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1 Introduction

The AdS/CFT correspondence has been a fruitful avenue to understand quantum gravity

in asymptotically AdS spacetimes. A question of interest is whether the holographic prin-

ciple makes sense in more general spacetimes, such as our own universe. Some proposals

have been made for de Sitter [1], Kerr [2] or warped AdS [3, 4]. The asymptotically flat

case is particularly interesting because it can be obtained as a flat limit of AdS [5, 6].

Other approaches to flat space holography exist, such as applying AdS/CFT on hyperbolic

foliations of Minkowski spacetime [7] or using the recently discovered equivalence between

BMS Ward identities and Weinberg’s soft theorems [8].

The flat space limit of AdS is an ultra-relativistic limit, or Carrollian limit, of the dual

field theory. Already at the level of the symmetries, one can show that the conformal Carroll
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group is the BMS group [9], which is the symmetry group of asymptotically flat gravity [10].

More precisely, the conformal Carroll group associated with the future boundary, i.e. null

infinity I+, is isomorphic to BMS3 when I+ = R × S1 and to BMS4 when I+ = R × S2.

Therefore, the putative dual theory should enjoy a Carrollian symmetry. Recent works

have been able to match the gravitational dynamics with ultra-relativistic conservation

laws [11, 12]. This suggests that the holographic duals of asymptotically flat spacetimes

should be Carrollian CFTs [13].

An important insight from AdS/CFT is the role of entanglement in the emergence of

the bulk spacetime from the field theory degrees of freedom. The Ryu-Takayanagi prescrip-

tion [14], and its covariant generalization [15], have lead to a more precise understanding of

bulk reconstruction [16, 17] and a landmark result was the derivation of the gravitational

equation, linearized around AdS, from the first law of entanglement in the CFT [18–20].

This suggests that linearized gravity can be understood as the thermodynamics of entan-

glement. Jacobson’s earlier result [21], and its more recent refinements [22, 23], suggest

that this connection is very general and goes beyond asymptotically AdS spacetimes. In

this paper, we show that a similar result holds for flat space holography in three and

four dimensions, under some general assumptions that allow us to use an analog of the

Ryu-Takayanagi prescription.

Entanglement entropies in 3d Minkowski spacetime were considered in [24] and were

matched with computations in conjectured dual theories. We will follow the geometrical

picture proposed in [25], where the authors used a generalization of the CHM transforma-

tion [26], to propose an RT prescription for flat spacetime. This requires some assumptions

on the putative dual theory which are given in full details below. Under the same work-

ing assumptions, we refine their 3d prescription to include perturbations and propose a

generalization to 4d.

This paper is organized as follows. In section 2 we detail our working assumptions

on flat holography. This allows us to use an analog of the Ryu-Takayanagi prescription in

Minkowski spacetimes. We review and generalize the existing 3d prescription in section 3

to include perturbations. In section 4 we prove that the gravitational equations, linearized

around 3d Minkowski, follow from the first law of entanglement.1 In section 5 we perform

a flat limit of AdS3, also considered in [6, 28], to identify the holographic stress tensor asso-

ciated of 3d Minkowski, a necessary ingredient for the proof. In section 6 we generalize the

RT prescription to 4d Minkowski and prove that the first law of entanglement is equivalent

to the gravitational equations of motion. Our proof is valid for general theories of gravity.

2 Working assumptions on flat holography

Holography in asymptotically flat spacetimes is not well understood. The putative dual

field theory should be defined on null surfaces and it is not clear how one should understand

objects such as local operators or path integrals. Therefore, to obtain a well-defined equiva-

1Before submitting our paper, we learned that another group is currently pursuing similar ideas [27].
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lent of the Ryu-Takayanagi prescription, we need some general assumptions on holography

in flat spacetime which are listed below:

• (Assumption 1) There exists a quantum system living on the future boundary I+,

such that we can associate a Hilbert space H to any slice Σ of constant retarded time

u. To any bulk configuration on Σ, we can associate a state in H. For the purpose

of this work, we could also weaken this assumption by taking the bulk configurations

to be only linear perturbations of Minkowski.

• (Assumption 2) For a subregion A of ∂Σ among a special class, we can associate

a density matrix ρA. If the Hilbert space factorizes on subregions, we expect that

ρA = TrĀ|0〉〈0| where Ā is the complement of A on the slice and |0〉 is the Minkowski

vacuum. We allow ρA to be only defined on some subspace Hcode of H.

The domain of dependence D of A is defined to be the union of all the images of A under

translation along the u direction. This is simply the ultra-relativistic limit of the Lorentzian

domain of dependence. Indeed, in this limit, the width of the lightcone vanishes (see figure 2

for an illustration). Following [25], we define a generalized Rindler transformation to be

a symmetry transformation on I+ which maps D to a spacetime which has a thermal

circle.2 The generator ζA of the thermal identification, which is called the modular flow

generator, is required to annihilate the vacuum and leave D and ∂D invariant. A Rindler

transformation is a generalization of the CHM conformal transformation [26].

• (Assumption 3) If we can find a Rindler transformation, the density matrix can be

written as ρA = U−1e−KAU where KA is the operator that generate translations

along the thermal circle and U is a unitary operator acting on the Hilbert space

which implements the symmetry transformation. For this definition to make sense,

KA needs to be bounded from below in Hcode.

From the knowledge of the boundary modular flow ζA, one can find a bulk modular flow

ξA. It is the Killing vector field of Minkowski spacetime which asymptotes to ζA.

• (Assumption 4) The expectation value δ〈KA〉 for a linear perturbation of the vacuum

is computed by the Iyer-Wald energy δEgrav
A associated to the Killing vector ξA of

the corresponding bulk configuration on Σ.

• (Assumption 5) The von Neumann entropy SA = −Tr ρA log ρA is computed by the

area3 of the special bulk surface Ã that is preserved by the bulk modular flow ξA and

is homologous to A. This is the analog of the Ryu-Takayanagi (RT) prescription and

Ã will be called the RT surface.

These assumptions can be derived for holographic CFTs with AdS duals. There, the special

class of entangling regions are spatial balls in the boundary CFT. Also, Assumptions 3 and

5 were obtained in [26] and Assumption 4 is a consequence of the AdS/CFT holographic

dictionary. The RT prescription for more general entangling regions was derived in [29, 30].

2This means that one coordinate of the new spacetime should have an imaginary identification x ∼ x+iβ.
3Or the adequate functional for other theories than Einstein gravity.
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In this work, we want to consider the implications of the above assumptions for flat

holography. In particular, we will investigate the consequences of the first law of entan-

glement δSA = δ〈KA〉 which is valid for any quantum system where these objects can

be defined. Paralleling the AdS story [19], we will show that the linearized gravitational

equations of motion are equivalent to the first law. We believe that although the micro-

scopic theory is not well understood, this approach can provide valuable insights about

holography in non-AdS spacetimes.

The results that we have proven can also be phrased purely in classical gravity. We

have shown that for linearized perturbations of Minkowski spacetime, the gravitational

equations of motion are equivalent to the first law

δSgrav
A = δEgrav

A , (2.1)

for a set of boundary regions A among a special class, and where Sgrav
A is the gravitational

entropy of the surface Ã defined to be the surface homologous to A and fixed by the

Killing vector field ξA. The existence of a holographic theory such that δSgrav
A = δSA

and δEgrav
A = δ〈KA〉 provides a microscopic realization and an interpretation in term of

entanglement which renders the first law automatic.

3 Ryu-Takayanagi prescription in 3d Minkowski

We consider three-dimensional flat spacetime in Bondi gauge

ds2 = −du2 − 2dudr + r2dφ2, (3.1)

where u = t− r. The boundary is the null infinity I+ (at r =∞) and the boundary metric

is degenerate:

ds2 = 0× du2 + dφ2. (3.2)

Let’s pick a region A on I+. We would like to compute the entanglement entropy associated

to A in a putative holographic theory living on I+. This can be computed with an analog

of the Ryu-Takayanagi formula, which was proposed in [25]. In this section, we will review

and refine this prescription.

3.1 Review of the 3d prescription

In [25], the authors proposed an RT prescription for 3d Minkowski spacetime by using a

“generalized Rindler method”. This consists of finding a transformation, which satisfies the

same properties as the Casini-Huerta-Myers conformal mapping [26]. One should look for

a symmetry transformation which maps the domain of dependence D of a subregion A to a

Rindler spacetime characterized by a thermal identification. The modular flow generator,

which is the generator of the thermal identification, is required to annihilate the vacuum

and to leave D and ∂D invariant.

Let’s consider an interval A on the boundary, it is characterized by its sizes `u and `φ
in the u and φ directions. The authors of [25] were able to find a Rindler transformation

for A and to derive a boundary modular flow. Then, the Rindler transformation was

– 4 –
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extended into the bulk by finding a suitable change of coordinates. The bulk image of

the transformation is a flat space cosmological solution [31], which is the flat space analog

of the hyperbolic black hole in AdS3. This maps the entanglement entropy into thermal

entropy, which is computed geometrically from the area of the horizon of the flat space

cosmological solution. This leads to the following picture: the RT surface is the union of

three curves

Ã = γ+ ∪ γ ∪ γ−, (3.3)

where γ± are two light rays emanating from the two extremities ∂A of the interval and γ is

a bulk curve connecting γ+ and γ−. In Einstein gravity, the entanglement entropy is then

obtained as

SA =
Length(γ)

4G
. (3.4)

We illustrate this procedure in figure 1. This prescription is consistent with computations

in conjectured dual theories [24]. This RT surface was also shown in [32] to correspond to

an extremal surface. See also [33] for a discussion on the replica trick in this context.

We would like to consider more general theories of gravity and derive a first law. In

a more general context, the RT configuration is the same but the entanglement entropy is

given by Wald’s functional

SA =

∫
Ã

Q[ξA] (3.5)

where ξA is the bulk modular flow reviewed below. As we will show, it is important to inte-

grate over Ã here, instead of just γ, if we want to have a first law. In Einstein gravity, (3.5)

reduces to (3.4) because Wald’s functional vanishes when integrated on γ+ and γ−.

Generalized Rindler method. We are now going to review how the generalized Rindler

method is implemented in [25]. The Rindler transformation in the 2d boundary theory is

u =
sin
(
`φ
2

)
cosh ρ+ cos

(
`φ
2

)
τ +

`u

2 sin
(
`φ
2

)sinh ρ

 , (3.6)

φ = arctan

 sin
(
`φ
2

)
sinh ρ

1 + cos
(
`φ
2

)
cosh ρ

 .

The thermal identification is given by ρ ∼ ρ + 2πi. The boundary modular flow is the

thermal generator 2π∂ρ which is

ζA =
2π

sin
(
`φ
2

)
−u sinφ +

`u cosφ

2 tan
(
`φ
2

) − `u

2 sin
(
`φ
2

)
 ∂u +

(
cosφ− cos

(
`φ
2

))
∂φ

 .
(3.7)

This modular flow generates a transformation of BMS3 since it can be written as

ζA = (uY ′(φ) + T (φ))∂u + Y (φ)∂φ, (3.8)

– 5 –
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Bulk Boundary

`u 6= 0

γ+

γ−

γ

A

A

Bulk Boundary

`u = 0

γ+

γ−

A

A

Figure 1. Examples of Ryu-Takayanagi surfaces in 3d Minkowski spacetime.

where Y (φ) corresponds to a superrotation and T (φ) to a supertranslation. It is depicted

together with its Wick rotated version in figure 2. A simple shape for the region A when

`u 6= 0 is a portion of sinusoid with equation

u =
`u

2 sin(
`φ
2 )

sinφ , (3.9)

although the precise shape doesn’t matter in the computation of the entanglement entropy.

The bulk modular flow can be found by looking for a Killing vector of 3d Minkowski which

asymptotes to ζA. It takes the form

ξA =
2π

sin
(
`φ
2

)
u sinφ+

`u

2 tan
(
`φ
2

)cosφ− `u

2 sin
(
`φ
2

)
 ∂u (3.10)

+

cos
(
`φ
2

)
− cosφ− u

r
cosφ+

`u

2 tan
(
`φ
2

) sinφ

r

 ∂φ

−

(u+ r) sinφ+
`u

2 tan
(
`φ
2

)cosφ

 ∂r

 .
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The bulk modular flow ξA vanishes on the curve γ. It doesn’t vanish on the two light rays

γ± but is tangent to them. This is enough to guarantee the existence of a first law, as

explained in section 3.3.

Entanglement entropy as Rindler entropy. To understand better the bulk picture

described above, it is useful to go to Cartesian coordinates (t, x, y) defined as

t = u+ r, x = r cosφ, y = r sinφ . (3.11)

In these coordinates, the bulk modular flow becomes

ξA =
2π

sin
(
`φ
2

)
y+

`u

2sin
(
`φ
2

)
∂t+

y cos
(
`φ
2

)
+

`u

2tan
(
`φ
2

)
∂x+

(
t−xcos

(
`φ
2

))
∂y

 ,
(3.12)

which is simply a boost, as can be seen by defining new Cartesian coordinates

t̃ =
t

sin
(
`φ
2

) − cot
(
`φ
2

)
x, x̃ =

x

sin
(
`φ
2

) − cot
(
`φ
2

)
t, ỹ = y +

`u

2 sin
(
`φ
2

) . (3.13)

In these coordinates, the modular flow is simply

ξA = 2π
(
ỹ ∂t̃ + t̃ ∂ỹ

)
. (3.14)

In appendix A, we confirm that the Rindler thermal circle is the same as the one appearing

in the generalized Rindler transform (3.6).4 This geometry should be seen as the analog of

the hyperbolic black hole in AdS.

We will now review the explicit RT prescription of [25] but in Cartesian coordinates

where the description becomes simpler. This will be important in discussing the more

general prescription in section 3.2 and the 4d generalization in section 6. As depicted

in figure 1, we consider two bulk light rays that go to the two extremity points of A on

I+. There is an ambiguity in choosing such light rays, as discussed in section 3.2. The

prescription adopted in [25] is to impose that these two light rays pass through the spatial

origin r = 0, which is natural given a choice of Bondi coordinates. A parametrization of

these two light rays is

γ+ :


t = − `u

2 + s

x = s cos
(
`φ
2

)
y = −s sin

(
`φ
2

) , γ− :


t = `u

2 + s

x = s cos
(
`φ
2

)
y = s sin

(
`φ
2

) . (3.15)

In the limit r → +∞, we have

γ+ :

{
u→ `u

2 ,

φ→ `φ
2

, γ− :

{
u→ − `u

2 ,

φ→ − `φ
2

, (3.16)

4One should remember that in the upper wedge, the Rindler time is spacelike, which is consistent with

the boundary picture, see figure 2.
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Modular flow in (u, φ) Modular flow in (u, φL) with φL = iφ

`u = 0

D

Modular flow in (u, φ) Modular flow in (u, φL) with φL = iφ

`u 6= 0

D

Figure 2. Boundary modular flow for 3d Minkowski. The left pictures represents the modular flow

with the entangling region A (in blue) and its domain of dependence D (shaded) for `u = 0 and

`u 6= 0. The right picture is the Wick rotated version with φL = iφ, where we see that the modular

flow circles around a point at infinity. In contrast with the corresponding AdS/CFT picture (which

is figure 2 in [20]), the modular flow does not “transport” the entangling region A but is parallel

to it. This suggests that the density matrix ρA is more naturally associated with the domain of

dependence D, as argued by [34] in the AdS/CFT context. Since they have the same domain of

dependence, this suggests that the case `u = 0 is really equivalent to the case `u 6= 0, as we will

explain in section 3.2.
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so that they intersect the two extremities of A on I+ as required. The bulk modular flow

vanishes on the Rindler bifurcation surface

t̃ = ỹ = 0 . (3.17)

The curve γ should be located where the bulk modular flow vanishes. Therefore, it has

to lie on the bifurcation surface. To determine which portion it covers, we should look

for the intersection of γ± with the bifurcation surface which gives two points P+ and P−
with coordinates

P± : t̃ = ỹ = 0, x̃ = ± `u

2 sin2
(
`φ
2

) . (3.18)

The curve γ is then the segment [P−P+]. The resulting RT surface becomes

Ã = γ+ ∪ γ− ∪ γ , (3.19)

where it is understood that we only consider the portions of γ± that connect γ to A. From

the general prescription (3.5), the entanglement entropy of the region A is be given by the

integral of Wald’s functional on Ã. For Einstein gravity, this reduces to the length of γ

and this leads to

SA =
`u
4G

cot
(
`φ
2

)
(Einstein gravity) . (3.20)

We illustrate this prescription in figure 3 in the coordinates (3.13) where the modular flow

is a boost. A success of the prescription of [25] is that this reproduces the entanglement

entropies obtained through field theoretic methods in [24]. We can now understand what

is going to happen when we will perturb the bulk geometry: the portion of the bifurcation

surface in consideration will satisfy a first law on-shell (this is true for any Killing horizon)

that will map, through the assumptions we have made earlier, to a first law of entanglement

of a putative dual field theory. This is explained in details in section 3.3.

More RT surfaces. The authors of [25] derived a prescription to compute the entangle-

ment entropies for a particular set of boundary regions. The prescription is summarized

in figure 1 with two qualitatively different cases `u = 0 or `u 6= 0. There is a simple way

to generate the RT surfaces associated to more general regions on I+. This can be done

by acting with bulk isometries on the initial configurations. In Minkowski spacetime, we

should act with elements of the Poincaré group. Their actions on I+ are given by BMS3

transformations which transform A into a new region A′. This new region will be a more

complicated curve. The corresponding RT surface Ã′ is simply obtained as the image of Ã

under the bulk isometry. These transformed RT surfaces are depicted in figure 4 and play

a crucial role in the proof of the linearized gravitational equations of motion from the first

law of entanglement.

3.2 General 3d prescription

We will explain an important ambiguity in the RT prescription of [25], which we reviewed

above, corresponding to the choice of how the light rays reach infinity. This ambiguity

was also considered in [32]. As a result, we will show that additional RT configurations

are possible.

– 9 –
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x̃

t̃

ỹ

γ+

γ−

γ

Figure 3. Ryu-Takayanagi surface in coordinates (t̃, x̃, ỹ) in which the bulk modular flow is a

boost. It is given by Ã = γ− ∪ γ ∪ γ+. The surface γ lies on the Rindler bifurcation surface (the

dashed line) and the light rays γ+ and γ− are tangent to the modular flow.

Infalling light sheaf. This ambiguity is most apparent when we consider the following

fact: the case `u 6= 0 can actually be obtained from the case `u = 0 by acting with the

bulk translation

y → y +
`u

2 sin
(
`φ
2

) . (3.21)

This is apparent from the formula of the bulk modular flow (3.12): the modular flow for

`u 6= 0 is simply the image of the bulk modular flow for `u = 0 under this translation. On

the boundary, this translation becomes

u→ u+
`u

2 sin
(
`φ
2

)sinφ , (3.22)

and maps the boundary interval with `u = 0 to the one with `u 6= 0, see figure 2. This fact

is puzzling because it implies that the configuration with `u = 0 and the configuration with

`u 6= 0 are physically equivalent, as they are related by a bulk translation (which should

be a true symmetry of the Minkowski vacuum). However, the entanglement entropies

computed earlier are not the same for `u = 0 and `u 6= 0, as seen for (3.20).

– 10 –
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In fact, this arises because the RT prescription depends on a choice of how the light rays

arrive at infinity, or a choice of infalling light sheaf. For a given point on I+ with coordinates

(u, φ), there are many inequivalent bulk light rays that go to this point, differing by bulk

translations. We define an infalling light sheaf to be a set of light rays whose intersection

with I+ is ∂A. The RT prescription will depend on the choice of such a light sheaf and

acting with a bulk translation will modify this choice. To obtain a good RT prescription,

we must require that the light sheaf satisfies the following two conditions:

1. Each light ray in the light sheaf must intersect the Rindler bifurcation surface.

2. The bulk modular flow must be tangent to the light sheaf.

The first condition is necessary to be able to define an RT surface (which should contain a

portion of the Rindler bifurcation surface) while the second condition ensures the existence

of a well-defined first law as we will show in the next section.

Heuristically, the choice of a light sheaf amounts to a choice of cutoff surface at infinity.

In more mundane language, we are just saying that the entanglement entropy is cutoff

dependent (even though it is finite). It is difficult to be more precise about what we mean

by “cutoff” because the dual theory is not well-understood. We believe that this ambiguity

reflects some properties of the UV structure of the dual theory.

Generalized 3d prescription. In 3d, the boundary ∂A consists of two points B+ and

B−. Hence, the choice of infalling light sheaf is the choice of two light rays γ+ and γ− that

arrive at these points and satisfy the two conditions stated above. An explicit parametriza-

tion of this light sheaf can be given as

γ+ :


t = `u

2 + s+ Y+ sin
(
`φ
2

)
x = s cos

(
`φ
2

)
y = s sin

(
`φ
2

)
+ Y+

, γ− :


t = − `u

2 + s− Y− sin
(
`φ
2

)
x = s cos

(
`φ
2

)
y = −s sin

(
`φ
2

)
+ Y−

(3.23)

where s ∈ R is a parameter on the light ray and Y+, Y− are arbitrary constants. The

light rays γ± arrive on I+ respectively at the points B±. As required, they intersect the

bifurcation surface ỹ = t̃ = 0 and are tangent to the bulk modular flow. Note that we

have also used the freedom of reparametrization of s to reduce the number of independent

parameters. At the end, we obtain a family of light sheaf parametrized by two arbitrary

constants Y+ and Y−. The light rays γ± intersect the bifurcation surface at x̃ = x̃± with

x̃+ = − `u

2 tan
(
`φ
2

) − Y+ cos
(
`φ
2

)
, x̃− =

`u

2 tan
(
`φ
2

) + Y− cos
(
`φ
2

)
. (3.24)

The length of γ is therefore given by the separation in x̃ which leads to the entropy

SA =
1

4G

∣∣∣`u cot
(
`φ
2

)
+ (Y+ + Y−) cos

(
`φ
2

)∣∣∣ . (3.25)

The case Y+ = Y− = 0 corresponds to the prescription adopted of [25] described above.

This prescription can also be obtained by requiring that the light rays intersect the line

– 11 –
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r = 0, which makes this prescription natural given a choice of Bondi coordinates. Another

simple choice is

Y+ = Y− = − `u

2 sin
(
`φ
2

) . (3.26)

In this case, the two light rays γ+ and γ− intersect at the point

t̃ = x̃ = 0, ỹ = − `u

2 sin
(
`φ
2

) . (3.27)

This gives a vanishing entropy and it corresponds to the case where we have applied a

bulk translation to go from the `u = 0 configuration shown in figure 1 to a configuration

with `u 6= 0 in which the light rays γ+ and γ− still meet. We can see that the intersection

point (3.27) is indeed precisely the image of the origin by this translation. We would like to

emphasize that there are no reason to favor one prescription or the other. Instead, we be-

lieve that we are free to choose any light sheaf satisfying the two conditions described above,

and we interpret this choice as reflecting a choice of regulator in the putative dual theory.

3.3 First law of entanglement

In quantum mechanics, the first law of entanglement is a general property of the von

Neumann entropy, which holds whenever we have a well-defined density matrix. It states

that under a variation ρ→ ρ+ δρ, we have

δS = δ〈K〉, (3.28)

where S = −Tr ρ log ρ and K = − log ρ. The proof uses simple manipulations on density

matrices and is given in [19]. When ρ is the density matrix associated to the boundary

region A, we will denote δSA the entropy variation and δEA = δ〈K〉 the energy variation.

The first law of entanglement states that

δSA = δEA . (3.29)

We would like to compute the corresponding gravitational quantities δSgrav
A and δEgrav

A

under a general perturbation of the metric. Following the general prescription discussed

above, we consider the RT surface Ã = γ+∪γ∪γ− where γ± are given in (3.23). In Einstein

gravity, the gravitational entropy associated to the RT surface Ã is nothing but its area

in Planck units. The variation of the entropy is then computed from the variation of the

area of Ã. We want to allow for general theories of gravity so we introduce Wald’s Noether

charge Q[ξA] associated to the Killing vector field ξA. The variation of the gravitational

entropy is then given by

δSgrav
A =

∫
Ã
δQ[ξA]. (3.30)

The gravitational energy is defined as the boundary term appearing in the expression of

the canonical energy of the region Σ such that ∂Σ = A ∪ Ã. It has the expression

δEgrav
A =

∫
Σ

(δQ[ξA]− ξA ·Θ(δφ)) , (3.31)
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where Θ is the presymplectic form. Paralleling the AdS story [19], let’s define the form

χ = δQ[ξA]− ξA ·Θ(δφ) , (3.32)

we will show that χ satisfies the same properties as its AdS counterpart. The bulk modular

flow ξA vanishes on γ. It doesn’t vanish on γ± where it is tangent, nonetheless, the integral

of ξA ·Θ(δφ) on γ± vanishes because ξA · (ξA ·Θ(δφ)) = 0 since Θ is a 2-form. This shows

that
∫
Ã
ξA ·Θ(δφ) = 0 and that we have

δSgrav
A =

∫
Ã
χ . (3.33)

Using similar manipulations as in section 5.1 of [19], we can also show that

δEgrav
A =

∫
A
χ , (3.34)

and that

dχ = −2ξaAδEabε
b , (3.35)

where δEab are the equations of motion. Therefore, the gravitational entropy and energy

satisfy a first law for on-shell perturbations

δSgrav
A = δEgrav

A , (3.36)

which follows from the fact that

δEgrav
A − δSgrav

A =

∫
A
χ−

∫
Ã
χ =

∫
Σ
dχ = 0 . (3.37)

The goal of our paper is to show that the converse also holds: the first law of entanglement

for all the regions A (among a special class) implies the gravitational equations of motion.

Einstein gravity. For pure Einstein gravity, we have

Θ(δg) =
1

16πG
(∇bδgab −∇aδg b

b ) , Q[ξ] = − 1

16πG
∇aξbεab . (3.38)

The expression for χ reads

χ(δg) = δQ[ξA](δg)− ξA ·Θ(δg) (3.39)

=
1

16πG
εab

(
δgac∇cξbA −

1

2
δg c
c ∇aξbA +∇bδgacξcA −∇cδgacξbA +∇aδgccξbA

)
.

We now consider a small perturbation of the metric around Minkowski

gab = ηab + λhab, (3.40)

such that δgab = λhab, where λ is small. For instance, one can consider a perturbation in

Bondi gauge (see section 5.2 for a complete description),

habdx
adxb =

(
V

r
− 2β

)
du2 − 4βdudr − 2r2Ududr + 2r2ϕdφ2 , (3.41)
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where V , β, U are functions of all coordinates, while ϕ depends only on u and r. The

linearized Einstein equation are obtained for small λ:

Rab −
1

2
Rgab = δEab(h)λ+O(λ2) . (3.42)

Using (3.39), we have computed χ explicitly and checked that indeed

dχ = −2ξaδEabε
b . (3.43)

Note that this formula follows from the general derivation given in [2]. It ensures the

validity of the first law for on-shell perturbations. A simple class of asymptotically flat

on-shell perturbations is

ds2 = ηabdx
adxb + λ

(
Θ(φ) du2 + 2

(
Ξ(φ) +

u

2
∂φΘ(φ)

)
dudφ

)
, (3.44)

where Θ and Ξ are arbitrary functions of φ. They were found in [10] and we show how to

obtain them in section 5.2. We focus on an interval A on the slice u = 0 (taking `u = 0)

and with width `φ. We compute explicitly the energy variation

δEA =

∫
A
χ =

1

4 sin
(
`φ
2

) ∫ `φ
2

−
`φ
2

dφ
(

cosφ− cos
(
`φ
2

))
Ξ (φ) . (3.45)

Note that this can be written in term of the modular flow (3.7) as

δEA =
1

8π

∫
A
dφ ζφA Ξ(φ) . (3.46)

We conclude that this perturbation should be accompanied by a variation of the entropy

for the first law to be satisfied.

Refined prescription. In [25], the RT prescription was proposed only for Minkowski

spacetime. For linearized perturbations at first order, the RT surface Ã is unchanged so

we expect to be able to use the same prescription for perturbed Einstein gravity:

SA =
Length(Ã)

4G
, (3.47)

where the length is computed in the perturbed geometry. For the perturbation (3.44), it

is easy to see that γ+ and γ− are still light rays that intersect at the origin and, since Ã

is the union of them, the prescription would imply that δSA = 0.5 This contradicts the

first law of entanglement because δEA 6= 0. The resolution of this problem comes from the

corner in Ã between γ+ and γ−. We should regulate it by considering a smooth curve Ãreg

5We are using here the light sheaf prescription where we impose that the light rays pass through the

origin r = 0. This is the prescription used in [25].
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arbitrarily close to Ã = γ+ ∪ γ−. In other words, the corner has a non-trivial contribution

to the integral.6 The correct prescription is then

SA =

∫
Ãreg

Q[ξA] = lim
ε→0

∫
Ãε

Q[ξA] , (3.48)

where Ãε is a smooth curve that regulates the corner in Ã = γ+ ∪ γ− and converges to Ã

when ε→ 0. From the fact that dχ = 0 on-shell and that Ãε is a smooth curve homologous

to A, we have ∫
Ãε

χ =

∫
A
χ = δEA , (3.49)

which would not be necessarily true if Ãε had corners. From the definition (3.32) of χ, we

can see that

δSA = lim
ε→0

∫
Ãε

(χ+ ξA ·Θ) . (3.50)

In the limit where ε → 0, the integral of ξA ·Θ vanishes because ξA is tangent to γ± and

vanishes at the corner γ+∩γ− (while Θ is finite at the corner). Therefore, we have checked

the validity of the first law of entanglement for the RT prescription,

δSA = δEA . (3.51)

Note that for Einstein gravity, (3.48) doesn’t reduce to the length of Ãreg because Q[ξA]

computes only the length of the surface on which ξA vanishes. In particular, SA can become

negative for some choices of perturbations. We comment on this in section 3.4.

3.4 Positivity constraints

Let’s consider the interval A with `u = 0 and use the prescription in which the light rays

intersect at the origin, see figure 1. In Einstein gravity, the entanglement entropy SA
vanishes. This implies that the state ρA is pure. This is unlike any standard quantum field

theory, where the vacuum entanglement entropy has a universal divergence. This suggests

some form of ultralocality as discussed in [35]: the vacuum factorizes between subregions

of a constant u slice of I+. A perturbation will then create a nonzero entropy

SA = δSA = δEA . (3.52)

From the explicit expression of (3.46), we can see that this expression can become negative.

This is in tension with the fact that von Neumann entropies are always positive. This gives

a constraint on perturbations of the form (3.44) that can be described within a quantum

system on I+ satisfying our assumptions. Imposing that

SA = δEA ≥ 0 (3.53)

6There is a similar problem with the origin in polar coordinates. For example, we have
∫
S1
ε
dθ = 2π for

a circle S1
ε of radius ε. Stokes theorem implies that this integral doesn’t depend on ε. In the limit ε → 0

though, S1
ε reduces to a point which suggests that the integral should be set to zero. This is incorrect

because dθ is not defined at the origin.
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Translation in the bulk Translation in the boundary

Ã′

Ã

A′

A

A′

A

Boost in the bulk Boost in the boundary

Ã′

Ã

A

A′

A

A′

Figure 4. Examples of new RT surfaces obtained by bulk isometries acting on the reference

configuration for `u = 0.

gives a constraint on Ξ(φ) according to (3.46). To understand this better, let’s restrict

the Hilbert space H that contains only the perturbations (3.44) of 3d Minkowski. The

condition (3.53) implies that we should restrict to the subspace Hcode ⊂ H on which

δ〈KA〉 ≥ 0. This implies that the operator KA is bounded from below on Hcode and hence,

that the density operator e−KA is well-defined there. As a result, positivity of the entropy

gives a constraint on the perturbations that can be described within a quantum system

satisfying our assumptions. This is similar to the constraints on AdS perturbations coming

from quantum information inequalities [36–38].

Sign ambiguity. The generalized Rindler method doesn’t fix the sign of the modular

flow. If a path integral formulation can eventually be given, the sign would be fixed from the

choice of the vacuum state. Choosing the new modular flow ζ ′A = −ζA, with new modular

Hamiltonian K ′A = −KA, the condition SA ≥ 0 selects a different subspace H′code ⊂ H: the

subspace on which K ′A is a positive operator. This ensures that for the modular flow ζ ′A,

we have a density operator e−K
′
A which is well-defined on H′code. Hence, changing the sign

of the modular flow amounts to selecting a different subspace on which ρA is well-defined.
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4 Flat 3d gravity from entanglement

In this section, we show that the first law of entanglement implies the gravitational equa-

tions of motion, linearized around three-dimensional Minkowski spacetime. Our proof is

valid for any theory of gravity, including higher-derivative terms. The generalization to

four dimensions is treated in the section 6.

4.1 General strategy

Let’s consider a general off-shell perturbation of 3d Minkowski. The one-form χ satisfies

dχ = −2ξaδEabε
b, (4.1)

where δEab are the equations of motion for the perturbations and εa = 1
2εabcdx

b∧dxc.7 As

explained in (3.37), the first law of entanglement implies that for all surfaces Σ bounded

by A and Ã, we have ∫
Σ
dχ = 0 . (4.2)

We would like to show that this implies that δEab = 0. This is reasonable because we have

a large number of such surfaces Σ. The derivation will be similar to the AdS case [19]

although the RT surfaces are more involved here. Bulk isometries will play a crucial role.

The strategy is to start with some reference configuration. By varying the parameters

of this configuration, we will obtain constraints on the gravitational equations δEab. We

will then act on this configuration with bulk isometries to obtain new constraints. This

amounts to probing the perturbation with new RT surfaces, obtained by applying a bulk

isometry to the reference configuration. The new constraint is obtained by replacing δEab
by its image under the transformation. The logic can be phrased as follows: the first law

of entanglement gives the equation∫
Σ
ξaδEab(x)εb = 0 . (4.3)

We can consider a new configuration Σ̃ obtained by performing a bulk isometry x → x̃.

The associated bulk modular flow ξ̃a and volume form ε̃b can be obtained by applying the

transformation to ξa and εb, which gives∫
Σ̃
ξ̃aδEab(x̃)ε̃b = 0 . (4.4)

We are probing the same perturbation δEab with a different RT surface and we emphasize

that δEab(x̃) is now evaluated on the new RT surface Σ̃. Now, we can change variables in

the integral using the inverse bulk isometry x→ x′. This gives∫
Σ
ξc
(
∂x̃a

∂xc
∂x̃b

∂xd
δEab(x̃(x))

)
εd = 0 . (4.5)

7εabc is a totally antisymmetric tensor such that εurφ =
√
−g.
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This shows that if (4.3) allows us to prove that some functional of the equations of motion

vanishes:

F [δEab(x)] = 0, (4.6)

then we immediately have that the same functional but applied to the transformed equa-

tions of motion vanishes:

F
[
∂x̃c

∂xa
∂x̃d

∂xb
δEcd(x̃(x))

]
= 0. (4.7)

This procedure is made mathematically precise in appendix B.

4.2 Linearized gravitational equations

We now describe the proof of the gravitational equations, linearized around 3d Minkowski

spacetime. Although the proof is conceptually similar to the AdS case derived in [19], it

is rather more challenging in flat space. In particular, we will have to use different RT

prescriptions as discussed in section 3.2. Bulk isometries will also play an important role

in generating enough constraints on the perturbation.

Reference configuration. The reference configuration is an interval A with `u = 0 at

u = 0 and with length `φ centered at φ = 0. We can parametrize the interval A by

A : u = 0, φ ∈
[
− `φ

2 ,
`φ
2

]
. (4.8)

The RT surface Ã consists of two semi-infinite light rays starting at the origin and ending

at the extremities ∂A, as in figure 1. The surface Σ at u = 0 which is bounded by A and

Ã can be parametrized by r and φ with

Σ : u = 0, r ≥ 0, φ ∈
[
− `φ

2 ,
`φ
2

]
. (4.9)

The bulk modular flow (3.10) evaluated on Σ reduces to

ξA =
2π

sin
(
`φ
2

) (r sinφ∂r +
(

cosφ− cos
(
`φ
2

))
∂φ

)
. (4.10)

Let’s write explicitly the equation (4.1). In Bondi coordinates, we have

εr = −εu = −r dr ∧ dφ . (4.11)

Hence, the pullback of dχ on Σ is8

dχ|Σ = 2rξaδEardr ∧ dφ . (4.12)

From (4.1), we obtain9

∫ `φ
2

−
`φ
2

dφ

∫ +∞

0
dr
(
r2sinφ δErr + r

(
cosφ− cos

(
`φ
2

))
δErφ

)
= 0 . (4.13)

8The 2-form dr ∧ dφ is singular at r = 0 so we need to restrict the integration range to r ≥ ε and take

ε→ 0 at the end. This is always what we will be doing implicitly.
9We thank Hongliang Jiang for pointing out a mistake in the previous version of this formula.
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Expanding this equation at small `φ implies that∫ +∞

0
dr (r2∂φδErr(0, r, 0) + rδErφ(0, r, 0)) = 0 . (4.14)

Rotations and time translations. We can consider new configurations obtained by

performing rotations. They are the same as the reference configuration but centered at

φ = φ0. The new RT suraces are obtained as the image under the bulk isometries

φ→ φ+ φ0. (4.15)

The Jacobian of this transformation is simply the identity. Therefore, following the logic

exposed in the previous section, we obtain that the vanishing of the functional (4.14) but

applied to the image of δEab under this isometry:∫ +∞

0
dr (r2∂φδErr(0, r, φ0) + rδErφ(0, r, φ0)) = 0, (4.16)

for any angle φ0. We can do the same with translation u → u + u0 in retarded time u,

to obtain ∫ +∞

0
dr (r2∂φδErr(u0, r, φ0) + rδErφ(u0, r, φ0)) = 0. (4.17)

light sheaf deformation. We consider the same boundary interval A as in the reference

configuration (4.8). The latter followed the prescription in which the light rays γ+ and γ−
intersect the spatial origin r = 0. This is not the most general prescription, as discussed

in section 3.2. Here, we will use a more general prescriptions to derive more constraints on

δEab. An alternative proof of this step is presented in the appendix C.

We consider a more general light sheaf for the interval A. We take the parametriza-

tion (3.23) where we set `u = Y− = 0 and Y+ = Y . The two light rays intersect the

bifurcation surface at x̃ = 0 and x̃ = −Y cos (
`φ
2 ). The first law tells us that for any Y ,

we have ∫
ΣY

dχ = 0 , (4.18)

where the surface ΣY depends on Y and can be chosen to be any surface such that ∂ΣY =

Ã∪A. In particular, one can choose ΣY = Σ{Y=0} ∪NY , where NY is the strip created by

the union of all the half light rays γ+ given in (3.23) where the parameter Y+ goes from 0

to Y . From (4.18), it then follows that for any Y , we have∫
NY

dχ = 0 . (4.19)

We now take the derivative with respect to Y and evaluate at Y = 0. The integral reduces

to an integral over the Y+ = 0 light ray and the integrand is contracted with ∂x̃ as the

effect of changing Y+ is to translate the light ray in the x̃-direction. At the end, we get∫
γ+

∂x̃ · dχ = 0, (4.20)
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where γ+ is the usual light ray from the origin to the point (u, φ) = (0,
`φ
2 ). Converting

the vector to Bondi coordinates, we obtain

∂x̃ =
1

sin
(
`φ
2

) [(cos
(
`φ
2

)
− cosφ

)
∂u + cosφ∂r −

sinφ

r
∂φ

]
. (4.21)

The integral is evaluated at φ =
`φ
2 where the expressions for ∂x̃ and for the bulk modular

flow (4.10) simplify to

∂x̃ = cot
(
`φ
2

)
∂r −

1

r
∂φ, ξA = 2πr ∂r (4.22)

The pullback on γ+ only keeps the dr component so in the expression (4.1) for dχ, we

only have a contribution from εr = −rdr ∧ dφ. As a result, ∂x̃ · dχ|γ+ = −4πr δErr dr and

we obtain ∫ +∞

0
dr r δErr(u0, r, φ0) = 0 , (4.23)

where as above, we have used rotations and time translations to make this expression valid

for any u0 and φ0.

Radial translations. Let’s consider a new configuration which is obtained by trans-

lating the reference configuration by a distance r0 in the direction φ0 of the light ray on

which (4.23) is integrated. In Cartesian coordinates, such a translation is given by

t→ t+ r0, x→ x+ r0 cosφ0, y → y + r0 sinφ0 . (4.24)

These configurations are illustrated in figure 4. We can apply the reasoning presented in

section 4.1 for these new configurations. In Bondi coordinates, the transformation becomes

u → r + r0 + u−
√
r2 + 2 r r0 cos(φ− φ0) + r2

0 , (4.25)

r →
√
r2 + 2 r r0 cos(φ− φ0) + r2

0 , (4.26)

φ → arctan

(
r sin(φ) + r0 sin(φ0)

r cos(φ) + r0 cos(φ0)

)
. (4.27)

The constraint (4.17) applied to the image of δEab under this isometry gives the new

constraint ∫ +∞

r0

dr (r − r0) δErr(u0, r, φ0) = 0 , (4.28)

where we have also performed the change of variable r → r − r0 in the integral. Taking

two derivatives with respect to r0 shows that

δErr(u0, r0, φ0) = 0 , (4.29)

for any value of u0, r0, φ0. From this, the equation (4.17) simplifies to∫ +∞

0
dr r δErφ(u0, r, φ0) = 0 . (4.30)
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We use the same radial translation on this equation to obtain the constraint∫ +∞

r0

dr
(r − r0)2

r
δErφ(u0, r, φ0) . (4.31)

Taking three derivatives with respect to r0 implies that

δErφ(u0, r0, φ0) = 0 , (4.32)

which is true for any value of u0, r0, φ0. Hence, we have shown that

δErr = δErφ = 0 , (4.33)

everywhere in the bulk.

General translations. We consider a general bulk translation δxµ = vµ. This gener-

ates a new family of configurations, illustrated in figure 4. Acting with the infinitesimal

translation on δErφ = 0 leads to

(vycosφ− vx sinφ)(r2δEur + δEφφ) = 0 , (4.34)

which implies that

δEφφ = −r2δEur , (4.35)

everywhere in the bulk.

Conservation equation. We now consider the conservation equation

∇a(δEab) = 0 , (4.36)

which is always satisfied by the equations of motion. Here, ∇a is the derivative with

respect to the background Minkowski spacetime. We will use this equation together with

an additional holographic input to cancel the remaining components. Indeed one should

remember that in AdS, the proof requires a holographic input that is the conservation and

the tracelessness of the boundary stress tensor. In a radial Hamiltonian perspective, they

correspond to initial conditions on the boundary surface. In the flat case, similar initial

conditions are required. We will show in the next section how to make sense of a boundary

“stress tensor” and derive its constraint equations using a flat limit in AdS.

For b = u, the conservation equation implies

∂r(δEur) = 0 , (4.37)

which leads to δEur = C0(u, φ) and δEφφ = −r2C0(u, φ). We expect that the trace

conditions (5.29) and (5.30) imply that C0 = 0 although we have not been able to show it

conclusively.10 Assuming that this is the case, we obtain

δEur = δEφφ = 0 , (4.38)

10This would be done by turning on an off-shell perturbation in the Bondi gauge such that (5.29) and (5.30)

are violated which would allows us to identify the corresponding components of Einstein equations. We

leave this analysis for future work.
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everywhere in the bulk. The conservation equation for b = φ then gives

δEuφ + r∂r(δEuφ) = 0 . (4.39)

The solution of this equation is

δEuφ =
C2(u, φ)

r
. (4.40)

In the next section, we show that the equation C2 = 0 is precisely the conservation equa-

tion (5.13) of the boundary stress tensor, so we have δEuφ = 0. Finally, the component

with b = r gives

δEuu + r∂r(δEuu) = 0 , (4.41)

with solution

δEuu =
C1(u, φ)

r
. (4.42)

The equation C1 = 0 is the other conservation equation (5.12) of the boundary stress

tensor, so we have δEuu = 0. Hence, we have shown that all the components of the

linearized gravitational equation vanish.

5 Holographic stress tensor in flat spacetime

In AdS, the boundary is a timelike hypersurface which allows for the definition of a non-

degenerate boundary metric whose dual operator is the boundary stress tensor. In flat

space, things are more subtle, because the metric becomes degenerate on the boundary

(its determinant vanishes). This is simply because I+ is a null hypersurface. To have a

good understanding of the flat case, it is helpful to start from its AdS counterpart and

perform a flat limit sending the AdS radius to infinity, we will see that this amounts to

perform a Carrollian limit on the boundary (or ultra-relativistic limit). We will show that

the induced geometry on a null hypersurface contains more than a degenerate metric and

that additional geometrical objects appear naturally when performing the flat limit. The

concept of boundary stress tensor will also have to be modified.

5.1 AdS3 in Bondi gauge

We consider the following metric, written in Bondi gauge:

ds2 =
Ṽ

r
e2β̃du2 − 2e2β̃dudr + r2e2ϕ̃(dφ− Ũdu)2. (5.1)

We are going to consider small perturbations around global AdS, the most generic pertur-

bation in Bondi gauge is given by

β̃ = λβ, Ṽ = −r
(

1 +
r2

`2

)
+ λV, Ũ = λU, ϕ̃ = λϕ, (5.2)

where λ is a small parameter. From now on, all the expressions will be linearized in λ.

Solving the (r, r), (r, u), (r, φ) and (φ, φ)-components of the linearized Einstein equations,
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with negative cosmological constant, gives

β = β0(u, φ),

U = −N(u, φ)

r2
+ U0(u, φ) +

2∂φβ0

r
,

V = rM(u, φ) + r

(
−2r2β0

`2
− 2r (∂φU0 + ∂uϕ)

)
.

(5.3)

The flat limit was considered for the case β0 = U0 = 0 in [6]. There are two residual

equations, given by the (u, u) and (u, φ)-components of Einstein equations

∂uM = 2∂φU0 + 2∂2
φU0 − 2∂uβ0 − 4∂u∂

2
φβ0 + 2∂uϕ+ 2∂u∂

2
φϕ+ 2`−2∂φN ,

∂uN =
1

2
∂φM − ∂φβ0 .

(5.4)

The latter can be understood as the conservation of a boundary stress tensor

∇µTµν = 0 , (5.5)

where µ = {u, φ}. The boundary metric and the stress tensor are given by

gµν =

(
−1+4λβ0

`2
−λU0

−λU0 1 + 2λϕ

)
, Tµν =

1

8G
τµν , (5.6)

where

τuu = −`3
(
−1 + λ

(
M + 6β0 + 4∂2

φβ0

))
,

τuφ = `λ
(
2N + `2

(
U0 + 2∂2

φU0 + 2∂u∂φϕ
))
,

τφφ = −`
(
−1 + λ

(
M + 2β0 + 2ϕ+ 2`2∂u∂φU0 + 2`2∂2

uϕ
))
.

(5.7)

This stress tensor can be obtained, for example, through the Brown and York procedure.

It is well-known that the boundary theory is a 2d CFT whose central charge is given by [39]

c =
3`

2G
, (5.8)

and this is confirmed by computing the anomalous trace of the stress tensor

Tµµ = − c

12
R = − `

8G
R , (5.9)

where R is the scalar curvature of the boundary metric.

5.2 Flat limit and Carrollian geometry

We have now all the ingredients to perform the flat limit. In the bulk, the ` → ∞ limit

of the metric is given by another metric in the Bondi gauge (5.1) but whose defining

functions are

β̃ = λβ, Ṽ = −r + λV, Ũ = λU, ϕ̃ = λϕ, (5.10)
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we notice that this is now a perturbation around Minkowski. Solving the (r, r), (r, u), (r, φ)

and (φ, φ)-components of the linearized Einstein equations, this time without cosmological

constant, gives

β = β0(u, φ),

U = −N(u, φ)

r2
+ U0(u, φ) +

2∂φβ0

r
,

V = rM(u, φ) + r (−2r (∂φU0 + ∂uϕ)) .

(5.11)

The two residual equations, the (u, u) and (u, φ)-components of Einstein equations, are

∂uM = 2∂φU0 + 2∂2
φU0 − 2∂uβ0 − 4∂u∂

2
φβ0 + 2∂uϕ+ 2∂u∂

2
φϕ, (5.12)

∂uN =
1

2
∂φM − ∂φβ0. (5.13)

To be more precise, we have that the (u, u) and (u, φ)-components of the linearized Einstein

equations scale with r as

δEuu =
C1(u, φ)

r
and δEuφ =

C2(u, φ)

r
, (5.14)

such that C1 = 0 ⇔ (5.12) and C2 = 0 ⇔ (5.13). These conditions are the holographic

input we need for the proof of section 4. The difference with the AdS case is that we cannot

recast these two conservation equations as the divergence of a boundary energy-momentum

tensor for the simple reason that there is no non-degenerate boundary metric that allows

us to build the usual covariant derivative. In the following we will show how to obtain the

right geometrical structure to describe the boundary geometry.

To perform the limit on the boundary, it is useful to decompose the boundary metric

and energy-momentum tensor with respect to their scaling with `. We start with the metric

gµν = hµν − `−2nµnν , (5.15)

where

nµ =

(
1 + 2λβ0

0

)
, hµν =

(
0 −λU0

−λU0 1 + 2λϕ

)
. (5.16)

The inverse metric is

gµν = −`2vµvν + hµν , (5.17)

where

vµ =

(
1− 2λβ0

λU0

)
, hµν =

(
0 0

0 1− 2λϕ

)
. (5.18)

This decomposition allows us to define properly the geometry on the null infinity. It will be

composed of a degenerate metric hµν (which induces a real metric on the boundary circle)

whose kernel is given by the vector field vµ which represents the time direction, a temporal

one-form nµ and the pseudo-inverse metric hµν (indeed, as hµν is degenerate, it does not
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enjoy a true inverse). These are the ingredients of a Carrollian geometry [40, 41]. One can

check that they satisfy the following relations

hµνv
ν = 0, hµνnν = 0, vµnµ = 1 and hµσhσν = δµν − vµnν , (5.19)

at first order in λ. These can be taken as the defining relations of a Carrollian geometry.

We will also make use of the scalings of the Christoffel symbols with `:

Γµνρ = `2Xµ
νρ + Y µ

νρ + `−2Zµνρ, (5.20)

where Xµ
νρ, Y

µ
νρ and Zµνρ can be written in terms of the Carrollian geometry as11

Xµ
νρ = −1

2
vνvσ(∂νhσρ + ∂ρhσν − ∂σhνρ), (5.21)

Y µ
νρ = γµνρ + vµvσ

(
n(ν∂ρ)nσ − (∂σn(ν)nρ)

)
+ vµ∂(νnρ), (5.22)

Zµνρ = hµσ
(
(∂σn(ν)nρ) − n(ν∂ρ)nσ

)
, (5.23)

where γµνρ = 1
2h

µσ(∂νhσρ + ∂ρhσν − ∂σhνρ) is the Levi-Civita of the pseudo metric hµν .

The boundary energy-momentum tensor scales with ` as

Tµν = `3Tµν1 + ` Tµν0 , (5.24)

so the boundary dynamical data decomposes in two pieces, Tµν0 and Tµν1 , defined on I+.

For the perturbation in Bondi gauge, they are given by

Tµν0 =
1

8G

(
0 2λN

2λN 1− λ(M + 2β0 + 2ϕ)

)
, (5.25)

Tµν1 =
1

8G

(
1− λ(M + 6β0 + 4∂2

φβ0) λ(U0 + 2∂2
φU0 + 2∂φ∂uϕ)

λ(U0 + 2∂2
φU0 + 2∂φ∂uϕ) −λ(2∂u∂φU0 + 2∂2

uϕ)

)
. (5.26)

We can now take the ` → ∞ limit of the conservation equations. We obtain the two

following conservation laws, a scalar one and a vector one

nσ
(
∂µT

µσ
1 + Y µ

µρT
ρσ
1 + Y σ

µρT
µρ
1 +Xµ

µρT
ρσ
0 +Xσ

µρT
µρ
0

)
= 0 , (5.27)

hνσ
(
∂µT

µσ
0 + Y µ

µρT
ρσ
0 + Y σ

µρT
µρ
0 + ZµµρT

ρσ
1 + ZσµρT

µρ
1

)
= 0 . (5.28)

In three dimensions, the vector conservation corresponds only to one equation since its

projection on vµ vanishes by definition. These two equations are the analog of the con-

servation of the stress tensor in AdS3 and reproduce perfectly the two equations (5.12)

and (5.13). They are the holographic input that we need in the proof in section 4 to cancel

the integration constants C1 and C2.

11One can check that Y µνρ is a torsionless “compatible” Carrollian connection [40], which means that it

parallel transports vµ and hµν .
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There is also a Carrollian equivalent of the relation between the trace of Tµν and the

scalar curvature. It is obtained simply by taking the ` → ∞ of the formula (5.9) which

splits into two equations:

hµνT
µν
0 − nµnνT

µν
1 = −R0

8G
, (5.29)

hµνT
µν
1 = −R1

8G
, (5.30)

where R0 and R1 are two Carrollian scalar curvatures defined as

R0 = RY − 2vµvν
(
∂[αZ

α
ν]µ + Y β

µ[νZ
α
α]β + Zβµ[νY

α
α]β

)
+ 2hµν

(
Zβµ[νX

α
α]β +Xβ

µ[νZ
α
α]β

)
,

R1 = −2vµvν
(
∂[αY

α
ν]µ + Y β

µ[νY
α
α]β + Zβµ[νX

α
α]β +Xβ

µ[νZ
α
α]β

)
(5.31)

+ 2hµν
(
∂[αX

α
ν]µ + Y β

µ[νX
α
α]β +Xβ

µ[νY
α
α]β

)
,

and RY is the scalar curvature associated with Y µ
νρ:

RY = hµν
(
∂αY

α
νµ − ∂νY α

αµ + Y β
µνY

α
αβ − Y β

µαY
α
νβ

)
. (5.32)

Equations (5.29) and (5.30) are the third holographic input that we have to impose for

the proof in section 4. They are the equivalent of the tracelessness condition for the

holographic stress tensor in AdS, that one has to impose on top of its conservation. For

the Bondi perturbation, R0 and R1 are given by

R0 = −4∂2
φβ0 , (5.33)

R1 = 2(∂φ∂uU0 + ∂2
uϕ) . (5.34)

Finally, we can focus on the case β0 = U0 = ϕ = 0, which is the space of solutions

considered in section 3.3 (see [10]). The two cuvature elements R0 and R1 vanish, therefore

it corresponds to a “flat” Carrollian geometry on the boundary (we also have that Xµ
νρ,

Y µ
νρ and Zµνρ vanish). Moreover, the two pieces of boundary dynamical data simplify to

Tµν0 =
1

8G

(
0 2λN

2λN 1− λM

)
, (5.35)

Tµν1 =
1

8G

(
1− λM 0

0 0

)
, (5.36)

and their two conservation laws become

∂uM = 0 , (5.37)

∂φM = 2∂uN . (5.38)

The solutions are given by M = Θ(φ) and N = u
2∂φΘ+Ξ(φ). One can check that with these

defining functions, together with β0 = U0 = ϕ = 0, the line element (5.1) becomes (3.44):

ds2 = ηabdx
adxb + λ

(
Θ(φ) du2 + 2

(
Ξ(φ) +

u

2
∂φΘ(φ)

)
dudφ

)
+O(λ2), (5.39)

which is the metric perturbation we have used for exact on-shell computations.
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6 Generalization to 4d

In this section, we give the Ryu-Takayanagi prescription in 4d that follows from the assump-

tions given in section 2. We find a Rindler transformation and describe the corresponding

entangling regions and RT surfaces. We show that the general RT prescription depends

on the choice of an infalling light sheaf, i.e. a choice of bulk light rays which intersects I+

at the boundary ∂A of the entangling region. Using these RT surfaces, we show that the

gravitational equations of motion are equivalent to the first law of entanglement, assuming

that the constraints on the boundary stress tensor imply the vanishing of δEua at infinity.

Our proof is valid for any theory of gravity, including higher-derivative terms.

6.1 Ryu-Takayanagi prescription in 4d Minkowski

Rindler transformation. We describe a transformation which satisfies the assumptions

of the generalized Rindler method. It maps the coordinates (u, θ, φ) on I+ into the coor-

dinates (τ, ρ, η) according to

u =
τ

cosh ρ
, (6.1)

θ = arctan (sinh ρ) +
π

2
,

φ = η .

This can be compared with the 3d case (3.6). It is in fact a BMS4 superrotation, which

maps the round sphere into a conformally flat space

dθ2 + sin2θ dφ2 =
1

cosh2ρ
(dρ2 + dη2) . (6.2)

It is a Rindler transformation because the space that we obtain has a thermal identification

ρ ∼ ρ+ 2πi . (6.3)

The modular flow ζA is the generator of this thermal circle, given by

ζA = 2π∂ρ = −2π (u cos θ ∂u + sin θ ∂θ) . (6.4)

This vector belongs to the BMS4 algebra and hence annihilates the vacuum, as required

for a boundary modular flow. To obtain the bulk modular flow, we can look for a Killing

of 4d Minkowski which asymptotes to ζA. We obtain

ξA = −2π

(
u cos θ ∂u − (r + u) cos θ ∂r +

(r + u)

r
sin θ ∂θ

)
. (6.5)

Note that this is much simpler than trying to find the gravitational solution which is dual

to a thermal state, i.e. the flat space analog of the hyperbolic black hole, which is what we

do in appendix A.
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Watermelons. We focus on entangling regions that lie on the slice u = 0 as other

configurations can be obtained by acting with bulk isometries. The entangling regions A

are given by patches on the sphere at infinity that are invariant under the flow. They are

“watermelon slices” whose boundaries follow the flow and with width `φ. They can be

parametrized as

− `φ
2 ≤ φ ≤

`φ
2 , 0 ≤ θ ≤ π , (6.6)

and are represented in figure 5. The domain of dependence D and its boundary ∂D can be

checked to be invariant under the flow.12

Generalized Rindler transformations. When the sphere is written in complex coor-

dinates

z = eiφcot
(
θ
2

)
, z̄ = e−iφcot

(
θ
2

)
, (6.7)

we observe that the Rindler transformation (6.1) can be written as

z → e−w, z̄ → e−w̄, (6.8)

where w = ρ − iη, w̄ = ρ + iη. This suggests a way to obtain more general Rindler

transformations, obtained by acting with a Möbius transformation on the sphere. Let’s

consider the following transformation

u → cos θ0

cosh ρ + cos η sin θ0
τ , (6.9)

z → sin θ0 + ew(1 + cos θ0)

sin θ0 ew + (1 + cos θ0)
,

z̄ → sin θ0 + ew̄(1 + cos θ0)

sin θ0 ew̄ + (1 + cos θ0)
,

which is a BMS4 transformation. The boundary modular flow is the vector 2π∂ρ given by

ζA = − 2π

cos θ0
(u cos θ ∂u + k) , (6.10)

where k is a conformal Killing of the sphere given by

k = (sin θ − sin θ0 cosφ) ∂θ + sin θ0 cot θ sinφ∂φ . (6.11)

The bulk modular flow is

ξA =
2π

cos θ0

(
(u+ r) cos θ ∂r −

u

r
sin θ ∂θ

)
+ ζA . (6.12)

It is obtained as the Killing vector of 4d Minkowski spacetime which matches with ζA on

the boundary. The transformation described in (6.9) has also the thermal identification ρ ∼
ρ+ 2πi. It is a one-parameter generalization of the previous Rindler transformation (6.8),

obtained by considering a more general conformal Killing k of the sphere.

12The boundary ∂A is not fixed pointwise by the flow, which is different from the AdS case or in 3d

Minkowski. This is inevitable for 4d Minkowski because there is no conformal Killing on the sphere which

admits a one-dimensional set of fixed points [42].
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”Watermelon slice” with θ0 = 0 Deformed watermelon with θ0 > 0

Disk at `φ = π Smaller disk at `φ = π

Ã

A

Ã

A

Ã

A

Ã

A

Figure 5. Examples of entangling regions (in blue) and associated RT surfaces (in red) for 4d

Minkowski on the constant u = 0 slice. They are associated to the modular flow (6.10) and its bulk

extension (6.12).

Generalized watermelons. To understand the entangling regions associated to this

modular flow, we should look at regions on S2 that are preserved under k. There are two

fixed points given by

P− : (θ, φ) = (θ0, 0), P+ : (θ, φ) = (π − θ0, 0) . (6.13)

The vector field k is a flow from P− to P+. The entangling regions are deformed “wa-

termelons slices” whose boundaries are tangent to this flow, as depicted in figure 5. The

domain of dependence D and its boundary ∂D can be checked to be invariant under the

flow. An entangling region A can be parametrized by

− `(θ) ≤ φ ≤ `(θ), θ0 ≤ θ ≤ π − θ0 , (6.14)
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where `(θ) satisfies the condition

`′(θ) = (kφ/kθ)
∣∣∣
φ=`(θ)

, (6.15)

which ensures that the boundary ∂A is tangent to the vector field k. This makes sure that

A and ∂A are preserved under the modular flow. Explicitly, we obtain

tan `(θ) =
cos(2θ0)− cos(2θ)

2 sin θ

(
cot(

`φ
2 ) sin θ + sin θ0

√
1 + cot2(

`φ
2 )− sin2θ0

sin2θ

) , (6.16)

where `φ parametrizes the width of the entangling region. For θ0 = 0, we have `(θ) = `φ/2.

At small `φ, we have

`(θ) =

(
1− sin θ0

sin θ

)
`φ
2

+O(`2φ) . (6.17)

At the special value `φ = π
2 , the watermelon becomes a disk on the sphere. This is

illustrated in figure 5. The opening angle of the disk is π − 2θ0.

Ryu-Takayanagi surfaces. The entangling regions described above are the generaliza-

tion of the 3d story with `u = 0. The bulk modular flow (6.12) is very similar to the bulk

modular flow in three dimensions (3.10). The RT surfaces associated to the above regions

are easy to describe, they lie on the slice u = 0 and are the union of all light rays starting

at the origin and ending on ∂A. We illustrate this prescription in figure 5 by representing

the sphere at infinity on the slice u = 0. The entangling regions A are in blue and the RT

surfaces Ã are in red. We also represent the boundary modular flow on the sphere. The

entanglement entropy of the region A is then given by

SA =

∫
Ã

Q[ξA] . (6.18)

For Einstein gravity in the Minkowski vacuum, the areas of all these RT surfaces vanish

because they have a null tangent vector everywhere.

Perturbations. As an illustration, we can consider on-shell perturbations of 4d

Minkowski in the Bondi gauge. The flat metric is given by

ds2 = −du2 − 2dudr + r2γijdx
idxj , γijdx

idxj = dθ2 + sin2θ dφ2 , (6.19)

we consider the linearized on-shell perturbations studied in [43] with Cij = 0, which cor-

responds to setting the gravitational wave aspect to zero. Asymptotically, the perturba-

tion reads

huu =
2

r
M(xi) +O(r−2), hui =

1

r
Ni(xi) +O(r−2), hij = O(1) . (6.20)

The subleading pieces in r should not contribute to the charges at infinity. This allows us

to compute δEA in a similar way as in the previous section. We obtain on a slice u = 0

δEA =
3

8 cos θ0

∫
A
dθdφ [(cosφ sin θ0 − sin θ)Nθ(θ, φ)− cot θ sinφ sin θ0Nφ(θ, φ)] , (6.21)
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which can be written in terms of the boundary modular flow (6.10) as

δEA =
3

16π

∫
A
dθdφ ζiANi(θ, φ) . (6.22)

Exactly as in the 3d case, the entropy has to be computed using the refined prescrip-

tion (3.48) where we regulate the corner of the RT surface. The fact that δEA = SA, which

has to be positive, gives some constraints on the perturbations that can be described by a

quantum system on I+ satisfying our assumptions, similar to the discussion in section 3.4.

These constraints impose the functions Ni in the perturbation to be such that (6.22) is

positive for a given region A. This selects a subspace Hcode on which KA is bounded from

below and this makes the density operator e−KA is well-defined.

6.2 General 4d prescription

In this section, we discuss the general RT prescription in 4d, in the same spirit as the 3d

discussion of section 3.2. Given a boundary entangling region, we will describe the most

general choice of light sheaf that satisfies the requirements to give a good RT configuration.

That is, the light sheaf must connect ∂A to the Rindler bifurcation surface and the modular

flow must be tangent to it. As explained in the 3d case, the first condition ensures that we

can define an RT surface (as a portion of the Rindler bifurcation surface) and the second

condition is required to have a well-defined first law.

Modular flow for non-zero `u. In Cartesian coordinates (t, x, y, z), the bulk modular

flow given (6.5) takes the following form

ξA =
2π

cos θ0
[z ∂t + z sin θ0 ∂x + (t− x sin θ0) ∂z] . (6.23)

We note that this it is similar to the 3d bulk modular flow at `u = 0. This suggests the

following generalization for `u 6= 0 in 4d, obtained by performing a bulk translation

z → z +
`u

2 cos θ0
, (6.24)

which leads to

ξA =
2π

cos θ0

[(
z +

`u
2 cos θ0

)
∂t +

(
z sin θ0 +

`u tan θ0

2

)
∂x + (t− x sin θ0) ∂z

]
. (6.25)

Going back to Bondi coordinates (u, r, θ, φ) and taking the limit r → +∞, we obtain the

corresponding 4d boundary modular flow, which reads

ζA =
2π

cos θ0

[(
−u cos θ +

`u
2 cos θ0

(1− sin θ0 sin θ cosφ)

)
∂u (6.26)

+ (sin θ0 cosφ− sin θ) ∂θ + sin θ0 cot θ sinφ∂φ

]
.
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One can check that this modular flow follows from a generalized Rindler transform, which

is the previous Rindler transform (6.9) with a different transformation for u

u → cos θ0

cosh ρ + cos η sin θ0

(
τ +

`u
2 cos θ0

sinh ρ

)
, (6.27)

z → sin θ0 + ew(1 + cos θ0)

sin θ0 ew + (1 + cos θ0)
,

z̄ → sin θ0 + ew̄(1 + cos θ0)

sin θ0 ew̄ + (1 + cos θ0)
,

and which remains a BMS4 transformation. The generator of the thermal circle 2π∂ρ
reproduces the boundary modular flow given above. This was guaranteed to work because,

as in 3d, the case `u 6= 0 is simply the image of the case `u = 0 by a bulk translation, which

becomes on the boundary

u→ u+
`u

2 cos θ0
cos θ . (6.28)

On the boundary, this bulk translation changes the shape of the region A which is the same

as before but with an extension in u:

u =
`u

2 cos θ0
cos θ , θ ∈ [θ0, π − θ0] . (6.29)

Similarly to 3d, the bulk modular flow (6.25) is simply a boost. This can be seen explicitly

by defining new coordinates

t̃ =
1

cos θ0
t− tan θ0 x, x̃ =

1

cos θ0
x− tan θ0 t, z̃ = z +

`u
2 cos θ0

, (6.30)

in which the modular flows is given by

ξA = 2π
(
z̃ ∂t̃ + t̃ ∂z̃

)
. (6.31)

In appendix A we show that, exactly like in the 3d case, there exists a change of coordi-

nates in the bulk defined on the exterior of a Rindler horizon that maps to the transfor-

mation (6.27) on the boundary.

RT prescription. In 4d, the prescription where we impose that the light rays pass

through the origin r = 0 is inconsistent in the case `u 6= 0 because most light rays won’t

have an intersection with the bifurcation surface. Instead, we should consider the most

general light sheaf which satisfies the requirements necessary for a good RT configuration,

as was done in section 3.2 for the 3d case. We will take all these choices of light sheaf to

be equally physical, reflecting a choice of UV cutoff in the putative dual theory.

The boundary of A on I+ has two pieces ∂A = B+∪B− which can be parametrized as

B+ : φ = `(θ), θ0 ≤ θ ≤ π − θ0 , (6.32)

B− : φ = −`(θ), θ0 ≤ θ ≤ π − θ0 ,
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where `(θ) is defined in (6.16), while their extension in the u-direction is given by (6.29).

The most general light rays that arrive at a point (θ, φ) = (θ,±`(θ)) on I+ can be

parametrized as follows in Cartesian coordinates

γ+(θ) :


t = s+ T+(θ)

x = s sin θ cos `(θ) +X+(θ)

y = s sin θ sin `(θ) + Y+(θ)

z = s cos θ + Z+(θ)

, γ−(θ) :


t = s+ T−(θ)

x = s sin θ cos `(θ) +X−(θ)

y = s sin θ sin `(θ) + Y−(θ)

z = s cos θ + Z−(θ)

,

(6.33)

and the arbitrary functions T±(θ), X±(θ), Y±(θ), Z±(θ) reflect the ambiguity in choosing

these light rays. This ambiguity will be partially fixed by imposing the necessary require-

ments. Firstly, the light rays γ+(θ) and γ−(θ) should intersect I+ at ∂A, so that the value

of u at infinity is given by (6.29). Then we should impose that all these light rays intersect

the bifurcation surface of the Rindler horizon associated with the bulk modular flow, i.e.

t̃ = z̃ = 0. To do this, we impose that after transforming (6.33) to the new Cartesian

coordinates (6.30), z̃ and t̃ become proportional. This also imposes the relation

z̃ = f(θ) t̃, f(θ) =
cos θ cos θ0

1− cos `(θ) sin θ tan θ0
. (6.34)

Denoting the two light sheafs

γ+ = {γ+(θ) | θ ∈ [θ0, π − θ0]} , (6.35)

γ− = {γ−(θ) | θ ∈ [θ0, π − θ0]} ,

we see that γ+ and γ− span over the quadrant t̃ ≥ |z̃| because the function f(θ) is a

bijection between the interval [θ0, π − θ0] and the interval [−1, 1]. To find the region γ,

which is a 2d surface in 4d, we should consider the intersection of γ± with the bifurcation

surface, which is the plane (x̃, ỹ). From the explicit parametrization, we find that the

intersection of γ± with this plane is restricted to the lines

x̃± cos θ0 tan(
`φ
2 ) ỹ = 0 . (6.36)

Lastly, we should impose that the modular flow is tangent to the light sheaf γ+∪γ− which

is required to have a well-defined first law. This is necessary because we need ξA · Θ to

vanish when integrated on the light sheaf, see the paragraph below for more details. To do

this, we consider the two tangent vectors

∂xµ

∂θ
∂µ,

∂xµ

∂s
∂µ , (6.37)

and we require that the modular flow ξA can be written as a linear combination of those.

For the light sheaf γ+, we find that this is only possible if the light sheaf γ+ intersects

the bifurcation surface at a single point P+. That is, we need all the light rays in γ+ to

converge to the same point P+ on the bifurcation surface. We have a similar condition

on γ− which should intersect the bifurcation surface at a single point P−. These points
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cannot be arbitrary in the plane (x̃, ỹ) since they have to belong to the lines given in (6.36).

Importantly, P+ and P− don’t have to be the same. Enforcing all these constraints, we are

able to fix the functions T±(θ), X±(θ), Y±(θ), Z±(θ) and we can write the following simpler

parametrization for the light sheafs

γ±(θ) :


t = ∓ỹ± sin θ0 tan(

`φ
2 ) + s,

x = ∓ỹ± tan(
`φ
2 ) + s sin θ cos `(θ)

y = ỹ± ± s sin θ sin `(θ)

z = − `u
2 cos θ0

+ s cos θ

. (6.38)

In this parametrization, the light sheafs γ± intersect the bifurcation surface t̃ = z̃ = 0 at

P+ and P− whose coordinates are given by

P± : t̃ = z̃ = 0, ỹ = ỹ±, x̃ = ∓cos θ0 tan(
`φ
2 )ỹ± . (6.39)

The simplest choice is to take P− = P+. The RT configuration that we obtain is the one

described in the previous section (up to a bulk isometry) and the RT surface has a conical

shape. We can also have configurations where P− and P+ are separated. In this case, we

should add additional light rays to close the light sheaf. To do this, we define new light

sheafs γN and γS consisting of light rays that go from the two poles of ∂A given by

N : (θ, φ) = (θ0, 0), S : (θ, φ) = (π − θ0, 0) , (6.40)

and intersect the bifurcation surface. It turns out that it is possible to make such a light

ray intersect an arbitrary point on the bifurcation surface. For example, a parametrization

of γN and γS can be given as

γN (v) :


t̃ = s cos θ0,

x̃ = XN (v)

ỹ = YN (v)

z̃ = s cos θ0

, γS(v) :


t̃ = s cos θ0,

x̃ = XS(v)

ỹ = YS(v)

z̃ = −s cos θ0 ,

(6.41)

where v parametrizes the different light rays in the light sheafs γN and γS . These light

sheafs satisfy our requirements: they intersect I+ at the two poles N and S (with the

required value of u) and the bulk modular flow is tangent to them. The intersection of γN
with the bifurcation surface is at s = 0 and gives a curve CN : (x̃, ỹ) = (XN (v), YN (v))

parametrized by v. Similarly, γS intersects the bifurcation surface at the curve CS : (x̃, ỹ) =

(XS(v), YS(v)). Both of those curves must connect P+ to P−. The total light sheaf is given

by γ+ ∪ γN ∪ γS ∪ γ−. This configuration is illustrated in figure 6.

The surface γ is the portion of the bifurcation surface which is in the interior of the

contour formed by CN and CS . It is depicted in the plane (x̃, ỹ) in figure 7. The RT surface

Ã is the union of the total light sheaf with γ. The entanglement entropy of A is given by

SA =

∫
Ã

Q[ξA] . (6.42)

– 34 –



J
H
E
P
1
2
(
2
0
1
9
)
0
5
7

(x̃, ỹ)

t̃

z̃

γ+

γ−

γ

γS
γN

Figure 6. Ryu-Takayanagi configuration in coordinates (t̃, x̃, ỹ, z̃) in which the bulk modular flow

is a boost. The RT surface Ã is given by the union of the light sheaf γ− ∪ γN ∪ γS ∪ γ+ with

the surface γ on the Rindler bifurcation surface (x̃, ỹ). See figure 7 for an illustration of γ in the

(x̃, ỹ)-plane. The modular flow is tangent to the light sheafs γN , γS because they are portions of the

Rindler horizons and to γ−, γ+ because they are half-cones whose transverse sections are hyperbolas

which are tangent to the boost.

In Einstein gravity, the integration of Wald’s functional on the light sheaf vanishes so the

entanglement entropy of A is given by the area of the region γ

SA =
Area(γ)

4G
. (6.43)

The possible regions γ can be obtained by the following procedure: put two points P± on

the two lines (6.36) (depicted in grey in figure 7). Then, connect them by two arbitrary

curves CN and CS so that their union has a well-defined interior. This interior is the region

γ and the entropy is given by the area of γ (in Einstein gravity). We see that as in 3d, the

entropy is sensitive to the choice of light sheaf, which should reflect a choice of UV cutoff

in the putative dual field theory.

First law of entanglement. We have the following definitions

δSA =

∫
Ã
δQ[ξA], δEA =

∫
A
χ , (6.44)
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Generic case Configuration used in proof

P+

P−

CN

CS

γ

P+

P−
CN

CS
γ

~n ~m
x̃

ỹ

x̃

ỹ

Figure 7. Ryu-Takayanagi configuration in the Rindler bifurcation surface (x̃, ỹ). This surface

intersects the light sheafs γ+ and γ− at the points P+ and P−, which are restricted to lie on the

lines (6.36) (in gray). The light sheafs γN and γS intersect the bifurcation surface at the curves CN
and CS (in orange). These light sheafs are represented in figure 6.

the first law states that these two expressions are equal on-shell. The 3d derivation of

section 3.3 can be carried out in 4d. In this derivation, the first law follows from the

fact that ∫
Ã
ξA ·Θ[δg] = 0 , (6.45)

which holds whenever ξA is tangent to Ã. This is the case here since ξA vanishes on γ and

is tangent to the light sheaf (this was one of our requirements). As a result, all the RT

surfaces described here satisfy a first law for perturbations.

6.3 Linearized gravitational equations

In this section, we prove that the four-dimensional linearized gravitational equations follow

from the first law of entanglement. The proof is very similar to the three-dimensional case

described in section 4, to which we refer for more details.

Reference configuration. We consider a watermelon A at u = 0 with `u = 0. The first

law of entanglement gives the equation∫ π−θ0

θ0

dθ

∫ `(θ)

−`(θ)
dφ

∫ +∞

0
dr ξaδEabε

b = 0 , (6.46)

where εa = 1
6εabcddx

b ∧ dxc ∧ dxd and `(θ) is defined in (6.16) and contains the parameter

`φ which parametrizes the width of A. The dependence on `φ enters in a complicated

fashion. However, we can differentiate with respect to `φ at `φ = 0, where we can use the
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expansion (6.17). This leads to∫ π−θ0

θ0

dθ

(
1− sin θ0

sin θ

)∫ +∞

0
dr ξaδEabε

b = 0 , (6.47)

where the l.h.s. is evaluated at φ = 0. In Bondi coordinates, we have

εr = −εu = −r2sin θ dr ∧ dθ ∧ dφ . (6.48)

The bulk modular flow (6.12) evaluated at u = 0 and φ = 0 is given by

ξA =
2π

cos θ0
(r cos θ ∂r − (sin θ − sin θ0) ∂θ) , (6.49)

so the integral becomes

0 =

∫ π−θ0

θ0

dθ (sin θ − sin θ0)

∫ +∞

0
dr
(
−r3cos θ δErr + r2(sin θ − sin θ0) δErθ

)
. (6.50)

The expansion around θ0 = π
2 implies that∫ +∞

0
dr
(
r3∂θδErr + 2 r2δErθ

)∣∣
(u,θ,φ)=(0,

π
2 ,0)

= 0 . (6.51)

Rotations and time translations. As in the 3d case, we can consider new configura-

tions obtained by performing rotations. They are the same as the reference configuration

but centered at φ = φ0. We can also consider a translation u → u + u0 in retarded

time u. The Jacobians of these transformations are the identity which implies that the

expression (6.51) becomes∫ +∞

0
dr
(
r3∂θδErr + 2 r2δErθ

)∣∣
(u,θ,φ)=(u0,

π
2 ,φ0)

= 0 , (6.52)

for any u0 and φ0.

light sheaf deformation. We consider the same boundary region A but with the more

general configuration described in section 6.2. For the proof, we consider the configuration

depicted on the right of figure 7. We put P+ at the origin and P− at a distance ` from P+

on one of the axis and we connect them by the two curves CN and CS , as represented on

the figure. The configuration is parametrized by the length ` of the segment [P+P−] and

the overture angle α at P−. The first law of entanglement gives

I(α, `) =

∫
Σ(α,`)

dχ = 0 , (6.53)

where Σ, the interior of the RT surface, depends on these two parameters α and `. Let’s

denote by n the vector normal to the segment CS

n = cos
(
`φ
2

)
∂x̃ + cos θ0 sin

(
`φ
2

)
∂ỹ . (6.54)
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Taking the derivative of (6.53) with respect to α and evaluating at α = 0, we obtain∫ +∞

0
ds

∫ `

0
dv (n · dχ) = 0 , (6.55)

where we have used the fact that γN (6.41) can be parametrized by s and v. The vector

tangent to CS is given by

m = cos
(
`φ
2

)
∂ỹ − cos θ0 sin

(
`φ
2

)
∂x̃ . (6.56)

We can now take the derivative with respect to ` and evaluate at ` = 0.∫ +∞

0
dr (m · (n · dχ))|(θ,φ)=(θ0,0) = 0 (6.57)

We have reduced the integral to a light ray going from the origin to the point of ∂A with

(θ, φ) = (θ0, 0) (and u = 0 as we are considering a region A with `u = 0). We can then go

to Bondi coordinates. From the change of coordinates, we can compute

m = −sin θ0 sin
(
`φ
2

)
∂r −

cos θ0 sin
(
`φ
2

)
r

∂θ +
cos
(
`φ
2

)
r sin θ0

∂φ , (6.58)

n = cos
(
`φ
2

)
tan θ0 ∂r +

cos
(
`φ
2

)
r

∂θ +
cot θ0 sin

(
`φ
2

)
r

∂φ ,

when evaluated at θ = θ0 and φ = 0. In the definition (4.1) of dχ, the non-trivial contri-

bution comes from

εr = −εu = −r2 sin θ dr ∧ dθ ∧ dφ . (6.59)

Hence, we obtain that

m · (n · dχ) |γN = 2
(

1− sin2θ0 sin2
(
`φ
2

))
ξaAδEardr . (6.60)

The bulk modular flow at (u, θ, φ) = (0, θ0, 0) is simply given by

ξA = 2πr ∂r (6.61)

Hence, we obtain ∫ +∞

0
dr rδErr(0, r, θ0, 0) = 0 . (6.62)

As previously, we can act with rotations and time translations to show that we have∫ +∞

0
dr rδErr(u0, r, θ0, φ0) = 0 , (6.63)

for arbitrary u0, θ0, φ0.
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Radial translations. Let’s consider a new configuration which is obtained by translating

the reference configuration by a distance r0 in the direction (θ0, φ0) of the light ray on

which (6.63) is integrated. In Cartesian coordinates, such a translation is given by

t→ t+ r0, x→ x+ r0 cos θ0 cosφ0, y → y + r0 cos θ0 sinφ0, z → z + r0 sin θ0 .

(6.64)

This leads to the new constraint∫ +∞

r0

dr (r − r0) δErr(u0, r, θ0, φ0) = 0 , (6.65)

where we have also performed the change of variable r → r − r0 in the integral. Taking

two derivatives with respect to r0 shows that

δErr(u0, r0, θ0, φ0) = 0 , (6.66)

for any value of u0, r0, θ0, φ0. From this, the equation (6.52) simplifies to∫ +∞

0
dr r2 δErθ(u0, r,

π
2 , φ0) = 0 . (6.67)

We use the same radial translation on this equation to obtain the constraint∫ +∞

r0

dr
(r − r0)2

r
δErθ(u0, r,

π
2 , φ0) . (6.68)

Taking three derivatives with respect to r0 implies that

δErθ(u0, r0,
π
2 , φ0) = 0 , (6.69)

which is true for any value of u0, r0, φ0.

Vanishing of δErθ everywhere. The equation (6.69) at φ0 = 0 shows that δErθ van-

ishes on the semi-infinite line LP given by (θ, φ) = (π2 , 0). Let’s now consider rotations in

the plane (x, z). Under such rotations, LP covers the full disk in the y = 0 plane, shown

in orange in figure 8. The Jacobian of this transformation, when evaluated at φ = 0, is

diagonal in Bondi coordinates because it simply corresponds to a shift in θ. It is given

explicitly by

∂xa

∂x̃b
=


1

1

1

cosα− cot θ sinα

 , (6.70)

so we obtain δErθ = 0 when evaluated on this disk. For any point on this disk, we can

then consider a rotation in the (x, y)-plane, whose Jacobian is the identity. This shows

that δErθ = 0 vanishes everywhere inside the ball. This implies that

δErθ = 0 , (6.71)

everywhere in the bulk. This procedure is illustrated in figure 8.
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y
x

z

P
LP

Figure 8. Illustration of the proof that δErθ = 0. After showing that δErθ vanishes on the

orange line LP , we use the (x, z)-rotation (orange arrow) to show that δErθ = 0 in the orange disk.

With the (x, y)-rotation (gray arrow), we can show that δErθ = 0 everywhere in the ball. These

transformations all have diagonal Jacobians where they are evaluated so they don’t mix δErθ with

other components.

Boosts and rotations. We now act with boosts and rotations on the previous configu-

rations to generate more constraints on δEab. Transforming the equation δErθ = 0 under

the infinitesimal (x, z)-rotation, the (t, y)-boost and the (t, x)-boost, we obtain

δErφ = δEθφ = δErr = 0, δEθθ = −r2δEur . (6.72)

Then, the image of δEθφ = 0 under the (x, z)-rotation implies that

δEφφ = −r2sin2θ δEur . (6.73)

Conservation equation. As in 3d, we consider the conservation equation

∇a(δEab) = 0 , (6.74)

which is always satisfied by the equations of motion. For b = r, this implies that

∂r(δEur) = 0 , (6.75)

which leads to

δEur = C0(u, φ), δEθθ = −r2C0(u, φ), δEφφ = −r2sin2θ C0(u, φ) . (6.76)

We expect that an analysis similar to the 3d one in section 5 can be performed in 4d and

that it will lead to a trace condition and three conservation equations for the holographic
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stress tensor in 4d Minkowski. A proof of this statement will require a detailed analysis of

the flat limit of perturbed AdS4 in Bondi gauge, which we leave for future work. From now

on, we will assume that these boundary conditions ensure the vanishing of the components

δEua at leading asymptotic order. The trace condition, similar to (5.29) and (5.30) in 3d,

should imply that C0 = 0, leading to

δEur = δEθθ = δEφφ = 0 , (6.77)

everywhere in the bulk. The conservation equation (6.74) for b = θ, φ gives

∂r(δEuθ) +
2

r
δEuθ = 0, ∂r(δEuφ) +

2

r
δEuφ = 0 . (6.78)

The solutions of these equations are

δEuθ =
C1(u, θ)

r2
, δEuφ =

C2(u, φ)

r2
. (6.79)

We expect that the conservation of the boundary stress tensor implies that C1 = C2 = 0,

leading to δEuθ = δEuφ = 0. Finally, the conservation equation (6.74) for b = u gives

∂r(δEuu) +
2

r
δEuu = 0 , (6.80)

which is solved by

δEuu =
C3(u, φ)

r2
, (6.81)

and C3 = 0 is expected to follow from the conservation of the boundary stress tensor. Thus,

we have shown that all the components of the linearized gravitational equation vanish.

7 Conclusion

In this paper, we have considered holographic entanglement entropy in asymptotically flat

spacetimes. Under some general assumptions on the dual field theory, an analog of the

Ryu-Takayanagi formula was obtained in [25] to compute the entanglement entropies of 3d

Minkowski spacetime. We have refined and generalized this prescription and showed that

it satisfies a first law when perturbations are considered. Using this RT prescription, we

have shown that the first law of entanglement is equivalent to the linearized gravitational

equations of motion. We have also extended all these results to 4d.

This result could have also been phrased purely in classical gravity, although it is nat-

ural to motivate it from the perspective of holography. It will be important to understand

better the dual field theory, and try to prove the assumptions detailed in section 2. Some

recent progress in this direction include [13, 44–52].

Another line of research would be to push further the consequences of the RT prescrip-

tion described here. One could hope to get some hints on the microscopic definition of the

dual field theory, or show that one of the assumptions was incorrect. An important feature

of our analysis is the importance of the choice of an infalling light sheaf. We believe that

this is a hint towards the UV structure of the dual theory, which we hope to investigate

in future work. The RT formula in AdS has given rise to a wealth of results connecting

quantum information to the emergence of spacetime. It would be interesting to investigate

these ideas in asymptotically flat spacetimes, using the RT prescription described here.
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A Bulk Rindler transformation

In this appendix, we describe the bulk extension of the generalized Rindler transform (3.6)

on the boundary. The image of Minkowski spacetime under this bulk transformation turns

out to be the upper wedge of a Rindler spacetime.

Bulk Rindler transformation in 3d. We describe the change of coordinates that

brings the metric in Bondi coordinates to the upper wedge of a Rindler spacetime. The

Cartesian coordinates are related to Bondi coordinates using

t = u+ r, x = r cosφ, y = r sinφ, (A.1)

and the coordinates in which the modular flow is a boost are

t̃ =
t

sin
(
`φ
2

) − cot
(
`φ
2

)
x, x̃ =

x

sin
(
`φ
2

) − cot
(
`φ
2

)
t, ỹ = y +

`u

2 sin
(
`φ
2

) . (A.2)

We define new coordinates (τ̃ , ρ) satisfying

t̃ = eτ̃cosh ρ, ỹ = eτ̃ sinh ρ. (A.3)

These coordinates only cover the upper wedge t̃2 − ỹ2 > 0. In these coordinates the bulk

metric and modular flow are given by

ξA = 2π∂ρ, ds2 = e2τ̃ (−dτ̃2 + dρ2) + dx̃2. (A.4)

We recognize the Rindler metric and the bulk modular flow generates the (spacelike)

Rindler evolution. The Rindler horizon is situated at τ̃ = −∞. To obtain the bulk exten-

sion of the generalized Rindler transform, consider the new coordinates {τ, x̃, ρ} satisfying

τ = eτ̃ − x̃, (A.5)

defined only for τ > −x̃. The metric becomes

ds2 = −dτ2 − 2dτdx̃+ (τ + x̃)2dρ2, (A.6)

and the bulk modular flow is still ξA = 2π∂ρ. The Rindler horizon is at τ = −x̃. Finally,

the bulk transformation is obtained by writing the new coordinates in terms of Bondi
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coordinates {u, r, φ}:

τ = −x̃+

 1

sin2
(
`φ
2

) (r + u− r cos

(
`φ
2

)
cosφ

)2

− 1

4

 `u

sin
(
`φ
2

) + 2r sinφ

21/2

,

x̃ =
r cosφ

sin
(
`φ
2

) − cot
(
`φ
2

)
(r + u) ,

ρ = arccoth

r + u− r cos
(
`φ
2

)
cosφ

`u
2 + r sin

(
`φ
2

)
sinφ

 . (A.7)

This coordinate system allows us to perform an asymptotic limit r →∞, which gives

τ =
2u sin

(
`φ
2

)
− `u sinφ

2 cosφ− 2 cos
(
`φ
2

) , (A.8)

ρ = arccoth

1− cos
(
`φ
2

)
cosφ

sin(
`φ
2 ) sinφ

 . (A.9)

One can check that this is exactly the inverse of the boundary generalized Rindler trans-

formation (3.6), reproduced below

u =
sin
(
`φ
2

)
cosh ρ+ cos

(
`φ
2

)
τ +

`u

2 sin
(
`φ
2

)sinhρ

 , (A.10)

φ = arctan

 sin
(
`φ
2

)
sinh ρ

1 + cos(
`φ
2 ) cosh ρ

 .

Bulk Rindler transformation in 4d. The same procedure can be carried out in 4d.

Again, consider the bulk transformation from Bondi coordinates to Rindler coordinates in

the upper wedge:

t = u+ r, x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, (A.11)

followed by

t̃ =
t

cos θ0
− tan θ0 x, x̃ =

x

cos θ0
− tan θ0 t, ỹ = y, z̃ = z +

`u
2 cos θ0

, (A.12)

and then

t̃ = eτ̃cosh ρ, z̃ = eτ̃ sinh ρ, x̃ = µ cos η, ỹ = µ sin η, (A.13)

where the last two spacelike coordinates are mapped to polar coordinates: µ ∈ [0,∞[ and

η ∈ [0, 2π[. In these coordinates, the metric and the bulk modular flow become

ξA = 2π∂ρ, ds2 = e2τ̃ (−dτ̃2 + dρ2) + dµ2 + µ2dη2. (A.14)
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Exactly like in 3d, we recognize the Rindler metric and the bulk modular flow generates

the (spacelike) Rindler evolution. The Rindler horizon is at τ̃ = −∞. To obtain the bulk

extension of the boundary generalized Rindler transform, we consider the new coordinates

{τ, µ, ρ, η}, such that

τ = eτ̃ − µ, (A.15)

defined only for τ > −µ. The metric becomes

ds2 = −dτ2 − 2dτdµ+ (τ + µ)2dρ2 + µ2dη2, (A.16)

while the bulk modular flow is still given by ξA = 2π∂ρ. The new radial coordinate is µ and

by taking the limit µ→∞ we confirm that the boundary metric is indeed the degenerate

flat metric dρ2 + dη2. The Rindler horizon is at τ = −µ. Finally, the bulk transformation

is obtained by writing the new coordinates in Bondi coordinates:

τ =

√(
r + u

cos θ0
− r sin θ tan θ0 cosφ

)2

− 1

4

(
`u

cos θ0
+ 2r cos θ

)2

(A.17)

−

√
r2 sin2θ sin2φ+

(
r sin θ cosφ

cos θ0
− tan θ0 (r + u)

)2

, (A.18)

µ =

√
r2 sin2θ sin2φ+

(
r sin θ cosφ

cos θ0
− tan θ0 (r + u)

)2

, (A.19)

ρ = arctanh

(
`u
2 + r cos θ0 cos θ

(r + u)− r sin θ0 sin θ cosφ

)
, (A.20)

η = arctan

(
r cos θ0 sin θ sinφ

r sin θ cosφ− sin θ0 (r + u)

)
. (A.21)

This allows us to perform the asymptotic limit r →∞ which gives

τ =
u cos θ0 − `u

2 cos θ√
(sin θ0 sin θ cosφ− 1)2 − cos2θ0 cos2θ

, (A.22)

ρ = arctanh

(
cos θ0 cos θ

1− sin θ0 sin θ cosφ

)
, (A.23)

η = arctan

(
cos θ0 sin θ sinφ

sin θ cosφ− sin θ0

)
.

One can check that this is precisely the inverse of the boundary generalized Rindler trans-

formation (6.27), reproduced below

u → cos θ0

cosh ρ + cos η sin θ0

(
τ +

`u
2 cos θ0

sinh ρ

)
, (A.24)

z → sin θ0 + ew(1 + cos θ0)

sin θ0 ew + (1 + cos θ0)
,

z̄ → sin θ0 + ew̄(1 + cos θ0)

sin θ0 ew̄ + (1 + cos θ0)
,

where z = eiφ cot
(
θ
2

)
and w = ρ− iη.
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B Precisions on the general strategy

In this appendix, we make precise the general strategy explained in section 4.1. Let g :

M → M be a bulk isometry, i : Σ → M the original RT surface and ig = g ◦ i : Σ → M

the image of this surface through isometry. The original RT surface is associated to a bulk

modular flow ξ to which corresponds a two-form dχ[ξ]. The pullback of this two-form

on Σ is

i∗(dχ[ξ]) = ξa(i(σ))δEab(i(σ))
1

2
εbcd(i(σ))

∂xc

∂σα
∂xd

∂σβ
dσα ∧ dσβ , (B.1)

where σ stands for the coordinates on the two-dimensional manifold Σ. Suppose that from

the vanishing of the integral of this two-form on Σ, we have been able to derive that some

functional of δEab vanishes at i(σ),

F [δEab(i(σ))] = 0 , (B.2)

for some ā, b̄. We can now consider another surface, (g ◦ i)(Σ) in M and we call its

associated bulk modular flow ξg. We should consider the pullback on the corresponding

two-form dχ[ξg] because ∫
(g ◦ i)(Σ)

dχ[ξg] =

∫
Σ
i∗gdχ[ξg] . (B.3)

The pullback is given by

i∗g(dχ[ξg]) = ξag (g ◦ i(σ))δEab(g ◦ i(σ))
1

2
εbcd(g ◦ i(σ))

∂gc

∂xe
∂gd

∂xf
∂xe

∂σα
∂xf

∂σβ
dσα ∧ dσβ . (B.4)

Now we can insert the identity matrix δab = ∂ga

∂xc
∂xc

∂gb
to impose the equality of two b-index,

leading to

i∗g(dχ[ξg]) = ξag (g ◦ i(σ))δEab(g ◦ i(σ))
∂gb

∂xg

(
∂xg

∂gh
1

2
εhcd(g ◦ i(σ))

∂gc

∂xe
∂gd

∂xf

)
(B.5)

× ∂x
e

∂σα
∂xf

∂σβ
dσα ∧ dσβ .

Now we can use the fact that g is an isometry, while εhcd is the volume form to obtain

than the parenthesis is actually 1
2ε
g
ef (i(σ)). Moreover we know that the modular flow

for the image surface is the image of the modular flow of the initial surface under the

g-transformation: ξag (g ◦ i(σ)) = ∂ga

∂xb
ξb(i(σ)). Finally, we obtain

i∗g(dχ[ξg]) = ξi(i(σ))

(
∂ga

∂xi
∂gb

∂xg
δEab(g ◦ i(σ))

)
1

2
εgef (i(σ))

∂xe

∂σα
∂xf

∂σβ
dσα ∧ dσβ , (B.6)

which, is exactly (B.1) with the replacement

δEab(i(σ))→ ∂gc

∂xa
∂gd

∂xb
δEcd(g ◦ i(σ)) , (B.7)

which implies that (B.2) ensures that

F
[
∂gc

∂xa
∂gd

∂xb
δEcd(g ◦ i(σ))

]
= 0 . (B.8)
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For example, if we can show that some components of δEab vanish using a set of RT sur-

faces, we immediately obtain that other components, obtained by applying bulk isometries

according to (B.8), will also vanish.

C Alternative proof in 3d

In this appendix, we provide an alternative to the step in the 3d proof of section 4.2

where we used the light sheaf deformation. Here, we insist on doing this step using only

RT configurations where the light rays γ+ and γ− pass through the spatial origin r = 0.

We will consider such configurations with `u 6= 0 described in section 3.1 which is the

prescription used in [25]. Although a better and equivalent13 derivation is presented in the

main text, it is instructive to perform this step as presented here.

We should note that if we consider only the surfaces with `u = 0 (and with light

rays passing through r = 0), together with their image under bulk isometries, then the

first law does not imply the gravitational equations: these surfaces don’t provide enough

constraints. Indeed, the only constraint that we obtain is

δErφ + r∂rδErφ − r∂φδErr = 0 , (C.1)

and its image under bulk isometries. This does not imply that δEab = 0 as it’s possible to

find explicit counterexamples.

Hence, we need to consider RT surfaces with `u 6= 0 (still requiring that the light rays

pass through r = 0). The computation becomes simpler in the limit of small `u. More

precisely, we consider

`u = λ ε2, `φ = ε , (C.2)

where we take ε to be small. We would like to compute

I =

∫
Σ
ξaδEabε

b (C.3)

in an expansion around ε = 0. The first law of entanglement will constrain δEab to be

such that I = 0. It turns out that limε→0 I = 0 for any perturbation, so we don’t get any

constraint at zero order in ε. To compute I at first order in ε, it is enough to consider the

surface Σ at first order in ε.14 The configuration simplifies because the points B+ and B−
are at u = O(ε2). Hence, we have

B+ : (u, φ) =
(

0,
ε

2

)
, B− : (u, φ) =

(
0,−ε

2

)
, (C.5)

13This is because all the configurations described in section 3.2 can be transformed with a bulk translation

to a configuration where the two light rays pass through the line r = 0.
14This can be justified as follows. Denoting iε : S →M the embedding of Σε in M , we have

I =

∫
Σε

ξaε δEabε
b =

1

2

∫
S

ξaε (iε(σ))δEab(iε(σ))εbcd(iε(σ))(Jε)
c
α(Jε)

d
βdσ

α ∧ dσβ (C.4)

where (Jε)
c
α is the Jacobian of the embedding. This shows that, to compute the leading non-trivial term

of I, it is enough to take iε at first order in ε, which corresponds to taking the surface Σε at first order in ε.
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to first order in ε. We also have the following parametrization for the light rays

γ+ : (t, x, y) =
(
−2η + s,−2η + s,

ε

2
(−2η + s)

)
, s ≥ 0 (C.6)

γ− : (t, x, y) =
(

2η + s, 2η + s,−ε
2

(2η + s)
)
, s ≥ 0 ,

where we only kept the terms at first order in ε. The curve γ is simply a straight line

connecting the two points

P+ : (t, x, y) = (−2η,−2η,−ηε), P− : (t, x, y) = (2η, 2η,−ηε). (C.7)

We can show that γ− stays at u = 0 everywhere and that γ+ is at u = 0 for s ≥ 2η, which

corresponds to all its points before it crosses the origin. Let’s call γ̃− the segment that

connects the origin to P−, which, which is in the continuation of γ− past P−. The plane

surface bounded by γ−, γ̃− and γ+ (up to the origin) lies on the constant slice u = 0. It

has the same shape as the RT surface for `u = 0 depicted in figure 1.

The additional piece consists in another triangle, bounded by γ, γ̃− and γ̃+, where γ̃+

is the piece of γ+ connecting the origin to P+. This is the triangle T = P−P+O. Let’s

introduce coordinates

x+ = t+ x, x− = t− x (C.8)

In these coordinates, we have (at first order)

P+ : (x+, x−, y) = (−4λ, 0,−λε) (C.9)

P− : (x+, x−, y) = (4λ, 0,−λε)

We see that the triangle T = P+P−O can be parametrized as follows

x− = 0, −λε ≤ y ≤ 0, |x+| ≤ −
4y

ε
(C.10)

The integration over the triangle is

I =

∫ 0

−λε
dy

∫ −4y/ε

4y/ε
dx+ F (x+, x−, y) , (C.11)

where F is the appropriate integrand. We can redefine y = ηεỹ so that it becomes

I = λε

∫ 0

−1
dỹ

∫ −4λỹ

4λỹ
dx+F (x+, x−, λεy) . (C.12)

We now come back to the full integral

I =

∫
Σ
ξaδEabε

b , (C.13)

which we want to evaluate at first order in ε. The integral splits in an integral over the

pizza slice and an integral over the triangle

I = IP + IT . (C.14)
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The integral over the pizza slice is

IP =

∫ ε/2

−ε/2
dφ

∫ +∞

0
dr r ξaδEar . (C.15)

The integral over the triangle is found by looking at the metric in the (x+, x−, y) coordi-

nates. We have ∂± = 1
2(∂t ± ∂x) so that

gµν =
1

2

 0 −1 0

−1 0 0

0 0 1

 , gµν = 2

 0 −1 0

−1 0 0

0 0 1

 . (C.16)

The volume form on the triangle is

εx+ = −2εx− = dy ∧ dx+ (C.17)

this implies that

IT =

∫ 0

−ηε
dy

∫ −4y/ε

4y/ε
dx+ ξaδEax+ . (C.18)

Both integrals IP and IT can be computed explicitly at first order in ε. We now take

derivatives of the result with respect to η. The first law gives I = 0 so for any η we have

∂3
ηI|η=0 = 0. (C.19)

On the other hand, one find that

∂3
ηIP |η=0 = O(ε2) , (C.20)

∂3
ηIT |η=0 = −16πε (δErr(0, 0, 0)− 2δEur(0, 0, 0) + 2δEuu(0, 0, 0)) +O(ε2) ,

which provides the new constraint

δErr(0, 0, 0)− 2δEur(0, 0, 0) + 2δEuu(0, 0, 0) = 0 . (C.21)

Following the general strategy, we obtain a new constraint by acting with the translation

t̃ = t+ r0, x̃ = x+ r0 cosφ0, ỹ = y + r0 sinφ0 . (C.22)

Evaluating the result at φ = φ0, we obtain

δErr(0, r0, φ0)− 2δEur(0, r0, φ0) + 2δEuu(0, r0, φ0) = 0 , (C.23)

for any r0, φ0. We can then consider time translations to show that this relation holds at

any u. Finally, acting with a boost in the (t, x)-plane and evaluating at φ = 0 leads to

δErr(u0, r0, φ0) = 0 , (C.24)

for any u0, r0, φ0. The rest of the proof follows.
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