Skip to main content
Log in

Numerical methods for the simulation of a coalescence-driven droplet size distribution

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The droplet size distribution in a turbulent flow field is considered and modeled by means of a population balance system. This paper studies different numerical methods for the 4D population balance equation and their impact on an output of interest, the time-space-averaged droplet size distribution at the outlet, which is known from experiments. These methods include different interpolations of the experimental data at the inlet, various discretizations in time and space, and different schemes for computing the coalescence integrals. It will be shown that noticeable changes in the output of interest might occur. In addition, the computational efficiency of the studied methods is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ramkrishna D.: Population Balances: Theory and Applications to Particulate Systems in Engineering. Academic Press, San Diego (2000)

    Google Scholar 

  2. Rogers R.R., Yau M.K.: Cloud Physics. 3rd edn. Butterworth–Heinemann, Oxford (1989)

    Google Scholar 

  3. Shaw R.A.: Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Mech. 35, 183–227 (2003)

    Article  Google Scholar 

  4. Mukhopadhyay A., Jasor G., Polifke W.: Simulation of pure sedimentation of raindrops using quadrature method of moments. Atmos. Res. 106, 61–70 (2012)

    Article  Google Scholar 

  5. Hulburt H.M., Katz S.: Some problems in particle technology—a statistical mechanical formulation. Chem. Eng. Sci. 19, 555–574 (1964)

    Article  Google Scholar 

  6. McGraw R.: Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol. 27, 255–265 (1997)

    Article  Google Scholar 

  7. Marchisio D.L., Fox R.O.: Solution of population balance equations using the direct quadrature method of moments. J. Aerosol Sci. 36, 43–73 (2005)

    Article  Google Scholar 

  8. John V., Angelov I., Thévenin A.A., Thévenin D.: Techniques for the reconstruction of a distribution from a finite number of its moments. Chem. Eng. Sci. 62, 2890–2904 (2007)

    Article  Google Scholar 

  9. de Souza L.G.M., Janiga G., John V., Thévenin D.: Reconstruction of a distribution from a finite number of moments with an adaptive spline-based algorithm. Chem. Eng. Sci. 65, 2741–2750 (2010)

    Article  Google Scholar 

  10. John V., Roland M., Mitkova T., Sundmacher K., Tobiska L., Voigt A.: Simulations of population balance systems with one internal coordinate using finite element methods. Chem. Eng. Sci. 64, 733–741 (2009)

    Article  Google Scholar 

  11. John V., Roland M.: On the impact of the scheme for solving the higher dimensional equation in coupled population balance systems. Int. J. Numer. Meth. Eng. 82, 1450–1474 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Bordás R., Hagemeier T., Wunderlich B., Thévenin D.: Droplet collisions and interaction with the turbulent flow within a two-phase wind tunnel. Phys. Fluids 23, 085105 (2011)

    Article  Google Scholar 

  13. Bordás R., John V., Schmeyer E., Thévenin D.: Measurement and simulation of a droplet population in a turbulent flow field. Comput. Fluids 66, 52–62 (2012)

    Article  Google Scholar 

  14. Mersmann A.: Crystallization Technology Handbook. 2nd edn. Marcel Dekker Inc., New York (2001)

    Book  Google Scholar 

  15. Pruppacher H.R., Klett J.D.: Microphysics of Clouds and Precipitation. 2nd edn. Kluwer Academic Publishers, Dordrech (1997)

    Google Scholar 

  16. Hall W.D.: A detailed microphysical model within a two-dimensional dynamic frameword: model description and preliminary results. J. Atmos. Sci. 37, 2486–2507 (1980)

    Article  Google Scholar 

  17. Ayala O., Wang L.-P., Grabowski W.W.: A hybrid approach for simulating turbulent collisions of hydrodynamically-interacting particles. J. Comput. Phys. 225, 51–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xue Y., Wang L.-P., Grabowski W.W.: Growth of cloud droplets by turbulent collision-coalescence. J. Atmos. Sci. 65, 331–356 (2008)

    Article  Google Scholar 

  19. Pinsky M., Khain A., Krugliak H.: Collisions of cloud droplets in a turbulent flow. part v: Application of detailed tables of turbulent collision rate enhancement to simulation of droplet spectra evolution. J. Atmos. Sci. 65(2), 357–374 (2008)

    Article  Google Scholar 

  20. Wang L.P., Grabowski W.W.: The role of air turbulence in warm rain initiation. Atmos. Sci. Lett. 10(1), 1–8 (2009)

    Article  Google Scholar 

  21. Berglund K.A.: Analysis and measurement of crystallization utilizing the population balance. In: Myerson, A. (ed) Handbook of Industrial Crystallization, Butterworth-Heinemann, Oxford (2002)

    Google Scholar 

  22. Lindenberg C., Schöll J., Vicum M., Brozio J.: L-glutamic acid precipitation: agglomeration effects. Crystal Growth Des. 8, 224–234 (2008)

    Article  Google Scholar 

  23. Smoluchowski M.V.: Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 92, 129–168 (1917)

    Google Scholar 

  24. Smagorinsky J.S.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  25. John V., Kaya S., Layton W.: A two-level variational multiscale method for convection-dominated convection-diffusion equations. Comput. Meth. Appl. Math. Eng. 195, 4594–4603 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. John V., Kaya S.: A finite element variational multiscale method for the Navier-Stokes equations. SIAM J. Sci. Comput. 26, 1485–1503 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. John V., Kindl A.: Variants of projection-based finite element variational multiscale methods for the simulation of turbulent flows. Int. J. Numer. Meth. Fluids 56, 1321–1328 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. John V., Kindl A.: Numerical studies of finite element variational multiscale methods for turbulent flow simulations. Comput. Methods Appl. Mech. Eng. 199, 841–852 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. John V., Roland M.: Simulations of the turbulent channel flow at R e τ =  180 with projection-based finite element variational multiscale methods. Int. J. Numer. Meth. Fluids 55, 407–429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. John V., Kindl A.: A variational multiscale method for turbulent flow simulation with adaptive large scale space. J. Comput. Phys. 229, 301–312 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. John V., Kindl A., Suciu C.: Finite element LES and VMS methods on tetrahedral meshes. J. Comput. Appl. Math. 233, 3095–3102 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gresho P.M., Sani R.L.: Incompressible Flow and the Finite Element Method. Wiley, Chichester (2000)

    MATH  Google Scholar 

  33. John V., Matthies G.: Higher order finite element discretizations in a benchmark problem for incompressible flows. Int. J. Num. Meth. Fluids 37, 885–903 (2001)

    Article  MATH  Google Scholar 

  34. John V.: Higher order finite element methods and multigrid solvers in a benchmark problem for the 3D Navier-Stokes equations. Int. J. Num. Meth. Fluids 40, 775–798 (2002)

    Article  MATH  Google Scholar 

  35. John V., Kaya S.: Finite element error analysis of a variational multiscale method for the Navier–Stokes equations. Adv. Comput. Math. 28, 43–61 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Röhe L., Lube G.: Analysis of a variational multiscale method for large-eddy simulation and its application to homogeneous isotropic turbulence. Comput. Methods Appl. Mech. Eng. 199, 2331–2342 (2010)

    Article  MATH  Google Scholar 

  37. John V., Novo J.: On (essentially) non-oscillatory discretizations of evolutionary convection-diffusion equations. J. Comput. Phys. 231, 1570–1586 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shu C.-W., Osher S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. John V., Schmeyer E.: Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion. Comput. Methods Appl. Mech. Eng. 198, 475–494 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. John, V., Schmeyer, E.: On finite element methods for 3d time-dependent convection-diffusion-reaction equations with small diffusion. In: Hegarty, A. (ed.), BAIL 2008—Boundary and Interior Layers, Number 69 in Lecture Notes in Computational Science and Engineering, pp. 173–181. Springer, Berlin (2009)

  41. Kuzmin D.: Explicit and implicit FEM-FCT algorithms with flux linearization. J. Comput. Phys. 228, 2517–2534 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zalesak S.T.: Fully multi-dimensional flux corrected transport algorithms for fluid flow. J. Comput. Phys. 31, 335–362 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kuzmin D., Möller M.: Algebraic flux correction I. Scalar conservation laws. In: Kuzmin, D., Löhner, R., Turek, S. (eds) Flux-Corrected Transport: Principles, Algorithms and Applications, pp. 155–206. Springer, Berlin (2005)

    Chapter  Google Scholar 

  44. Saad Y.: Iterative Methods for Sparse Linear Systems. 2nd edn. SIAM Philadelphia, Philadelphia (2003)

    Book  MATH  Google Scholar 

  45. Fletcher C.A.J.: The group finite element formulation. Int. J. Numer. Methods Fluids 37, 225–243 (1983)

    MathSciNet  Google Scholar 

  46. Hackbusch W.: On the efficient evaluation of coalescence integrals in population balance models. Computing 78, 145–159 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hackbusch W.: Approximation of coalescence integrals in population balance models with local mass conservation. Numer. Math. 106, 627–657 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hackbusch W.: Convolution of hp-functions on locally refined grids. IMA J. Numer. Anal. 29, 960–985 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Hackbusch W., John V., Khachatryan A., Suciu C.: A numerical method for the simulation of an aggregation-driven population balance system. Int. J. Numer. Methods Fluids 69, 1646–1660 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. John V., Matthies G.: MooNMD—a program package based on mapped finite element methods. Comput. Visual. Sci. 6, 163–170 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker John.

Additional information

Communicated by R. Klein.

The work of R. Bordás was supported by grant Th881/13-2 within the DFG priority programme 1276 MetStröm: Multiple Scales in Fluid Mechanics and Meteorology.

The work of E. Schmeyer was supported by grant Jo329/8-2 within the DFG priority programme 1276 MetStröm: Multiple Scales in Fluid Mechanics and Meteorology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordás, R., John, V., Schmeyer, E. et al. Numerical methods for the simulation of a coalescence-driven droplet size distribution. Theor. Comput. Fluid Dyn. 27, 253–271 (2013). https://doi.org/10.1007/s00162-012-0275-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-012-0275-9

Keywords

Navigation