheme for the two-machine flow shop scheduling problem with an availability constraint. Comput Oper Res 33:2143–2153

    Article  MathSciNet  MATH  Google Scholar 

  129. Voβ S, Witt A (2007) Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: a real-world application. Int J Prod Econ 105:445–458

    Article  Google Scholar 

  130. Wang X, Cheng TCE (2007) Heuristics for two-machine flowshop scheduling with setup times and an availability constraint. Comput Oper Res 34:152–162

    Article  MathSciNet  MATH  Google Scholar 

  131. Ruiz R, Sivrikaya-Serifoğlu F, Urlings T (2006) Modeling realistic hybrid flexible flowshop scheduling problems. Comput Oper Res 35:1151–1175

    Article  Google Scholar 

  132. Low C, Hsu CJ, Su CT (2006) A two-stage hybrid flowshop scheduling problem with a function constraint and unrelated alternative machines. Comput Oper Res 35:845–853

    Article  MathSciNet  Google Scholar 

  133. Luo H, Huang GQ, Zhang YF, Dai QY, Chen X (2009) Two-stage hybrid batching flowshop scheduling with blocking and machine availability constraints using genetic algorithm. Rob Com-Int Manuf 25:962–971

    Article  Google Scholar 

  134. Allaoui H, Artiba A (2004) Integrating simulation and optimization to schedule a hybrid flow shop with maintenance constraints. Comput Ind Eng 47:431–450

    Article  Google Scholar 

  135. Reklaitis GV, Ravindran A, Ragsdell KM (1983) Engineering optimization methods and applications. Wiley, New York

    Google Scholar 

  136. Deb K (1995) Optimization for engineering design: algorithms and examples. Prentice-Hall, New Delhi

    Google Scholar 

  137. Davoudpour H, Ashrafi M (2009) Solving multi-objective SDST flexible flow shop using GRASP algorithm. Int J Adv Manuf Technol 44:737–747

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoyong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Zhang, C., Gao, L. et al. Multi-objective optimization algorithms for flow shop scheduling problem: a review and prospects. Int J Adv Manuf Technol 55, 723–739 (2011). https://doi.org/10.1007/s00170-010-3094-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-010-3094-4

Keywords

Navigation