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Abstract

In this paper we give a realization of the Shimura curve for the quaternion algebra over Q with
discriminant 6 as a quotient space of the complex upper half plane by the triangle group ∆(3, 6, 6).
That is given by the Schwarz map for the Gauss hypergepmetric differential equation E

`

1
6
, 1

3
, 2

3

´

.
The corresponding abelian surfaces are obtained as an isogenous components of the Jacobi varieties
of the Picard curves C(s) : w3 = z(z − 1)(z − 1

2
(1 − s))(z − 1

2
(1 + s)).

0 Introduction

A Shimura curve corresponding to a quaternion algebra B =
(

a,b
F

)
is a 1-dimensional modular variety

embedded in a moduli space Sg of abelian varieties {A} of a certain dimension g with generic endmor-
phism structure B = End0A. We can extract this Shimura curve with its modular group action as a pair
of the upper half plane H and a group G ⊂ SL(2, R) so called a norm 1 group of B.

In [Voi] we find how we can realize the Shimura curve with discriminant 6 in the projective space
generated by the modular forms on H with respect to G. Originally this description is given by A.
Kurihara [Kur] .

A new approach was proposed in [Pet] standing on the frame work of Picard modular forms for the
group U(2, 1;Ok) with k = Q(

√
−1), Ok is the ring of integers in k.

Generally the description of the Shimura curve is difficult, and the above two results are nice. But
still it remains the following questions.

(1) Is it possible to get more explicit descrition of the Shimura curve ? We are wishing to have a
explicit algebraic curves corresponding to the point on the Shimura curve. In this case what does it mean
our coordinates, in other words what is our embient space ?

(2) Is it possible to get more precise and more simple description of the modular group G ?
(3) Can we describe the period differential equation for our algebraic curves ?
(4) May we find a direct relation between the Gauss hypergeometric differential equation and our

modular group G?
(5) Is it possible to give an explicit ”Fourier expansion” for our modular form defined on H with

respect to the modular group G?
In this paper we answer for these questions. We use the Picard modular forms for k = Q(

√
−3) as

our main tool.
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1 General tactics

We set the complex two dimensional hyper ball

D = {η = [η0 : η1 : η2] ∈ P 2 : tηHη < 0} = {(u, v) ∈ C2 : 2Re (v) + |u|2 < 0},

here we put H =

0 1 0
1 0 0
0 0 1

 , v = η1/η0 and u = η2/η0. We set the Picard modular group

Γ = {g ∈ GL3(Z[ω]) : tgHg = H}withω = e2πi/3.

The element g =

p1 q1 r1

p2 q2 r2

p3 q3 r3

 ∈ Γ acts on D by

g(u, v) =
(

p3 + q3v + r3u

p1 + q1v + r1u
,
p2 + q2v + r2u

p1 + q1v + r1u

)
. (1.1)

For our study of the Shimura curve, we use the hyperball D together with the group Γ or its congruence
subgroup. Our domain D is a coarse moduli space of the family of Picard curves:

C(λ) : w3 = z(z − 1)(z − λ1)(z − λ2). (1.2)

We shall give a Shimura curve by taking a special hyperplane section, we call it a k-disc of D . So we need
two fundamental tools, the theory of Picard modular forms and the theory of ball quotient geometry.

2 The Picard modular form revisited

Set
Λ = {(λ1, λ2) ∈ C2 : λ1λ2(λ1 − 1)(λ2 − 1)(λ1 − λ2) ̸= 0}.

The Picard curve is an algebraic curve given by

C(λ) : w3 = z(z − 1)(z − λ1)(z − λ2) (2.1)

for λ ∈ Λ. It is a curve of genus three and is a three sheeted branched covering over the complex z plane.
The Jacobian variety Jac(C(λ)) of C(λ) has a generalized complex multiplication by

√
−3 of type (2, 1).

In fact, we have a basis system of holomorphic differentials given by

ϕ = ϕ1 =
dz

w
, ϕ2 =

dz

w2
, ϕ3 =

zdz

w2
.

For the moment, we assume 0 < λ1 < λ2 < 1. Under this condition we choose the symplectic basis
{A1, . . . , B3} of H1(C, Z) described in Figure 1, that is already used in [Sig1]. Here we put cut lines
starting from branch points in the lower half z-plane to get simply connected sheets. The real line (resp.
dotted line, chained line) indicates an arc on the first sheet (resp. second sheet, third sheet).
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Figure 1. homology basis

Setting ρ(z, w) = (z, ωw), we have

B3 = ρ(B1), A3 = −ρ2(A1), B2 = −ρ2(A2),

where ω stands for exp[2π
√
−1/3]. We have AiBj = δij (i, j ∈ {1, 2, 3}). Put

η0 =
∫

A1

ϕ, η1 = −
∫

B3

ϕ, η2 =
∫

A2

ϕ. (2.2)

By the analytic continuation, they are multivalued analytic functions on the domain Λ. It holdsη0

η1

η2

 =


∫

A1
ϕ1

−ω2
∫

B1
ϕ1∫

A2
ϕ1

 =

−ω2
∫

A3
ϕ1

−
∫

B3
ϕ1

−ω2
∫

B2
ϕ1

 ,


∫

A1
ϕi

−ω
∫

B1
ϕi∫

A2
ϕi

 =

−ω
∫

A3
ϕi

−
∫

B3
ϕi

−ω
∫

B2
ϕi

 (i = 2, 3). (2.3)

Set
Ω1 =

( ∫
Aj

ϕi

)
, Ω2 =

( ∫
Bj

ϕi

)
, (1 ≤ i, j ≤ 3).

The normalized period matrix of C(ξ) is given by Ω = Ω−1
1 Ω2. By the relations of periods (2.3) together

with the symmetricity tΩ = Ω, we can rewrite

Ω = Ω−1
1 Ω2 =

 u2+2ω2v
1−ω ω2u ωu2−ω2v

1−ω

ω2u −ω2 u
ωu2−ω2v

1−ω u ω2u2+2ω2v
1−ω

 , (2.4)

here we put u = η2
η0

, v = η1
η0

. So we set Ω = Ω(u, v). The Riemann period relation Im Ω > 0 induces the
inequality 2Re (v) + |u|2 < 0. We set

D = {η = [η0 : η1 : η2] ∈ P 2 : ηHtη < 0} = {(u, v) ∈ C2 : 2Re (v) + |u|2 < 0}, (2.5)

where we put H =

0 1 0
1 0 0
0 0 1

 . We define our period map Φ : Λ → D by

Φ(λ1, λ2) = [η0, η1, η2].

Set the Picard modular group
Γ = {g ∈ GL3(Z[ω]) : tgHg = H}.

The element g =

p1 q1 r1

p2 q2 r2

p3 q3 r3

 ∈ Γ acts on D by

g(u, v) =
(

p3 + q3v + r3u

p1 + q1v + r1u
,
p2 + q2v + r2u

p1 + q1v + r1u

)
. (2.6)

Let us denote the congruence subgroup {g ∈ Γ : g ≡ I3 mod
√
−3} by Γ(

√
−3). Set Γ = Γ/〈−ω2〉 and

set Γ(
√
−3) = Γ(

√
−3)/〈ω〉. We have Γ/Γ(

√
−3) ∼= S4, the symmetric group of degree 4.

We use the following Riemann theta constants and their Fourier expansions (see [Sig1], p.327):

ϑk(u, v) = ϑ

[
0 1/6 0

k/3 1/6 k/3

]
(0, Ω(u, v)) =

∑
µ∈Z[ω]

ω2ktrµH(µu)qN(µ) (2.7)
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with an index k ∈ Z, where trµ = µ + µ̄,N(µ) = µµ̄ and

H(u) = exp[
π√
3
u2]ϑ

[
1/6
1/6

]
(u,−ω2), q = exp[

2π√
3
v].

Apparently it holds ϑk(u, v) = ϑk+3(u, v), so k runs over {0, 1, 2} = Z/3Z.
The following properties are already established.

Fact 2.1. (i) ( [Sig1] p.349) The period map Φ induces a biholomorphic isomorphism from ξ-space
P2(C) to the Satake compactification D/Γ(

√
−3) of D/Γ(

√
−3). This compactification is obtained

by atatching 4 boundary points corresponding to 4 points [ξ0, ξ1, ξ2] = [0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 1, 1].
We have an action of the S4 that is composed of projective linear transformations which causes a
permutation of above 4 points on P 2.

(ii) The following theorem is due to M. Namba [Nam].

Theorem. Let C(λ) and C(λ′) be two Picard curves. They are isomorphic as Riemann surfaces if
and only if we have an automorphism f of C such that f({0, 1, λ1, λ2}) = {0, 1, λ′

1, λ
′
2}.

So P 2/S4
∼= (D/Γ(

√
−3))/S4 = (D/Γ)◦ is the moduli space of our family of Picard curves, here ◦

means the one point compactification.

(iii) ( [Sig1] p.327) The map Θ : D −→ P 2 defined by

Θ([η0, η1, η2]) = [ϑ0(u, v)3, ϑ1(u, v)3, ϑ2(u, v)3] (2.8)

gives the inverse of the period map Φ.

(iv) ([Sig1] p.329) The group Γ(
√
−3) is generated by the classes of

g1 =

1 0 0
0 1 0
0 0 ω

 , g2 =

 1 0 0
ω − ω2 1 0

0 0 1

 , g3 =

 1 0 0
ω − 1 1 ω − 1
1 − ω2 0 1

 ,

g4 =

1 ω − ω2 0
0 1 0
0 0 1

 , g5 =

1 ω − 1 ω − 1
0 1 0
0 1 − ω2 1

 .

This is the projective monodromy group of the multivalued map Φ : Λ → D .

(v) ([Sig1] p.346) We have the automorphic property:

ϑk(g(u, v))3 = (p1 + q1v + r1u)3 ϑk(u, v)3 (2.9)

for g =

p1 q1 r1

p2 q2 r2

p3 q3 r3

 ∈ Γ(
√
−3). The sytem {ϑk(g(u, v))3}k=0,1,2 is a basis of the vector space of

automorphic forms with the property (2.9).

(vi) The system of periods {η0, η1, η2} is a basis of the space of solutions for the Appel hypergeometric
differential equation E1(a, b, b′, c) with (a, b, b′, c) = ( 1

3 , 1
3 , 1

3 , 1):

E1(a, b, b′, c) :


r (1 − x) x + p (c − (1 + a + b) x) − b q y + s (1 − x) y − a b z = 0

− (b′ p x) + s x (1 − y) + t (1 − y) y + q (c − (1 + a + b′) y) − a b′ z = 0,

(2.10)

with r = zxx, s = zxy, t = zyy, p = zx, q = zy. It has singularities along P 2 − Λ. Γ(
√
−3) is the

projective monodromy group of E1( 1
3 , 1

3 , 1
3 , 1) also. Here we used (x, y) in stead of (λ1, λ2).
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3 Ball quotient geometry

We sum up from the works of Petkova and Holzapfel just necessary things for our argument.
Set k = Q(

√
−3) , and let Ok be the ring of algebraic intergers of k. Let Γ′ be an finite index subgroup

of Γ = {g ∈ GL(3,Ok) : tgHg = H}. Let D be the domain defined in (2.5), and we use the same matrix
H used there. We set 〈η, η′〉H = ηHtη′ for η, η′ ∈ C3, here · indicates the complex conjugate. For a
generic point η ∈ D , it corresponds to a Picard curve C(λ) with λ = Θ(η). We set A(λ) = Jac(C(λ)).

Let c ∈ O3
k be a fixed vector with 〈c, c〉H > 0. We call

Dc = {η ∈ D : 〈η, c〉H = 0}

a k-disc in D .
The period matrix of C(λ) = (Ω1, Ω2) takes the form

M(u, v, b, c) =

 1 u −ωu −ωv −ωu −v
b0 b2 −ω2b0 −ω2b1 −ω2b2 −b1

c0 c2 −ω2c0 −ω2c1 −ω2c2 −c1

 ,

with b = (b0, b1, b2), c = (c0, c1, c2). According to the Riemann period relation, we have

〈(1, v, u), (b0, b1, b2)〉H = 0, 〈(1, v, u), (c0, c1, c2)〉H = 0.

So we have the period matrix of the form

M(u, v, (1,−v, 0), (0,−u, 1)).

This is a ”semi-period” owing to the terminology in ([Hol1] section 6). Hence we can apply all the
arguments there.

Proposition 3.1. (Essentially due to Holzapfel [Hol1]) Let Dc be a k-disc. Then for a point η ∈ Dc,
the corresponding Jacobi variety A(λ) is isogenous to a product type abelian variety E0 × A′(λ), with
E0 = C/(Z + ωZ) and a two dimensional abelian variety A′.

Proof: According to [Hol1], Cor. 6.23 the abelian variety corresponding to η ∈ Dc is isogenous to one
of the following types varieties E0 × S, E0 × E2

τ , E0 × E2
σ, E3

0 . Here S is a simple abelian surface
with Q = End0(S), Q indefinite division quaternion algebra, Eσ = C/(Z + σZ) is an elliptic curve with
imaginary quadratic multiplication by Q(σ) and Eτ = C/(Z + τZ) is an elliptic curve not of CM-type.

q.e.d.

Proposition 3.2. The k-disc Dc is a Shimura variety for the quaternion algebra B =
(

−3,〈c,c〉H

Q

)
.

Namely, it is a one dimensional coarse moduli space of the abelian surfaces A′ for which generically we
have

B = End0(A′).

Proof. Let p : D → D/Γ be the natural projection. From [Hol2], section 4.4., we know that D/Γ is a
Picard modular surface and Dc/Γ = p(Dc) ⊂ D/Γ is an algebraic curve. The points of D/Γ parametrize
isomorphy classes of abelian threefolds A(λ) with k−multiplication and those of Dc/Γ correspond to the
abelian varieties of type E0 × A′(λ), Prop. 3.1, i.e. parametrize abelian surfaces A′(λ).

Consider the group Γc = {γ ∈ Γ : γDc = Dc} which is isomorphic to U((1, 1),O) and Gc = Γc/{γ ∈
Γ : γ|Dc

= idDc}, then Dc/Γc = Dc/Gc is an algebraic curve, which is a normalization of Dc/Γ, [Hol2].
The period lattice of the abelian surface A′(λ), corresponding to η ∈ Dc, is isomorphic to a sublattice of
rank 4 of the period lattice of A(λ), [Hol1] section 6. For λ = γ(λ′) the abelian varieties A(λ) and A(λ′)
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are isomorphic, and so are A′(λ) and A′(λ′) too. By construction the quotient Dc/Γc is a Picard modular
curve and as such parametrizes abelian surfaces with k-multiplication [Shi2], hence it parametrizes the
isomorphy classes of abelian surfaces A′(λ). Furthermore, following [Shi2] Prop. 18, for a generic η ∈ Dc,
the corresponding abelian surface A′(λ) has also a multiplication by an indefinite quaternion algebra B,
i.e. there exists an embedding B ⊆ End0(A′(λ)). According to [Pet] section 6.5 the quaternion algebra
B is then isomorphic to

(
−3,〈c,c〉H

Q

)
.

Remark 3.1. We put a direct proof of the above two propositions in Section 6. Moreover we shall show
the equality End(A′(λ)) ∼= OB, where OB is the unique (up to conjugacy) maximal order of B.

4 Results

Set c = (1, 1, 0). Its H-norm cHtc is 2. Its H-orthogonal complement is given by

c⊥ = {[η0, η1, η2] ∈ P 2 : η0 + η1 = 0}.

Set Dc = {(u, v) ∈ D : v = −1} = c⊥ ∩ D and

Γc = {g ∈ Γ : g(Dc) = Dc}/{g ∈ Γ : g|Dc
= idDc}.

According to Petkova and Holzapfel ([Pet], [Hol3]) we know that Dc/Γc is the Shimura curve for

B =
(
−3, ∥c∥H

Q

)
=

(
−3, 2

Q

)
with Disc(B) = 6. (We have

Disc(B) =
∏

(−3,2)p=−1

p = 2 · 3 = 6.

)
So this is the case discussed in [Voi] and also studied in [Pet].

Theorem 4.1. Set a complex line Lc = {λ1 + λ2 = 1} in (λ1, λ2) space P 2. Then we have

Θ(Dc) = Lc.

Namely our Shimura curve is realized as a hyperplane section in the vector space space 〈ϑ3
0, ϑ

3
1, ϑ

3
2〉 of

Picard modular forms.

O 1

1

Λ2

Λ1Lc

Figure of the Shimura curve Lc

Theorem 4.2. For a Picard curve C(λ) : w3 = z(z − 1)(z − λ1)(z − λ2) with λ1 + λ2 = 1 , we have a
decomposition

J(C(λ)) ∼= E0 × A′(λ) (up to isogeny ),
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where E0 = C/(ωZ + Z) and A′(λ) is a 2-dimentional abelian variety. And generically we have

End0(A′(λ)) = B.

Namely C(λ) with λ1 + λ2 = 1 is the corresponding curve for our Shimura variety.

Theorem 4.3. Put λ1 = 1
2 (1 + s), λ2 = 1

2 (1 − s). On the line Lc the Appell differential equation
E( 1

3 , 1
3 , 1

3 , 1) reduces to

27 s2
(
−1 + s2

)2 (
3 + s2

)
zsss + 18 s

(
3 − 38 s2 + 27 s4 + 8 s6

)
zss

+6
(
−9 − 60 s2 + 127 s4 + 22 s6

)
zs + 8 s3

(
9 + s2

)
z = 0.

(4.1)

Remark 4.1. This is a Fuchsian differential equation of rank 3. Looking at (4.1) we know that it has
new singularities u = ±

√
−3 other than the expected singularities Lc ∩ (P 2 −Λ) = {0,±1,∞}. We have

the Riemann scheme of (4.1): 

0 1 −1
√
−3 −

√
−3 ∞

0 0 0 0 0 1
3

2 1
3

1
3 1 1 2

3

1
3 −2

3 − 2
3 3 3 4

3


.

So u = ±
√
−3 are apparent singularities.

Let

F1(λ1, λ2) = F1(
1
3
,
1
3
,
1
3
, 1;λ1, λ2) = 1 +

∑
m+n>0

( 1
3 , m + n)(1

3 ,m)( 1
3 , n)

(1, m + n)m!n!
λm

1 λn
2

be the Appell hypergeometric series that is a solution of E( 1
3 , 1

3 , 1
3 , 1).

Theorem 4.4. Let f(s) = F1( 1
2 (1 + s), 1

2 (1 − s)) be the restriction of F1 on Lc. Then f(s) is an even
function of s. So we put f(s) = g(t) with t = s2. In this situation g(t) satisfies the following Gauss
hypergeometric differential equation:

g′′(t) +
9t − 5

6t(t − 1)
g′(t) +

1
18t(t − 1)

g(t) = 0. (4.2)

Remark 4.2. (1) This theorem shows that the system (4.1) contains the subsystem (4.2) of rank 2. And
it corresponds to the fact that we have the linear relation η0 + η1 = 0 in the period domain D .

(2) The Riemann scheme of (4.2) is 
0 1 ∞

0 0 1
6

1
3

1
6

1
3

 .

So (4.2) is the Gauss hypergeometric differential equation E( 1
6 , 1

3 , 2
3 ), and its monodromy group is the

triangle group ∆(3, 6, 6). We can find it in the list of arithmetic co-compact triangle groups by K. Takeuchi
[Tak].

Definition 4.1. Set B =
(

a,b
Q

)
be an indefinite quaternion algebra over Q. We say SB is a Shimura

curve for B, if it is a moduli space of the isomorphism classes of principally polarized Abelian surfaces
with the condition B ∼= End0(A) for generic members.
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Theorem 4.5. Set Γc = {g ∈ Γ : g(Dc) = Dc}/{g ∈ Γ : g|Dc
= idDc}. Under the identification induced

from the isomorphism Θ : D/Γ(
√
−3) → P 2, we have the representation of the Shimura curve:

SB = Lc/〈σ〉 ∼= Dc/Γc
∼= H/∆(3, 6, 6).

Remark 4.3. The Shimura curve for a quaternion algebra B might be considered to be the moduli space
for the family of isomorphism classes of (principally polarized) abelian varieties A with the endomorphism
structure End0(A) = B for generic members. On the other hand, normally Shimura curve is defined as
the quotient space of H by the norm 1 group ΓB(1) induced from the maximal order of B, or by its some
finite index extension. As far as the authors know, there is no discussion about the exact relation of these
two (or three) definitions.

Our Shimura curve Lc/〈σ〉 = H/∆(3, 6, 6) is the exact moduli space in the above sense. The inverse
Schwarz map for the Gauss hypergeometric differential equation (4.2) is described via theta map Θ|Dc

in
a completely explicit way.

The authors discovered the relation in Theorem 3.1 by computer aided experiments using this Θ rep-
resentation.

5 Proofs

5.1 Proof of Theorem 4.1

Set

C(λ) : w3 = z(z − 1)(z − λ1)(z − λ2) (5.1)

with 0 < λ1, λ2 < 1. Suppose we have

λ1 + λ2 = 1. (5.2)

We have the canonical basis {A1, . . . , B3} of H1(C(λ, Z)) described in the fugure 1. We defined the
period map Φ by setting

Φ(λ1, λ2) = [η0, η1, η2] := [
∫

A1

dz

w
,−ω2

∫
B1

dz

w
,

∫
A2

dz

w
].

We claim that we have

η0 + η1 = 0. (5.3)

Note that we have the automorphism σ : (z, w) 7→ (z′, w′) := (1 − z, w) of C(λ). The homology cycle
A1(A3, resp.) is transported to −B3(B1, resp.) (see figure 2) by σ.

¬
®

¬
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By the same way we have

σ


A1

A2

A3

B1

B2

B3

 =


0 0 0 0 0 −1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
−1 0 0 0 0 0




A1

A2

A3

B1

B2

B3

 .

It holds ∫
σ(A1)

ϕ =
∫

A1

σ∗(ϕ).

We have ∫
σ(A1)

ϕ = −
∫

B3

ϕ = −ω2

∫
B1

ϕ = η1

and ∫
A1

σ∗(ϕ) =
∫

A1

(−ϕ) = −η0.

Then we obtain the required assertion.
q.e.d.

Theorem 4.2 is a direct cosequence of Proposition 3.2.

5.2 Proof of Theorem 4.3

The equation is obtained by a straight calculation. We perform it in the following way.
In this proof we denote the variables λ1, λ2 by x, y, respectively.
1) Start from the system {L1z = 0, L2z = 0, L3z = 0} with

L1 = x(1 − x)Dxx + (1 − x)yDxy + (c − (a + b + 1)x)Dx − byDy − ab

L2 = x(1 − y)Dxy + y(1 − y)Dyy + (c − (a + b′ + 1)y)Dy − b′xDx − ab′

L3 = (x − y)Dxy − b′Dx + bDy

(5.4)

of the Appell hypergeometric differential equation with variables x, y. Let Dx, Dy denote the partial
derivative operator, and we use the other higher derivative operators in a similar way.

2) We make the coordinate change {
µ = x − y

ν = x + y.

We can rewrite the system (5.4) in terms of µ, ν. We let them denote {L̃1, L̃2, L̃3}.
3) We make the partial derivative of the operator L̃1 with respect to µ, and express it by using only

Dµµµ, Dµµ, Dµ , but it still contains the variable ν. Let it denote by L0,ν . We have

L0,ν/ (−3 + 2µ + 3ν) = 27 µ2 (µ − ν) (2 + µ − ν) (−2 + µ + ν) (µ + ν)
`

µ2 + 6 ν − 3 ν2´

Dµµµ

+18µ
`

−12µ4 + 8µ6 − 144µ2ν + 78µ4ν + 208µ2ν2 − 39µ4ν2 + 24ν3 − 136µ2ν3 − 36ν4 + 34µ2ν4 + 18ν5 − 3ν6´

Dµµ

+6
`

22µ6 +
`

−216µ2 + 254µ4´

ν +
`

300µ2 − 127µ4´

ν2 +
`

−72 − 192µ2´

ν3 +
`

108 + 48µ2´

ν4 − 54ν5 + 9ν6´

Dµ

+8µ3 `

µ2 + 18ν − 9ν2´

4) Finally we put ν = 1 in L0,ν . Let us denote it by L0. This is the required differential operator.
q.e.d.

5.3 Proof of Theorem 4.4

By observing the series f(s) we get the required Gauss hypergeometric differential equation. The calcu-
lation of the Riemann scheme is straight forward.

q.e.d.
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5.4 Proof of Theorem 4.5

Note that the action of the symmetric group S4 on Lc is nothing but the involution σ : s 7→ −s. By the
Fact 1.1 (ii), Lc/〈σ〉 is the moduli space of our restricted family of Picard curves

w3 = z(z − 1)(z − 1
2
(1 + s))(z − 1

2
(1 − s)).

Under the identification stated in Fact 1.1. (i)(ii) we have Lc/〈σ〉 ∼= Dc/Γc. The projective monodromy
group of (4.2) is the triangle group ∆(3, 6, 6). By the transformation of the variable Dc coincides with
the upper half plane H.

Still more, according to Proposition 3.2 and Theorem 4.2 our Jacobi variety Jac(C(λ)) = A(λ) is
isogenous to a product E0 ×A′(λ) with B ⊂ End0(A′(λ)). In our situation, the isogenous decomposition
E0 ×A′(λ) uniquely determines the full period matrix of C(λ) (see also (6.4) and (6.5)). By referring the
theorem of Namba, Lc/〈σ〉 is considered to be the moduli space of {C(λ))}. So we obtain the assertion.

q.e.d.

6 Direct observation of the endomorphism algebra

By making up the period matrix of our Picard curve (5.1) with (5.2), we have a direct argument to show
the equality

End(A′(λ)) = OB , (6.1)

where OB is the maximal order of B =
(

−3,2
Q

)
. Note that we have

B = Q + QX + QY + QXY

OB = Z + ZX ′ + ZY + ZX ′Y

with
X =

(√
−3 0
0 −

√
−3

)
, X ′ =

(
ω2 0
0 ω

)
, Y =

(
0 1
2 0

)
.

For a general Picard curve (2.1) we set
α1 =

∫
A1

ϕ1, α2 =
∫

A2
ϕ1, α3 =

∫
B1

ϕ1,

β1 =
∫

A1
ϕ2, β2 =

∫
A2

ϕ2, β3 =
∫

B1
ϕ2,

γ1 =
∫

A1
ϕ3, γ2 =

∫
A2

ϕ3, γ3 =
∫

B1
ϕ3.

According to (2.3), we have the full period matrix

(Ω1, Ω2) =

α1 α2 −ωα1 α3 −ωα2 ω2α3

β1 β2 −ω2β1 β3 −ω2β2 ωβ3

γ1 γ2 −ω2γ1 γ3 −ω2γ2 ωγ3

 .

When we have λ ∈ Lc, it holds ω2α3 = α1. In fact∫
A1

ϕ1 = −
∫

σ(B3)

ϕ1 = −
∫

B3

σ∗ϕ1 =
∫

B3

ϕ1 = ω2

∫
B1

ϕ1.

Using the facts σ∗ϕ2 = −ϕ2, σ
∗ϕ3 = ϕ3 we have

ωβ3 = β1, ωγ3 = −γ1.
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In this case it holds

(Ω1,Ω2) =

α1 α2 −ωα1 ωα1 −ωα2 α1

β1 β2 −ω2β1 ω2β1 −ω2β2 β1

γ1 γ2 −ω2γ1 −ω2γ1 −ω2γ2 −γ1

 . (6.2)

According to the Riemann bilinear relation, we have

−2α1β1 + α2β2 = 0. (6.3)

If we regard (6.2) as a generator system of a lattice in C3, it is the same that of

L =

α1 α2 −ωα1 −ωα2 0 0
β1 β2 −ω2β1 −ω2β2 0 0
γ1 γ2 −ω2γ1 −ω2γ2 2γ1 −2ω2γ1

 . (6.4)

By putting κ = α2/α1, µ = β2/β1, set

L′ =
(

1 κ −ω −ωκ
1 µ −ω2 −ω2µ

)
. (6.5)

We see directly that Jac(C(λ)) has an isogenous decomposition E0 × A′(λ) with

A′(λ) = C2/L′.

By ( 6.3) we have

L′ =
(

1 κ −ω −ωκ
κ 2 −ω2κ −2ω2

)
.

So we have endomorphisms of End(L′) in the complex representations:

−1 +
√
−3

2
=

(
ω2 0
0 ω

)
,
√

2 =
(

0 1
2 0

)
.

That means generically we have (6.1).
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