Skip to main content
Log in

Marangoni convection in a rectangular container

Marangonikonvektion im Rechteckbehälter

  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

If the free liquid-gas interface of a liquid in a rectangular Container is subjected to a temperature gra-dient the shear stress on the free liquid surface being temperature dependent transmits by viscous traction a thermo-capillary convection into the bulk of the liquid. For constant temperature T 1 at one wall and T 2 at the other a steady Marangoni convection takes place while for time-oscillatory temperatures of the walls a time-dependent thermo-capillary convection appears, which will create wave patterns on the free liquid surface. They shall, depending on the forcing frequency of the temperature, exhibit resonance peaks. The velocity distribution, the response magnitude inside the Container, the forced free surface displacement and the influence of the Prandtl number have been investigated.

Zusammenfassung

Wird die freie Flüssigkeitsoberfläche in einem Rechteckbehälter einem Temperaturgradienten unterworfen, so ergibt sich aufgrund der temperaturabhängigen Oberflächenspannung eine thermokapillare Konvektion. Diese wird von der Schubspannung auf der Oberfläche durch die Viskosität der Flüssigkeit in das Innere des Behälters übertragen. Für konstante Temperaturen T 1 und T 2 der Seitenwände entsteht eine stationäre Marangonikonvektionsströmung in der Flüssigkeit. Sind die Temperaturen zeitlich oszillierend, so ergeben sich auf der freien Flüssigkeitsoberfläche Oberflächenwellen, deren Vergrößerungsfunktionen bestimmt werden. Dabei wird auch der Einfluß der Prandtl-Zahl angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

g :

gravity constant

h :

liquid height

l :

width of container

p :

liquid pressure

Pr=v/k :

Prandtl number

t :

time

T :

temperature

u, w :

velocity distribution of liquid

\(\vec \upsilon \) :

liquid velocity vector

x, z :

Cartesian coordinates

k :

diffusivity of liquid

Ψ:

stream function

η :

dynamic viscosity

v=η/gr :

kinematic viscosity

ρ :

liquid density

ζ :

free liquid surface displacement

τ xz :

shear stress

gs :

liquid surface tension

Ω:

forcing frequency of temperature fluctuation

References

  1. Scriven LE, Sternling CV (1960) The Marangoni effects. Nature 187, 185–188

    Article  Google Scholar 

  2. Chang CE, Wilcox WR (1975) Inhomogenities due to thermocapillary flow in a floating zone melting. J Crystal Growth 28, 8–12

    Article  Google Scholar 

  3. Chun CH (1980) Marangoni convection in a floating zone under reduced gravity. J Crystal Growth 48, 471–482

    Google Scholar 

  4. Chang CE, Wilcox WR (1976) Analysis of surface tension driven flow in a floating zone melting. Int Heat Mass Transfer 9, 355–366

    Article  Google Scholar 

  5. Fowle AA, Haggerty JJ, Pepron RR, Strong PF, Swanson JH (1976) Float zone processing in a weightless environment. NASA-CR 2768

  6. Bauer HF (1984) Theoretical study about Marangoni convection in a liquid column in zero-gravity. Acta Astron 11, 301–311

    Article  MATH  Google Scholar 

  7. Schwabe D, Metzger J (1989) Coupling and Separation of a buoyant and thermocapillary convection. J Crystal Growth 97, 23–33

    Article  Google Scholar 

  8. Chun CH, Wuest W (1976) Experiments on the transition from the steady to the oscillatory Marangoni-convection of a floating zone under reduced gravity effect. Acta Astron 6, 1073–1087

    Article  Google Scholar 

  9. Bauer HF (1984) Free liquid surface response induced by fluctuations of thermal Marangoni convection. AIAA Journal 22, 421–428

    Article  MATH  Google Scholar 

  10. Bauer HF (1983) Zeitliche Temperaturschwankungen an der Oberfläche einer Flüssigkeitssäche. ZAMP 34, 914–934

    Article  MATH  Google Scholar 

  11. Chun CH (1980) Experiments on steady and oscillatory temperature distribution in a floating zone due to Marangoni convection. Acta Astron 7, 479–488

    Article  Google Scholar 

  12. Schwabe D, Möller U, Schneider J, Scharmann A (1992) Instabilities of shallow dynamic thermocapillary liquid layers. Phys. Fluids A 4, 2368–2381

    Article  Google Scholar 

  13. Schwabe D, Scharmann A (1979) Some evidence for the existence and magnitude of a critical Marangoni number for the onset of oscillatory flow in crystal growth melts. J Crystal Growth 46, 125–131

    Article  Google Scholar 

  14. Schneider J, Schwabe D, Scharmann A (1996) Experiments on the surface waves in dynamic thermocapillary liquid layers. Micrograv Sei Technol IX, 2, 86–97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, H.F., Buchholz, A. Marangoni convection in a rectangular container. Forsch Ing-Wes 63, 339–348 (1998). https://doi.org/10.1007/PL00010754

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00010754

Keywords

Navigation