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1 Introduction

The first law of entanglement is a natural generalization of the first law of thermodynamics

that applies to non-equilibrium states. As first shown in refs. [1, 2], it is a consequence

of positivity of relative entropy, and determines the first order variation of entanglement

entropy under state perturbations. Its most interesting application is arguably given in

refs. [3, 4], where it plays a crucial role in deriving the bulk linearized Einstein’s equations

about a perturbed AdS background from boundary entanglement correlations of the CFT.

Motivated by extended black hole thermodynamics [5–7], where the cosmological con-

stant Λ is interpreted as a thermodynamic pressure p ≡ −Λ/8πG, an extension of the first

law of entanglement was proposed in ref. [8], which includes not only variations of the state

but also of the CFT itself. It can be written as

δSEE = δ〈KB〉+
SEE
a∗d

δa∗d , (1.1)

where SEE is the vacuum entanglement entropy associated to a ball in Minkowski and KB

its modular hamiltonian. The constant a∗d is defined for an arbitrary CFT as

a∗d =


Ad , for d even

(−1)
d−1
2 ln[Z(Sd)]/2π , for d odd .

(1.2)

Here Ad is the coefficient in the trace anomaly proportional to Euler’s density, while for

odd dimensions a∗d is determined by the partition function of the CFT placed on a unit
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sphere Sd (see ref. [9] for some examples in free theories). Since a∗d has a monotonous

behavior under renormalization group flows [10], we can interpret it as counting the number

of degrees of freedom in the CFT. The generalized central charge a∗d has appeared in a

number of holographic c-theorems in arbitrary dimensions and higher curvature theories

of gravity [11].

The first term in (1.1) is the ordinary contribution to the first law obtained by per-

turbing the state, while the second gives the behavior of the entanglement entropy when

varying the CFT. We must emphasize that this second contribution is not equivalent to

a renormalization group flow, since the variation continuously interpolates between CFTs.

It simply gives the dependence of the entanglement entropy on the CFT data.

The extended first law (1.1) was initially derived in ref. [8] for a holographic CFT dual

to Einstein gravity, and later generalized to specific higher curvature gravity theories in

refs. [12–14]. These derivations start by considering a particular Killing horizon in pure

AdS and deriving an extended bulk first law which considers variations of the cosmological

constant, using either Hamiltonian perturbation theory [12] or the Iyer-Wald formalism [13].

The horizon entropy associated to this Killing horizon is then identified as the entanglement

entropy of the boundary CFT, while the variation of the cosmological constant maps to

changing the generalized central charge a∗d.

Given the importance and wide range of applications of the first law of entanglement,

we should take any reasonable generalization seriously, as it has the potential of providing

new insights into the structure of space-time and entanglement in QFTs. In this work we

explore the extended first law of entanglement (1.1) by generalizing previous derivations

to include arbitrary theories of gravity, clarifying some of its subtle features and studying

its low dimensional limit.

The outline of this article is as follows. We start in section 2 by showing that a

remarkably simple argument allows us to derive the bulk analog of (1.1) for perturbations

of any Killing horizon in pure AdS. Contrary to previous derivations, our computation

is novel in its simplicity and the fact that it holds for arbitrary bulk gravity theories and

Killing horizons in pure AdS, finding no need to resort to technical calculations as in

refs. [8, 12–14]. We discuss how each of the bulk quantities is mapped to the boundary

CFT, carefully analyzing some subtleties previously overlooked. Applying our construction

to certain bulk Killing horizons, we derive the extended first law (1.1) for the vacuum state

of a CFT reduced to the following regions: a ball and the half-space in Minkowski, a

spherical cap in the Lorentzian cylinder R× Sd−1 and de Sitter, and a ball in AdSd. The

method used to find the appropriate bulk Killing horizons crucially relies on the freedom

to choose conformal frames at the AdS boundary.

We continue in section 3, where we revisit the calculations from section 2 but carefully

analyzing the case in which the bulk theory is two-dimensional. While for a class of two-

dimensional gravity theories we find no obstructions when deriving the extended first law

for Killing horizons in pure AdS2, there are certain Einstein-dilaton theories where the end

result takes a different form. We illustrate this in subsection 3.2 for Jackiw-Teitelboim

gravity [15, 16], where we show the extended first law for Killing horizons is distinct.

In section 4 we show that in three dimensional gravity an extended first law can be

derived for Killing horizons in space-times that are locally but not globally AdS. This
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allows us to obtain an extended first law for the boundary CFT2 that is analogous to (1.1)

but involving thermal instead of entanglement entropy. From the bulk perspective we

find some interesting results for extended black hole thermodynamics, where we obtain a

curious formula for the thermodynamic volume (see eq. (4.8)), the conjugate variable to

the pressure p.

We conclude in section 5 by expanding some discussions on the calculations in the main

text. We clarify some aspects regarding the structure of divergences in the extended first

law of entanglement (1.1) and critically analyze the extent to which it can hold for arbitrary

regions and CFTs. We briefly comment on the bulk constraints implied by assuming both

the RT holographic entropy formula [17] and the extended first law of entanglement hold for

arbitrary setups in the boundary CFT. Finally, we discuss some interesting aspects of the

thermodynamic volume in three dimensional gravity and its connection to the microscopic

interpretation of black hole super-entropicity [18].

2 Killing horizons in pure AdS and extended first law

In this section we present a derivation of the extended first law of entanglement for holo-

graphic CFTs described by arbitrary covariant theories of gravity in the bulk

I[λi, gµν ] =

∫
dd+1x

√
−gL (gµν ,Rµνρσ,∇λRµνρσ, . . . ) , (2.1)

where Rµνρσ is the Riemann tensor. Each theory is characterized by a family of coupling

constants {λi} that are chosen such that the action admits a pure AdS vacuum solution of

radius L. This length scale is a non-trivial function of the coupling constants of the the-

ory L = L(λi), and the pure AdS metric only depends on {λi} through L. A concrete and

simple example of a higher curvature theory is Einstein Gauss-Bonnet gravity. Although

we could also add some matter to the action, for the most part we consider pure gravity

and set matter fields to zero.

Consider a Killing vector ξµ of the pure AdS metric gAdS
µν (L) which is time-like over

some region

ξ2 ≡ gAdS
µν ξµξν ≤ 0 ⇐⇒ Some region of AdS . (2.2)

The surface in which the vector vanishes defines a Killing horizon. One of the central

quantities characterizing this horizon is its entropy, that for an arbitrary theory is computed

from Wald’s functional according to [19, 20]

Sξ

[
gAdS
µν (L), λi

]
= −2π

∫
dV

[
δL

δRµνρσ
nµνnρσ

]
, (2.3)

where the integral is over the bifurcation Killing surface with induced volume element

dV . The anti-symmetric tensor nµν is the binormal to the horizon normalized so that

nµνnµν = −2. Our aim is to study the behavior of this entropy functional under general

perturbations and to determine its consequences for the boundary CFT.
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Let us start by considering the behavior of the entropy under metric perturbations

gAdS
µν (L)→ gAdS

µν (L) + δgµν .1 Since we are working with a Killing horizon we can apply the

same methods used to study black hole thermodynamics. As computed in ref. [20] in the

context of black holes, the first order variation of (2.3) is determined by the Noether charge

Qξ. This can be related to the energy Eξ associated with the Killing vector ξ measured at

asymptotic spatial infinity according to [20]2

δSξ =
2π

κ
δEξ , κ2 = −1

2
(∇µξν) (∇µξν) , (2.4)

where κ is the surface gravity.

We now consider another type of perturbation obtained by changing the gravitational

theory itself, i.e. L → L + δL, implemented by slightly changing the coupling constants

of the theory λi → λi + δλi. Since the pure AdS metric gAdS
µν (L) is a function of λi

through L = L(λi), the perturbation induces a variation of the metric. If we did not take

this metric variation into account, the perturbed metric would not be a solution of the

perturbed Lagrangian. Hence, the first order variation of Wald’s functional is explicitly

given by

δSξ = Sξ

[
gAdS
µν (λi + δλi), λi + δλi

]
− Sξ

[
gAdS
µν (λi), λi

]
. (2.5)

From the definition of Wald’s entropy in (2.3) we can compute this in full generality,

the key feature being that both terms are evaluated in the pure AdS metric of each theory.

Since AdS is maximally symmetric, the integrand in (2.3) can be evaluated explicitly [11]

and written as3

δL
δRµν ρσ

∣∣∣∣
AdS

= −L
2

4d

(
δρµδ

σ
ν − δσµδρν

)
L|AdS , (2.6)

where L
∣∣
AdS

is the Lagrangian density (2.1) evaluated in the pure AdS solution. Using

this, we can evaluate Wald’s functional and write it as

Sξ

[
gAdS
µν (λi), λi

]
=

4πa∗d(λi)

Vol(Sd−1)
Ãhorizon , (2.7)

where Ãhorizon is the horizon area Ahorizon divided by the AdS radius Ld−1. We have

identified a∗d according to [11, 21]

a∗d(λi) = − 1

2d
Vol(Sd−1)Ld+1L

∣∣
AdS

, (2.8)

1The perturbation δgµν can be any metric which satisfies the equations of motion obtained from (2.1)

linearized around pure AdS.
2The Iyer and Wald formalism derives the ordinary first law from a (d − 1)-form χ = δQξ − ξ · Θ that

is closed dχ = 0 on shell, where Θ is the symplectic potential and δQξ is variation of the Noether charge

associated to ξ. The integral of χ vanishes on-shell so that one obtains a relation between the two boundary

contributions, at the bifurcate Killing horizon and the asymptotic boundary. At the horizon we have ξ = 0

so that χ = δQξ, and
∫
horizon

χ = κ
2π
δSξ, while at the asymptotic boundary

∫
∞ χ = δEξ (see also ref. [4]).

3To obtain this general expression the only thing that is required is that the metric is locally AdS, see

section 5.2 of ref. [11] for details. This becomes very useful in section 4, where it allows us to extend some

of our results beyond pure AdS in three dimensional gravity.
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where Vol(Sd−1) = 2πd/2/Γ(d/2). The coefficient a∗d = a∗d(λi) is in general a complicated

function of the coupling constants of the theory. Using (2.7) we can easily evaluate the

variation in (2.5) and find

δλiSξ =
Sξ
a∗d
δλia

∗
d , δλia

∗
d(λi) =

∑
i

(
∂a∗d
∂λi

)
δλi . (2.9)

This expression relies on the fact that the pure AdS metric gAdS
µν (L) is only a

function of the length scale L = L(λi), which means the dimensionless horizon area

Ãhorizon = Ahorizon/L
d−1 is independent of λi. In section 4 we revisit this when consid-

ering more general metrics in three dimensional gravity.

Since we are considering linear perturbations we can put together the results in

eqs. (2.4) and (2.9) and obtain the following bulk extended first law

δSξ =
2π

κ
δE′ξ +

Sξ
a∗d
δa∗d . (2.10)

We can already see the similarities of this bulk relation with the extended first law of

entanglement (1.1). For a particular Killing vector ξ in AdS, this result was first obtained

in ref. [8] for Einstein gravity and later in refs. [12–14] for specific higher curvature gravity

theories.4 Our derivation generalizes to arbitrary covariant theories of gravity as well as any

Killing horizon in pure AdS. The method is quite simple and follows almost immediately

upon evaluating Wald’s functional in (2.7).5

Before analyzing the holographic consequences of this relation, let us comment on the

prime we have added on the charge E′ξ in (2.10). From the derivation of (2.9) it is clear

that when the variation is only given by λi → λi + δλi, the first term in (2.10) vanishes,

δλiE
′
ξ = 0, i.e.

Eξ

[
gAdS
µν (λi + δλi), λi + δλi

]
− Eξ

[
gAdS
µν (λi), λi

]
= 0 . (2.11)

Given that there is no reason for these terms to cancel each other for arbitrary values of λi,

both must vanish separately. This is achieved by defining the normalized quantity E′ξ as

E′ξ [gµν , λi] = Eξ [gµν , λi]− Eξ
[
gAdS
µν (λi), λi

]
. (2.12)

While this normalization plays no role in (2.4) when considering metric perturbations, it

gives the appropriate behavior under more general variations. This prescription is equiva-

lent to subtracting the Casimir energy contribution in pure AdS, that is present for certain

foliations of the space-time (see ref. [23] for some examples). The procedure is common

in extended black hole thermodynamics, where the Casimir energy is not included in the

first law [5].

4In some of these papers this relation is not written in terms of the coefficient a∗d, but in terms of the

coupling constants {λi} of particular theories.
5Comparing with the methods in [13, 14] we find we do not have to explicitly deal with additional diver-

gences that arise (and ultimately cancel) from evaluating the Iyer-Wald form at the asymptotic boundary

when implementing the extended Iyer-Wald formalism (see also [22]).
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2.1 Mapping to boundary CFT

We are mainly interested in the first law in (2.10) from the perspective of a holographic

CFT. Taking a bulk coordinate z so that the AdS boundary is located at z → 0, the

d-dimensional space-time in which the CFT is defined is given by

lim
z→0

ds2
bulk = w2(xµ)ds2

CFT + . . . . (2.13)

Applying a bulk diffeomorphism or changing the definition of w2(xµ) results in a different

boundary space-time. A particular way of taking this limit corresponds to choosing a

conformal frame. We will shortly take advantage of this freedom, which from the CFT

perspective is equivalent to a conformal transformation.

What about the quantum state of the boundary CFT? Although the bulk space-time

is pure AdS, the CFT is technically not in the vacuum state since there is a horizon and

therefore an associated temperature, given by the surface gravity in (2.4) according to

β = 2π/κ. This means the boundary state is thermal with respect to the Killing flow

evaluated at the boundary, i.e.

ρ =
1

Z
exp (−βKξ) , (2.14)

where the operator Kξ generates the flow of ξµ as we approach the boundary. It can be

written explicitly in terms of the boundary coordinates xa and the pullback of the Killing

vector ξa as

Kξ =

∫
Σξ

ξaTabdS
b , (2.15)

where Tab is the stress tensor of the CFT and the integral is over a boundary codimension

one space-like surface Σξ where the vector ξa is time-like. The directed surface element dSa

is given by dSa = dSna, with na a unit vector normal to Σξ.

The variation of the conserved quantity E′ξ appearing in the gravitational first

law (2.10) is given by the variation of the expectation value of Kξ in the state (2.14).

The normalization condition for E′ξ in (2.12) translates into the following normalization of

the stress tensor Tab

Tab → T ′ab = Tab − 〈Tab〉ρ , (2.16)

with ρ in (2.14). Since a bulk Killing vector gives a conformal Killing vector at the

boundary, the operator Kξ does not correspond to the Hamiltonian in general. We shall

shortly consider some examples which illustrate this.

Putting everything together, the gravitational first law (2.10) maps to the boundary

CFT according to

δS = β δ〈Kξ〉ρ +
S

a∗d
δa∗d , (2.17)

where we identified the horizon entropy Sξ with the Von Neumann entropy

S(ρ) = −Tr(ρ ln(ρ)) of ρ in (2.14). From the field theory perspective it might not be

entirely clear what each of these terms corresponds to, so let us write them more explicitly.
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For perturbations in which we keep the CFT fixed it is clear that δa∗d = 0 while the

state is deformed according to ρ+ δρ. In this case, the relation (2.17) is similar to the first

law of thermodynamics. When δa∗d 6= 0 we must be more careful since in this case the CFT

is changing, which in particular implies that the Hilbert space shifts H → H̄. The state ρ

cannot remain fixed, meaning that δa∗d 6= 0 induces a variation of ρ given by

ρ −→ ρ̄ =
1

Z
exp

(
−βK̄ξ

)
, (2.18)

where ρ̄ and K̄ξ are the same operators but acting on the Hilbert space H̄ instead. In this

case the extended first law (2.17) can be written explicitly as

S(ρ̄)− S(ρ) = β
[
〈K̄ξ〉ρ̄ − 〈Kξ〉ρ

]
+
S(ρ)

a∗d
δa∗d . (2.19)

Notice that the first terms on the right-hand side involve operators on different Hilbert

spaces. Moreover, the normalization of Kξ given in (2.16) (and an analogous expression

for K̄ξ) implies that both terms between square brackets vanish independently. This is

equivalent to the gravitational case, where we obtained (2.9).

Putting everything together, the most general perturbation of the Von Neumann en-

tropy of ρ is given by

S(ρ̄+ δρ̄)− S(ρ) = β Tr
(
K̄ξ δρ̄

)
+
S(ρ)

a∗d
δa∗d , (2.20)

where we have used 〈Kξ〉ρ = 〈K̄ξ〉ρ̄ = 0. This expression considers the simultaneous

variations a∗d → a∗d + δa∗d and ρ→ ρ̄+ δρ̄, and clarifies the precise meaning of (2.17), which

without any explanation is rather obscure.

2.2 Extended first law of entanglement

So far we have shown that (2.17) follows from AdS/CFT when studying Killing horizons in

pure AdS. We now consider particular horizons that will allow us to identify this relation

as the extended first law of entanglement. Let us start with the simplest example of a

Killing horizon in AdS, obtained by writing pure AdS in a hyperbolic slicing

ds2 = −
(
ρ2 − L2

R2

)
dτ2 +

(
L2

ρ2 − L2

)
dρ2 + ρ2dH2

d−1 , (2.21)

where R is an arbitrary positive constant and dHd−1 is the line element of a unit hyperbolic

plane. This space-time is often referred as Rindler-AdS since it describes a section of anti-

de Sitter. The vector ξ = ∂τ trivially satisfies Killing’s equation and is time-like over the

whole patch ρ ≥ L, generating a horizon at ρ = L. It therefore satisfies all the conditions

leading to the first law in (2.10) and (2.20).

A simple computation shows that the surface gravity is κ = 1/R, while the boundary

metric is given by ds2
CFT = −dτ2 +R2dH2

d−1 ≡ R×Hd−1. From this we see that ξ = ∂τ is

also a Killing vector of ds2
CFT, so that Kξ in (2.15) is equal to the Hamiltonian and can be

written as

Kξ =

∫
τ=0

T ′ττdS
τ ≡ Hτ . (2.22)
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This means the boundary state is an ordinary thermal state ρβ ∝ exp(−βHτ ), where the in-

verse temperature is fixed by the surface gravity to β = 2πR. The extended first law (2.17)

then becomes

δS(ρβ) = β δ〈Hτ 〉+
S(ρβ)

a∗d
δa∗d . (2.23)

While the first term is nothing more than the first law of thermodynamics, the second

contribution is unique to the case of inverse temperature β = 2πR. This is clear from the

holographic perspective, since moving away from this temperature is equivalent to leaving

pure AdS, where the analysis of the previous section is no longer valid. In section 4 we

show that for d = 2 this expression remains valid for arbitrary values of β. Although (2.23)

is not the extended first law of entanglement (since it involves a thermal state in R×Hd−1),

this simple example will be very useful in what follows.

2.2.1 Shifting conformal frames

Building on the canonical example we just described, we can obtain the more complicated

setups we are actually interested in. To obtain the extended first law of entanglement we

take advantage of the freedom present when taking the boundary limit in (2.13). Different

ways of taking this limit correspond to distinct conformal frames and result in different

setups for the boundary CFT. We still consider the bulk Killing vector ξ = ∂τ , but written

in a different set of coordinates corresponding to distinct conformal frames.

Ball in Minkowski. Let us first show how we can recover the extended first law of

entanglement for the Minkowski vacuum reduced to a ball. We first apply a change of

coordinates on the Rindler-AdS metric (2.21), which is given in eq. (4.7) of ref. [24], so

that the metric becomes

ds2 =

(
L

r̂ sin(ψ)

)2 (
−dt2 + dr̂2 + r̂2

(
dψ2 + cos2(ψ)dΩ2

d−2

))
, (2.24)

where r̂ ≥ 0, ψ ∈ [0, π/2] and dΩd−2 is the line element of a unit sphere Sd−2. This

is nothing more than the AdS Poincaré patch, as can be seen by defining the usual co-

ordinates (z, r) = r̂ (sin(ψ), cos(ψ)). At the boundary ψ → 0 we recover d-dimensional

Minkowski space-time with r̂ = r the spatial radial coordinate. We use the convention in

which the boundary coordinate r refers to the bulk coordinate r̂ when ψ → 0. This same

notation is used in the following examples.

It is straightforward to write the Killing vector ξ = ∂τ in these new coordinates and find

ξ =

(
R2 − r̂2

+

2R2

)
∂r̂+ −

(
R2 − r̂2

−
2R2

)
∂r̂− , (2.25)

where r̂± = r̂± t. The important difference with respect to the hyperbolic example is that

this Killing vector is time-like only in a section of the metric (2.24), given by |r̂±| ≤ R. For

the Minkowski boundary this corresponds to the causal domain of a ball of radius R. The

operator generating the flow of ξ inside the ball can be written from (2.15) as

Kξ =

∫
r≤R

(
R2 − r2

2R2

)
T ′tt dS

t . (2.26)
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While this is clearly not the Hamiltonian generating t translations in Minkowski, it

is proportional to the modular hamiltonian characterizing the Minkowski vacuum reduced

to the ball [21]. The proportionality constant missing to make the identification is given

by KBall = 2πRKξ, that is precisely the inverse temperature β = 2πR obtained from the

surface gravity of the bulk Killing vector (2.25). Altogether, the quantum state ρ in (2.14)

is exactly given by the Minkowski vacuum reduced to the ball. The Von Neumann entropy

is equivalent to the entanglement entropy, so that (2.17) becomes the extended first law of

entanglement (1.1).

Half-space in Minkowski. Another interesting case is obtained by applying the change

of coordinates given in eq. (4.4) of ref. [24] (see also ref. [25]) to the Rindler-AdS space-time,

so that the bulk metric (2.21) becomes

ds2 = (L/z)2 (dz2 − dt2 + dx2 + d~y.d~y
)
, (2.27)

where (x, ~y ) ∈ R× Rd−2. Once again we recognize the Poincaré patch of AdS, so that we

recover a d-dimensional Minkowski boundary when z → 0. The Killing vector ξ = ∂τ in

these coordinates is given by

ξ = (x+/R)∂x+ − (x−/R)∂x− , (2.28)

where x± = x ± t. This vector is time-like when x± ≥ 0, which from the boundary

perspective corresponds to the Rindler region, i.e. the causal domain of the half space

x ≥ 0. Using (2.15) to compute the operator generating the Killing flow at the boundary

we find

Kξ =

∫
x>0

(x/R)T ′tt dS
t . (2.29)

Since the surface gravity of (2.28) is still given by κ = 1/R, the inverse tempera-

ture is β = 2πR and we recognize ρ ∝ exp(−βKξ) as the Minkowski vacuum reduced to

Rindler [26, 27]. Similarly to the previous case, (2.17) becomes the extended first law of

entanglement (1.1) but in this case, for the Minkowski vacuum reduced to the half-space.

Spherical cap in Lorentzian cylinder. Let us now show how we can obtain the ex-

tended first law of entanglement for holographic CFTs defined on curved backgrounds.

Consider the following change of coordinates on the AdS metric (2.24)

r̂±(θ̂±) = R
tan(θ̂±/2)

tan(θ0/2)
, (2.30)

where θ̂± = θ̂ ± σ/R and θ0 ∈ [0, π] is a fixed parameter. The metric (2.24) becomes

ds2 =

[
L/R

sin(ψ) sin(θ̂)

]2 (
−dσ2 +R2dθ̂2 +R2 sin2(θ̂)

(
dψ2 + cos2(ψ)dΩ2

d−2

))
, (2.31)

where σ ∈ R is the time coordinate and θ̂ is restricted to θ̂ ∈ [0, π]. As we take the boundary

limit ψ → 0 and remove the conformal factor between square brackets we find that the CFT
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center
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boundary

Cylinder De Sitter Anti-de Sitter

Figure 1. Boundary space-times represented in the (σ/R, θ) plane. The blue region corresponds

to the section of the (σ/R, θ) plane covered by the boundary metrics (2.31) (in the limit ψ → 0 and

without the conformal factor), (2.34) and (2.36). In red we see the region in which the boundary

vector ξa is time-like and therefore the extended first law of entanglement applies.

is defined in the Lorentzian cylinder R×Sd−1 with metric ds2
CFT = −dσ2 +R2dΩ2

d−1. The

bulk coordinate θ̂ becomes the polar angle θ̂ = θ on the spatial sphere Sd−1, with θ = 0, π

corresponding to the North and South poles respectively.

The Killing vector ξ in (2.25) can be written in these coordinates as

ξ =

(
cos(θ̂+)− cos(θ0)

R sin(θ0)

)
∂θ̂+ −

(
cos(θ̂−)− cos(θ0)

R sin(θ0)

)
∂θ̂− . (2.32)

Computing its magnitude we see that the bulk region in which this vector is time-like is

given by |θ̂±| < θ0. For the boundary CFT in the Lorentzian cylinder, this corresponds

to the causal domain of a spherical cap on the spatial Sd−1 given by θ ∈ [0, θ0] at σ = 0.

Plotting this region in the (σ/R, θ) plane we obtain the left diagram in figure 1. The whole

infinite strip in blue corresponds to the Lorentzian cylinder R× Sd−1, with the North and

South pole located at θ = 0, π.

The operator generating the Killing flow at the boundary is computed from (2.15) as

Kξ =

∫
θ≤θ0

(
cos(θ)− cos(θ0)

R sin(θ0)

)
T ′σσ dS

σ . (2.33)

In a similar way to the previous case, we recognize the state ρ ∝ exp (−βKξ) with β = 2πR

as the vacuum state of the cylinder reduced to the spherical cap [21]. This gives the

extended first law of entanglement for a CFT in the Lorentzian cylinder (1.1).

Spherical cap in de Sitter. Using the same coordinates as in (2.31) we can obtain

a CFT defined on a de Sitter background by taking the limit ψ → 0 and choosing the

conformal factor so that the boundary metric is given by

ds2
CFT =

−dσ2 +R2dΩ2
d−1

cos2(σ/R)
. (2.34)
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This is d-dimensional global de Sitter space-time, as can be seen by changing the time

coordinate to cosh(ts/R) = 1/ cos(σ/R), so that we get

ds2
CFT = −dt2s +R2 cosh2(ts/R)dΩ2

d−1 . (2.35)

It is convenient to work in the time coordinate σ, since the Killing vector ξ has the sim-

ple form given in (2.32) and is time-like when |θ±| ≤ θ0. Plotting this region in the (σ/R, θ)

plane for the boundary metric (2.34), we obtain the center diagram in figure 1. The main

difference with respect to the case of the Lorentzian cylinder is that the full de Sitter space-

time (blue region) is constrained to |σ/R| ≤ π/2 due to the denominator in (2.34). Since

the topology of dS is the same as the cylinder R×Sd−1, the region in which ξa is time-like

also corresponds to the causal domain of a spherical cap θ ∈ [0, θ0], but with θ0 restricted

to θ0 ≤ π/2.

The operator generating the flow of the Killing vector at the boundary is still given

by (2.33),6 which is equivalent to the modular hamiltonian of the dS vacuum after multi-

plying by β = 2πR. Altogether, this results in the extended first law of entanglement (1.1)

for the de Sitter vacuum reduced to a spherical cap.

Ball in anti-de Sitter. Finally, we can obtain a CFT defined in an AdSd space-time by

taking the limit ψ → 0 in (2.31) and choosing the conformal factor so that we get

ds2
CFT =

−dσ2 +R2(dθ2 + sin2(θ)dΩ2
d−2)

cos2(θ)
. (2.36)

Changing coordinates to % = R tan(θ) ≥ 0 we recognize global AdSd, with % the usual

radial coordinate. Similar to the dS case, it is convenient to describe the AdSd boundary

in terms of the (σ, θ) coordinates, where the Killing vector ξ and operator Kξ are still given

by (2.32) and (2.33). The main difference is that the region in which ξ is time-like |θ±| ≤ θ0,

now corresponds to the causal domain of a ball in AdSd of radius %max = R tan(θ0). We

plot this in the right diagram of figure 1, where θ = 0, π/2 in (2.36) now correspond to

the AdS center and boundary. The entanglement entropy associated to the vacuum state

reduced on this ball satisfies the extended first law of entanglement in (1.1).

3 Killing horizons in pure AdS2

Our calculations so far have been in the context of the AdSd+1/CFTd correspondence

for d ≥ 2, where the duality is well understood. In this section we revisit the construction

for the case in which d = 1, where the gravity theory is highly constrained and there is no

clear holographic picture.

Let us start by briefly reviewing some basic notions of two dimensional gravity (see

ref. [28] for a comprehensive review). In two space-time dimensions the most general

scalar curvature invariant is built from the Ricci scalar R and contractions of its covariant

6The only difference with respect to the case of the cylinder is given by the induced surface element dSσ,

which is now computed from (2.34).
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derivatives, e.g. (∇R)2 = (∇µR)(∇µR). Both the Riemann and Ricci tensor are fixed by

R and gµν according to

Rµνρσ =
R
2

(gµρgνσ − gµσgνρ) , Rµν =
R
2
gµν . (3.1)

This means there is a single gravitational degree of freedom, determined by R. Similarly

to the general d case in (2.1), the most general two dimensional gravity theory is given by

I[gµν , λi] =

∫
d2x
√
−gL(R,∇µR, . . . ) , (3.2)

where the coefficients λi are the coupling constants of the theory. The only constraint we

impose is that there is a pure AdS solution with some radius L = L(λi). Notice that the

relations in (3.1) imply the Einstein tensor Gµν = Rµν − gµνR/2 vanishes for every two

dimensional metric, so that L = R gives a trivial theory.

Just as in the higher dimensional case, let us consider a Killing vector ξµ of pure AdS2

which is time-like over some region and generates a horizon (2.2). The associated entropy

is computed from Wald’s functional (2.3), that in the two dimensional case is given by

Sξ[gµν(L), λi] = −2π

[
δL

δRµνρσ
nµνnρσ

]
Horizon

, (3.3)

where there is no integral since the bifurcate horizon is a single point. Evaluating in pure

AdS we can use (2.6) to write this as

Sξ[g
AdS
µν (L), λi] = 2πa∗1(λi) , where a∗1(λi) = −L2L

∣∣
AdS

. (3.4)

An important difference with respect to the higher dimensional case, is that in two di-

mensions this expression is always finite and only depends on the global features of the

theory, i.e., it is insensitive to the details of the Killing vector ξµ. The entropy in (3.4)

only depends on the pure AdS2 radius and the Lagrangian density evaluated on AdS2.

Altogether, there is no obstruction in applying the same reasoning as in higher dimensions

and write the extended first law for Killing horizons in pure AdS exactly as in (2.10)

δSξ =
2π

κ
δE′ξ +

Sξ
a∗1
δa∗1 . (3.5)

Let us construct a concrete example by first writing pure AdS2 in global coordinates

ds2 =
−dσ2 + L2dθ2

sin2(θ)
, (3.6)

where σ ∈ R and θ ∈ (0, π). Notice this notation is different from the previous section,

since θ is now a bulk coordinate and the boundary is just described by σ. Two-dimensional

AdS is distinct from higher dimensions, since there are two disjoint boundaries at θ = 0, π.

A sketch of its Penrose diagram is given in figure 2.

We can easily check that the following is a Killing vector

ξ =

(
cos(θ+)− cos(θ0)

L sin(θ0)

)
∂θ+ −

(
cos(θ−)− cos(θ0)

L sin(θ0)

)
∂θ− , (3.7)
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AdS 
center

AdS 
boundary

AdS 
boundary

Figure 2. The blue region corresponds to AdS2 space-time represented in the (σ/L, θ) plane, with

the two boundaries at θ = 0, π. In red we see the region in which the bulk Killing vector ξµ (3.7)

is time-like and therefore the extended first law in (3.5) applies.

with surface gravity κ = 1/L. From its norm we see that it is time-like in the domain of

dependence of the bulk surface (σ = 0, θ) with θ ∈ (0, θ0), meaning the boundary time

coordinate is restricted to |σ/L| ≤ θ0. This corresponds to the red region in figure 2.

As an example, let us compute the horizon entropy explicitly for a particular gravity

theory, that we take as

L = f(R) = λ0 + λ2R2 . (3.8)

The AdS radius L is determined by solving the equations of motion evaluated at R =

−2/L2, which can be written as

∇µ∇νf ′(R) +
1

2
gµν

(
Rf ′(R)− f(R)

)
= 0 =⇒ L4 =

4λ2

λ0
. (3.9)

Using this we can evaluate Wald’s entropy in (3.4) as

Sξ
[
gAdS
µν (L), λi

]
= 2π

(
−8λ2/L

2
)
, (3.10)

where between parenthesis we identify the factor a∗1, which is positive if and only if λ2 < 0.

This raises the question regarding the holographic interpretation of the extended first

law as written in (3.5), since a∗1 is supposed to capture the number of degrees of freedom

of the boundary theory. The usual AdS/CFT correspondence for a two dimensional bulk

does not yield a clear picture as in the higher dimensional case. Although there has been

very interesting work on the subject (see refs. [29–34]), there continues to be debate about

what is meant by the dual “CFT1”, whether it is conformal quantum mechanics or the

chiral sector of a two-dimensional CFT. Moreover in the context of Jackiw-Teitelboim

(JT) gravity [15, 16] it is understood that the boundary is not a single theory but an

ensemble average [35]. For these reasons, we refrain from giving a boundary interpretation

of the extended first law and leave this aspect to future investigations.
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3.1 Einstein-dilaton theories

So far we have considered two dimensional theories of gravity in which the only field

is given by the metric gµν . We now discuss the extended first law for Einstein-dilaton

theories, which are widely studied in the context of two dimensional gravity.

One disadvantage of the pure gravity action considered in (3.2) is that since non-trivial

theories must have L ∼ O(R2), the equations of motion for the metric are at least fourth

order differential equations. This issue can be avoided by the introduction of an auxiliary

dilaton field φ(xµ) coupled to ordinary Einstein gravity

Iφ[gµν , λi] =

∫
d2x
√
−g [φR− V (φ)] . (3.11)

The equations of motion obtained from this action are second order. In particular, varying

with respect to the dilaton field we get the algebraic constraint R = V ′(φ). If the potential

has non-vanishing second derivative, one can invert this relation and substitute back into

the action (3.11) to obtain a purely gravitational theory of the type L = f(R). As an

example, if we take V (φ) = φ2/4λ2− λ0, the equation of motion for φ sets φ0 = 2λ2R and

we get

Iφ=φ0 [gµν , λi] =

∫
d2x
√
−g
[
λ0 + λ2R2

]
, (3.12)

that is the gravity theory previously considered in (3.8). This allows us to study two

dimensional gravity from the simpler action (3.11). We should interpret the dilaton field

as a gravitational degree of freedom, which gets non-trivial dynamics from varying (3.11)

with respect to the metric

∇µ∇νφ =
1

2
gµνV (φ) . (3.13)

Since the Einstein-dilaton theories in (3.11) (with V ′′(φ) 6= 0) are equivalent to the purely

gravitational action previously considered in (3.2), the results obtained for the extended

first law also hold in this setup. We should mention that while JT gravity is given by (3.11)

with V (φ) ∝ φ, it cannot be written as a purely gravitational theory since V ′′(φ) = 0 and

the dilaton equation simply fixes the curvature to a constant R = const. We analyze the

case of JT gravity separately in the next subsection.

There are more general Einstein-dilaton actions than (3.11) that yield interesting two

dimensional theories. For instance, there is a particular way of taking the two-dimensional

limit of higher dimensional Einstein gravity which results in the following action [36]

Iφ [gµν ,Λ2] =

∫
d2x
√
−g
[
φR+

1

2
(∇φ)2 − 2Λ2

]
, (3.14)

where Λ2 is a coupling constant. This theory was studied in ref. [37] from the perspective of

extended black hole thermodynamics. Although this action is clearly different from (3.11),

if we redefine the metric according to g̃µν = eφ/2gµν it can be written as

Iφ [g̃µν ,Λ2] =

∫
d2x
√
−g̃
[
φR̃ − V (φ)

]
, where V (φ) = 2Λ2e

−φ/2 . (3.15)
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Once we have the action in this form, we can solve the dilaton field equation and substitute

back into the action to get a purely gravitational theory for the metric g̃µν

Iφ=φ0 [g̃µν ,Λ2] =

∫
d2x
√
−g̃f(R̃) , where f(x) = 2x

(
1− ln(−x/Λ2)

)
. (3.16)

This raises the question of which is the “physical” gravitational metric, either gµν
(usually called the Jordan frame) or g̃µν (the Einstein frame).7 The distinction between

the frames is important as the solutions obtained in either case are very different. For

instance, if we consider a constant curvature solution for g̃µν , the equation of motion

from (3.16) is given by

R̃f ′(R̃)− f(R̃) = 0 =⇒ R̃ = 0 . (3.17)

From (3.1), this implies the metric g̃µν vanishes, so that the theory does not admit a pure

AdS2 solution and we cannot consider the extended first law in (3.5).

On the other hand, working in the Jordan frame with the metric gµν the action (3.14)

allows a pure AdS2 solution [37]. This means it is sensible to consider the extended first law

for the metric gµν , although the derivation leading to (3.5) does not apply. An extended first

law of black hole thermodynamics (which studies the behavior of the black hole entropy

under variations of the cosmological constant) was derived in ref. [37] for the Einstein-

dilaton theory in (3.14). In order to obtain a sensible result, the authors of ref. [37]

use an unconventional approach that involves rescaling Newton’s constant according to

Gd+1 = (1−d)
2 G2. Starting from the results in ref. [8], this procedure can also be applied to

derive an extended first law for perturbations of Killing horizons in the AdS2 metric gµν .

3.2 Jackiw-Teitelboim gravity

In this subsection we consider the extended first law in the context of Jackiw-Teitelboim

gravity [15, 16], that correspond to an Einstein-dilaton theory that cannot be written as a

purely gravitational theory of the type L = f(R). The action defining the theory can be

written as

IJT = Iφ[gµν ;φ0, L] =

∫
d2x
√
−g
[
φ0R+ φ(x)(R+ 2/L2)

]
. (3.18)

The dilaton field φ(x) is dimensionless and there are two coupling constants that define

the theory λi = (φ0, L). As usual, the action must be supplemented with appropriate

boundary terms to yield a well defined variational problem. The equations of motion can

be easily computed and written as

R+ 2/L2 = 0[
∇µ∇ν −

gµν
L2

]
φ(x) = 0 .

(3.19)

The first equation fixes the Ricci scalar to a negative constant value and since the theory

is two dimensional, it completely determines the Riemann tensor (3.1). This means the

7See refs. [38, 39] for a discussion around this issue.
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only metric solution in JT gravity is pure AdS2. The analysis of the extended first law in

JT gravity is extremely simple given that all we have to do is analyze the thermodynamic

behavior of Killing horizons in pure AdS2. The theory does not admit any real black

hole solution.8

Writing the metric in global coordinates (σ, θ) as in (3.6) the only Killing horizon is

generated by the vector in (3.7), which is time-like in the region θ± < θ0 ∈ (0, π), sketched

in figure 2. The equation of motion of the dilaton φ(x) can be easily solved in global

coordinates and written as

φ(σ, θ) = φh
cos(σ/L) sin(θ0)

sin(θ)
, (3.20)

where φh > 0 is an integration constant that gives the value of the dilaton at the horizon.

The full solution is parametrized by the value of the single constant φh.9

To compute the horizon entropy we use Wald’s functional (3.3) together with the fact

that the Riemann tensor is fixed by the Ricci scalar R in (3.1)

Sξ = 4π
δL
δR

∣∣∣∣
Horizon

= 4πφ0 + 4πφ(x)
∣∣
θ±=θ0

= 4π(φ0 + φh) . (3.21)

This agrees with the result obtained from the semi-classical computation of the Euclidean

path integral [41]. The extended first law involves computing the entropy variation with

respect to the coupling constants of the theory λi = (φ0, L) and checking whether it can

be written as

δλiSξ =
Sξ
a∗1
δλia

∗
1 , (3.22)

where a∗1 is some function of the coupling constants a∗1 = a∗1(φ0, L). In this setup we have

no natural definition of a∗1 in terms of the on-shell Lagrangian (3.4), so in principle we can

allow any function that depends exclusively on the coupling constants (φ0, L). However,

since a∗1 and φ0 are dimensionless quantities and L has dimensions of length we have it can

only depend on φ0.10 From the simple expression of the entropy given in (3.21) we can

compute the entropy variation explicitly and find it is not compatible with the extended

first law as written in (3.22) for any definition of a∗1(φ0)

δλiSξ = 4πδφ0 6=
Sξ
a∗1
δλia

∗
1 . (3.23)

This means the form of the extended first law for JT gravity is not the same as in the

previous cases we studied so far. The difference is that the solution in JT gravity depends

on the additional parameter φh, that appears in the horizon entropy and is not related to

the AdS radius L. In the previous derivations in section 2 we used the fact that the pure

AdS solution only depends on the radius L.

8While the classical theory is almost trivial, interesting dynamics arise by introducing a fluctuating

boundary. These boundary effects give one loop contributions to the Euclidean partition function [40, 41]

and therefore lie beyond the semi-classical analysis captured by horizon thermodynamics.
9While it seems the solution also depends on θ0 ∈ (0, π), we can use the isometries of AdS2 to fix

θ0 = π/2.
10Note that if we naively apply the definition of a∗1 in (3.4), we get a∗1 = 2φ0.
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We expect a similar situation for other Einstein-dilaton theories that cannot be written

as pure gravity theories. For any particular theory one can still compute the variation of

the horizon entropy on pure AdS2 as in (3.21), but there is no guarantee there exists a

function a∗1 = a∗1(λi) such that it can be written as in the extended first law (3.22).

4 Beyond pure AdS in three dimensional gravity

Given that all our calculations so far have been for Killing horizons in pure AdS, a natural

question is whether these results can be extended to horizons in more general space-times.

In this section we investigate this in the context of three dimensional gravity, making

contact with some concepts in extended black hole thermodynamics [7].

Consider a general three dimensional metric gµν which solves the equations of motion

obtained from (2.1) and admits a time-like Killing horizon generated by the vector ξµ.

The horizon entropy is obtained from Wald’s functional (2.3) evaluated on gµν , which

for a general metric we cannot evaluate explicitly. However, three dimensional gravity

theories admit interesting black hole solutions which are locally but not globally AdS, i.e.,

which satisfy

Rµνρσ = − 1

L2
(gµρgνσ − gµσgνρ) . (4.1)

For this class of black holes we can evaluate the integrand in Wald’s functional using (2.6)

and find

Sξ [gµν , λi] = 2a∗2(λi)Ã , (4.2)

where Ã = Ahorizon/L
d−1 and a∗2 in (2.8) is proportional to the Virasoro central charge c

of the dual CFT2. This expression is equivalent to the pure AdS relation (2.7) evaluated

at d = 2.

Let us now consider the behavior of the entropy under deformations of the theory,

i.e., λi → λi + δλi in (2.1). In this case, apart from the obvious contribution given by

the coefficient a∗2(λi) in (4.2), we must take into account the variation of the dimension-

less horizon area Ã. For the pure AdS metric, Ã is independent of λi since the metric

gAdS
µν (L) only depends on the dimensionful parameter L, so that dimensional analysis im-

plies Ahorizon ∝ Ld−1. This is no longer true for more general metrics which satisfy (4.1)

but are not globally pure AdS, as the metric can also depend on some integration constants

{cj} (e.g. mass, angular momentum, charge, etc.) so that the horizon area Ahorizon is no

longer proportional to Ld−1. Altogether, the variation of (4.2) is now given by

δSξ = Sξ δ
[
ln(a∗2) + ln(Ã)

]
. (4.3)

As we will shortly see in a simple example, computing this extra variation for a particular

solution is straightforward. However, while the first term involving a∗2 has a clear meaning

in the boundary CFT (given in (1.2)), this is not the case for Ã. Only by restricting

ourselves to black holes in which δÃ = 0, the boundary CFT satisfies the extended first

law given by

δÃ = 0 =⇒ δS(ρβ) = β δ〈H〉+
S(ρβ)

a∗2
δa∗2 , (4.4)
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where ρβ is a thermal state and we have included the usual energy term (2π/κ)δE′ξ in (4.3)

which maps to H, the hamiltonian of the CFT. Additional conserved quantities such as

angular momentum or charges, can be added to this relation in the usual way. The first law

in (4.4) is similar to the one obtained for the thermal state at temperature β = 2πR in the

background R×Hd−1 (2.23), with the crucial difference that β in this case is unconstrained.

Let us illustrate how everything works by considering a simple example in

Einstein gravity

I[gµν ;G,L] =
1

16πG

∫
d3x
√
−g
(
R+

2

L2

)
. (4.5)

The coupling constants of the theory are {λi} = {G,L}, where L is also the radius of the

pure AdS solution. The rotating BTZ black hole solution satisfies (4.1) and is given by [42]

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dθ − GJ

2r2
dt
)2
, (4.6)

where f(r) = −8GM+(r/L)2 +(JG/2r)2. Different black holes are labeled by the integra-

tion constants {cj} = {M,J}, which also give the global charges associated to the Killing

vectors ∂t and ∂θ respectively.

The outer horizon radius r+ is obtained from f(r+) = 0 and is a non-trivial function

of (G,L,M, J). We can easily write the dimensionless horizon area Ã in terms of r+

Ã =
2πr+

L
= 4π

√
MG

1 +

√
1−

(
J

8ML

)2
1/2

. (4.7)

This expression depends explicitly on both G and L, meaning that the second term in (4.3)

gives a non-trivial contribution, which we can easily write explicitly. However, if we consider

the static black hole J = 0 we get Ã = 4π
√

2MG, which is independent of L. Therefore,

if we restrict to variations of L (while keeping G fixed), we obtain the extended first law

given in (4.4).

4.1 Extended thermodynamics and volume

Let us now restrict to a particular type of theory deformation, in which we take the ra-

dius of the pure AdS solution L as one of the coupling constants defining the theory and

consider δ(λi, L) = (0, δL). This corresponds to the variations studied in the extended

black hole thermodynamics [7], in which the thermodynamic pressure is identified with L

according to p ≡ d(d− 1)/(16πGL2). Its conjugate variable is referred as the volume V

and can be defined from the entropy as

V ≡ −T
∂Sξ
∂p

= −TSξ
∂

∂p

[
ln(a∗2) + ln(Ã)

]
. (4.8)

where the second equality is obtained from (4.3). The p derivative is computed while

keeping all the remaining parameters fixed.

This volume formula holds for locally AdS black holes in any three dimensional theory

of gravity. Similar to (4.3), there are two distinct contributions to the volume. While the
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variation of a∗2 has a natural boundary interpretation in terms of the number of degrees of

freedom, the dimensionless area Ã does not. For cases in which Ã is independent of L, the

thermodynamic volume takes the following simple form

∂Ã
∂L

= 0 =⇒ V = −
(
TSξ
a∗2

)
∂a∗2
∂p

. (4.9)

This gives a class of three dimensional black holes whose thermodynamic volume is directly

related to changing the central charge of the boundary CFT. Since the meaning of V for

the boundary theory is not completely understood (see refs. [8, 13, 43–47]), this formula

might help give further insights. Let us use it in some concrete examples to compute the

volume of some black hole solutions.

Thermodynamic volume in Einstein gravity. Consider the simple setup of a BTZ

black hole (4.6) in Einstein gravity (4.5). As previously noted, for the static black hole

J = 0 the dimensionless horizon area Ã in (4.7) is independent of L, meaning that we

can directly use the volume formula in (4.9). Simple calculations give a∗2 = L/8G and

T = r+/2πL
2, so that we can compute the volume as

VJ=0 = −
(
TSξ
a∗2

)
∂a∗2
∂p

= πr2
+ . (4.10)

which agrees with the result obtained from a more standard approach in extended thermo-

dynamics [37].

For the rotating BTZ solution with J 6= 0 the dimensionless horizon area Ã in (4.7)

is a non-trivial function of L, meaning that we must use the more general volume formula

in (4.8). Although the calculation in this case is slightly more involved, the final result is

again very simple and given by

VJ 6=0 = −TSξ
∂

∂p

[
ln(a∗2) + ln(Ã)

]
= πr2

+ , (4.11)

in agreement with the previously known relation [37]. It is interesting to see that the

extra variation with respect to Ã is exactly what is needed in order to obtain this simple

final answer. An interesting microscopic analysis of this expression was recently given in

ref. [47].11

Thermodynamic volume in higher curvature theories. Since the volume for-

mula (4.8) is particularly powerful in the context of higher curvature gravity theories,

let us apply it in an example by considering the following generalization of new massive

gravity [49–51]

I[gµν ] =
1

16πG

∫
d3x
√
−g
(
R+

2

`2
+ `2R2 + `4R3

)
, (4.12)

11We should mention that while the charged BTZ black hole in Einstein-Maxwell theory [48] is not locally

AdS (4.1), if we naively apply the volume formula in (4.9) we obtain V = πr2+ − π(QL/2)2, which agrees

with the previously known result [37]. The reason it works is due to the fact that in Einstein gravity Wald’s

entropy functional always reduces to the Bekenstein-Hawking area expression, i.e. Sξ = A/4G. For higher

curvature theories we do not expect the volume formula (4.8) to reproduce the correct result for the charged

black hole.
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where

R2 = 4(λ1RµνRµν + λ2R2) ,

R3 =
17

12
(µ1RνµRρνRµρ + µ2RµνRµνR+ µ3R3) .

(4.13)

The coupling constants of the theory are given by {G, `, λ1, λ2, µi} with i = 1, 2, 3, where

new massive gravity [49, 50] is obtained by setting µi = 0 and λ2 = −3λ1/8.

To apply the volume formula in (4.8) we must first compute the a∗2 factor, which

depends on the pure AdS solution of the theory. We can find such solution by varying the

action (4.12) with respect to the metric, which gives the following equations of motion [51]

Rµν −
1

2
Rgµν −

1

`2
gµν −Hµν = 0 , (4.14)

where

Hµν = 4`2
[
λ1

(
−2RρµRρν +

1

2
gµνRρσRρσ

)
+ λ2

(
−2RRµν +

1

2
gµνR2

)]
+

17

12
`4
[
µ1

(
−3RµρRρσRσν +

1

2
gµνRρσRαρRσα

)
+ µ3

(
−3R2Rµν +

1

2
gµνR3

)
+ µ2

(
−RρσRσρRµν − 2RRµρRρν +

1

2
gµνRRρσRρσ

)]
+O(∇2R,∇2R2, . . .) ,

(4.15)

and we are omitting derivative terms that do not contribute to the pure AdS solution.

We can evaluate these complicated terms in a pure AdS metric gAdS
µν (L) of some radius L

using that it is a maximally symmetric space-time (4.1). Taking the trace of (4.14) and

writing the AdS radius as L = `/
√
f∞ we obtain the following algebraic constraint for the

factor f∞

L = `/
√
f∞ =⇒ 1− f∞ − 8f2

∞(λ1 + 3λ2) + 17f3
∞(µ1 + 3µ2 + 9µ3) = 0 . (4.16)

The solution f∞ of this algebraic equation that is smoothly connected to Einstein gravity

determines the pure AdS radius L. We can now write a∗2 from (2.8) by evaluating the

Lagrangian density (4.12) in AdS, so that we find

a∗2 = −1

2
πL3L

∣∣
AdS

=
L

8G

[
1− 16f∞(λ1 + 3λ2) + 17f2

∞(µ1 + 3µ2 + 9µ3)
]
, (4.17)

where we have used

R2 =
48

L4
(λ1 + 3λ2) , R3 = − 34

L6
(µ1 + 3µ2 + 9µ3) . (4.18)

The expression for a∗2 and the constraint in (4.16) defining f∞ reduce to the ones given

in ref. [51] when setting λ2 = −3λ1/8 and (µ1, µ2) = µ3(64,−72)/17. Moreover, if we

take λ1 = λ2 = µi = 0 we get f∞ = 1 and a∗2 = L/8G, in agreement with the Einstein

gravity results. Notice that the dependence of a∗2 with the AdS radius L is linear, as in the

Einstein case.
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We can now consider a black hole solution for this theory. Given that the BTZ black

hole in (4.6) is locally AdS, it solves the equations of motion in (4.14) as long as we take L

according to (4.16). The horizon entropy is obtained from (4.2) with a∗2 and Ã as given

in (4.17) and (4.7). For the rotating solution with J 6= 0 we can use the volume formula

in (4.8) and find

VJ 6=0 = πr2
+

[
1− 16f∞(λ1 + 3λ2) + f2

∞(µ1 + 3µ2 + 9µ3)
]
. (4.19)

To our knowledge, higher curvature contributions to the BTZ thermodynamic volume have

not been computed before.

5 Discussion

The extended first law of entanglement has been previosuly derived for the Minkowski

vacuum reduced to a ball by considering particular gravity theories in the bulk [8, 12–14].

In this work, we have shown a novel and simple procedure that generalizes the proof to

arbitrary gravity theories in the bulk and new setups in the boundary CFT. From the

bulk perspective we have found no obstructions in working in two dimensional gravity

and also obtain some intriguing results concerning extended black hole thermodynamics in

three dimensions. Let us discuss some additional aspects regarding the calculations in the

main text.

Divergent terms in the extended first law of entanglement. One important feature

of the ordinary first law of entanglement δSEE = δ〈KB〉 is that although the entanglement

entropy always diverges, the left-hand side is well defined since the difference between

entropies associated to different states is finite.12 For the extended first law of entanglement

this is no longer the case. Let us consider a variation of the theory without perturbing the

state, so that the first term on the right-hand side of (2.20) drops out and we are left with

SEE(ρ̄)− SEE(ρ) =
SEE(ρ)

a∗d
δa∗d . (5.1)

Both sides of this equality diverge, the left-hand side due to the fact that the divergences

of the entanglement entropies corresponding to different theories do not cancel each other.

This raises the question regarding how we should interpret (5.1), which seems to depend

on the regularization procedure.

Let us illustrate the issue by considering the simple case of the Minkowski vacuum

reduced to a ball of radius R in d = 3, where the entanglement entropy is [21]

SEE(ρB) = µ1
R

ε
− 2πa∗3 , (5.2)

with µ1 a dimensionless and non-universal constant and a∗3 given by (1.2). The short

distance cut-off ε can be properly defined using mutual information, see ref. [53]. If we

12As shown in ref. [52] this is not entirely true, since there are cases in which the entanglement entropy

acquires state dependent divergences, so that δSEE diverges. However, the relative entropy remains finite.
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consider the same setup but for a CFT in which ā∗3 = a∗3 − δa∗3, the entanglement entropy

is given by

SEE(ρ̄B) = µ̄1
R

ε̄
− 2πā∗3 , (5.3)

where the cut-off ε̄ and the constant µ̄1 are not necessarily related to the ones appearing

in (5.2).

How should we understand (5.1) in this context? A practical approach is to simply

ignore the non-universal contributions to the entanglement entropy and regard (5.1) as

a relation between the universal terms, where it is clear that the extended first law is

satisfied. A different procedure is instead given by relating the cut-offs of each theory in a

particular way such that the extended first law is satisfied to every order. Assuming there

is a relation ε = ε(ε̄) which can be expanded around the origin as

ε(ε̄) = ε̄
(
b0 + b2(ε̄/R)2 + b4(ε̄/R)4 + . . .

)
, (5.4)

we can fix the coefficients b2n such that (5.1) is satisfied to every order. For the case of a

ball in three dimensional Minkowski we find

ε(ε̄) = ε̄
µ1

µ̄1
(1− δ ln(a∗3)) + . . . , (5.5)

where higher order terms are unconstrained. An analogous construction can be considered

for the higher dimensional case and other setups in the CFT. This subtle aspect regarding

the extended first law of entanglement has not been previously discussed in the literature.

Extended first law of entanglement for general setups. Given that we have shown

that the extended first law of entanglement holds in a wide variety of setups, a natural

question is whether it is valid for arbitrary CFTs, regions and states. While the ordinary

first law follows from positivity of relative entropy [1] and therefore holds in full generality,

the extended version can only be formulated for CFTs since the coefficient a∗d in even

dimensions is only defined for conformal theories (1.2). Although trying to directly prove

the extended first law for arbitrary CFTs seems a complicated task, we can check whether

the results for the entanglement entropy present in the literature are consistent with (1.1),

which essentially implies SEE ∝ a∗d to first order in a∗d.

Let us consider two dimensional CFTs, where a∗2 is proportional to the Virasoro central

charge c. For the vacuum entropy associated to any number of disjoint intervals of a

holographic CFT in Minkowski space, refs. [54–56] showed that SEE ∝ a∗2. The same

is true for a thermal state reduced to an interval [57] and analogous setups in curved

backgrounds [58]. For more general situations, the entanglement entropy is only known for

particular CFTs, mostly free theories. In each of these cases the entropy depends on the

details of the theory in a complicated way. However, we are not aware of any result where

the entanglement entropy in two dimensions is not proportional to the central charge and,

consequently, in contradiction with (1.1).

For space-time dimensions larger than two, it becomes evident that the extended first

law of entanglement as written in (1.1) cannot hold in full generality. The simplest example

is to consider the Minkowski vacuum in d = 4 reduced to a cylinder. Here the entanglement
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entropy is independent of a∗d and is instead proportional to the coefficient appearing in the

square of the Weyl tensor in the trace anomaly [59]. For more complicated regions the

entropy is a combination of these coefficients. While this shows the extended first law as

written in (1.1) cannot hold in general for d = 4, it suggests the following generalization

might still be true13

δSEE = δ〈KB〉+
∑
i

SEE
ai

δai , (5.6)

where B is a region in four-dimensional Minkowski and ai are the coefficients of the terms

appearing in the trace anomaly (see for example [11]). This generalization has a better

chance of applying to more general regions.

It would be interesting to understand how holography is able to capture the extended

first law of entanglement in these more general cases where it is expected to hold. The

d = 2 case stands out as the simplest one in which concrete progress might be possible,

maybe using similar techniques as the ones developed in [56]. This deserves further study,

in order to determine whether a general derivation of the extended first law of entanglement

in this context is possible.

Bulk constraints from extended first law of entanglement. Assuming the RT

holographic formula for entanglement entropy together with the ordinary first law of en-

tanglement in the boundary, implies Einstein’s bulk equations about a perturbed AdS

background. What are the consequences of assuming the extended first law of entangle-

ment instead?14

Let us address this question in the simplest setup of AdS3/CFT2, where the bulk

theory is described by Einstein gravity, so that the coupling constants are λi = (G,L). Let

us assume (the non-trivial statement that) the extended first law of entanglement holds in

the boundary CFT for arbitrary states ρ and regions B, together with the RT formula

δSEE = δ〈KB〉+
SEE
c
δc , SEE =

A(γext)

4G
, (5.7)

where γext is an extremal bulk curve homologous to the region B at the boundary. Using

that in Einstein gravity the central charge c is given by c = 3L/2G, the “extended”

contribution of the first law of entanglement on the bulk becomes

δλi

(
A(γext)

4G

)
=
A(γext)

4G
δλi ln(L/G) =⇒ A(γext) ∝ L . (5.8)

The extended first law of entanglement translates into the statement that the length of the

extremal curve on the bulk is proportional to the AdS radius L.

If the boundary state is the vacuum |0〉 the bulk metric is pure AdS3, which only

depends on L, and A(γext) ∝ L immediately follows from dimensional analysis. The

constraint becomes more interesting when considering excited states at the boundary, such

as a thermal state ρ(β) with inverse temperature β. In this case we can easily compute

13We thank Manus Visser for suggesting this generalization.
14We thank Manus Visser for suggesting this question.
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A(γext) and find the non-trivial statement A(γext) ∝ L is indeed true [17]. For more

general setups this gives a bulk constraint coming from the boundary extended first law of

entanglement.

It is also interesting to consider the inverse logic. We can directly compute A(γext)

for complicated holographic setups and check whether the end result is proportional to

L. This could help understand in which situations the extended first law of entanglement

holds for the boundary theory.

Extended first law in a single dimension. In this work we have explored the extended

first law for two-dimensional gravitational theories. While we have shown interesting results

can be obtained from the gravitational perspective we have not analyzed the boundary in-

terpretation of our calculations. In future work it would be interesting to study this further,

maybe in the setup of JT gravity that it has been recently understood as a holographic

description of an ensemble average of SYK models [35].

JT gravity also offers an arena to study the relation between quantum bulk effects

and the extended first law of entanglement at the boundary. While in general it is very

difficult to take these contributions into account, this simple setup allows for very explicit

calculations in the bulk [60]. Hence, it might be possible to write down an extended

first law that incorporates bulk quantum corrections. On a more speculative note, it

would be interesting to investigate the extended first law in dynamical space-times, in the

hope it sheds a new perspective regarding recent progress on the black hole information

paradox [61, 62].

Three dimensional gravity and thermodynamic volume. For three dimensional

bulk duals we have derived a modification of the extended first law (4.4) that holds for

space-times that are not necessarily (globally) pure AdS, such as the BTZ black hole. In

the context of extended black hole thermodynamics, we obtain a curious formula for the

thermodynamic volume (4.8), which we verified gives the correct expressions found using

standard means. In particular, we obtain a result for the thermodynamic volume of the

BTZ black hole in a higher curvature theory of gravity (4.19).

It would be interesting to see whether the formula for the thermodynamic volume

in (4.8) provides anything new to the field of extended thermodynamics. Particularly, it

would be beneficial to see if it gives another microscopic viewpoint of V , along the lines

of [47]. In ref. [47] it was shown that the thermodynamic volume sometimes constrains

the number of available CFT states dual to AdS3 gravity, revealing that the Bekenstein-

Hawking entropy (given by the Cardy formula) overcounts the number of CFT degrees of

freedom. This chain of reasoning provides a microscopic explanation for black hole super-

entropicity, a designation for black holes whose entropy exceeds that of Schwarzschild-AdS,

and violate the reverse isoperimetric inequality [18]. In three space-time dimensions, the

reverse isoperimetric inequality takes the form

πV ≥ 4S2G2 . (5.9)

When we input our expression for the volume in (4.8), the reverse isoperimetric inequality
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imposes a lower bound on the L derivative of log(a∗2),

∂

∂L

[
log(a∗2) + log(Ã)

]
≥ SG

π2L3T
≥ 0 . (5.10)

Black holes which satisfy this inequality, e.g., rotating BTZ, are said to be sub-entropic.

Super-entropic black holes, such as the charged BTZ, violate the inequality (5.9) and impose

the following upper bound

∂

∂L

[
log(a∗2) + log(Ã)

]
≤ SG

π2L3T
. (5.11)

Since a∗2 relates to the number of degrees of freedom of the dual CFT2, these bounds are

expected to tell us something about the availability of CFT microstates to be counted by

the Cardy formula. It would be interesting to study these bounds in further detail, where

Ã might acquire a boundary interpretation.
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