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1 Introduction

Despite the enormous theoretical and observational success of Einstein’s general the-
ory of relativity, one major limitation is its failure to describe physics at very high-
curvature scales. Classically, the theory predicts that, under common assumptions, space-
time manifolds inevitably possess singular points where measurable quantities unphysically
diverge [1-3]. Quantum mechanically, general relativity (GR) is non-renormalizable: di-
verging graviton loops always require the addition of higher-curvature counterterms in the
action (up to arbitrarily high powers) [4-6].

One of the hopes of string theory is precisely to resolve these shortcomings. By pro-
moting point particles living at singular points in spacetime to extended objects like strings,
one can imagine that divergences and singularities should be resolved. Given the extended



nature of strings, scattering amplitudes described by one-dimensional graphs in quan-
tum field theory (namely Feynman diagrams) are replaced by two-dimensional manifolds
(namely string worldsheets), thus removing the sharp localization of interaction vertices.
Furthermore, the only dimensionful parameter of the theory can be associated with the
fundamental length of a string, /s (often equivalently characterized by the o' parameter
via lg = V27ma/), thus suggesting the existence of a minimal length scale — a recurring
property of attempts to finding a quantum theory of gravity [7] — that would indicate the
boundedness of spacetime curvature. However, it remains to be shown that singular space-
times can be fully and consistently resolved in a fundamental theory. For instance, we do
not know yet if string theory fundamentally allows for non-singular bouncing cosmologies
that resolve the big bang.

String theory is most easily approached as a perturbative theory in o as it is the only
dimensionful parameter at play. To lowest order in vo/ /R < 1, where R is the charac-
teristic curvature radius of the background, consistency of the sigma model by ensuring
the vanishing of the Weyl anomaly (correspondingly enforcing the one-loop beta function
to vanish) yields, in a purely gravitational theory, 8, = /R, = 0, which is precisely the
vacuum Einstein equation. Going to next order in vo/ /R, one can compute the two-loop
beta function yielding B,, = o' R+ (a/2/2) Ry po R,7P7. 1t thus becomes apparent how o
corrections introduce higher-curvature terms in the equations of motion (and equivalently
in the action). While the calculation may be tackled up to a few loops (and in principle
to all orders) [8-10], subtleties rapidly arise and calculations become very difficult. To
make matters worse, the demonstration that singularities are truly removed in the theory
might only be achieved from a non-perturbative theory that encapsulates o’ corrections
to all orders, i.e. a theory with an infinite number of higher-curvature terms that can
probe the regime of the fundamental scale of the theory, R ~ ¢;2, which is precisely the
non-perturbative regime of the theory.

Fortunately, string theory comes with useful features such as dualities. In particular,
T-duality implies the correspondence between physics at scale R with that at scale o/ /R.
This is manifest for instance in a cosmological setup (when one imposes the symmetries
that come with the assumptions of homogeneity and isotropy) described by a scale factor
a(t): the physics of the universe with scale factor a is dual to that with scale factor 1/a.
This is known as the discrete scale factor duality [11], which is generalized to the continuous
group! O(d, d) in d spatial dimensions [12, 13]. The duality is proved to hold to all order in
o/ [14] (see [15-18] for explicit verifications at finite orders in '), hence suggesting O(d, d)
symmetry may be imposed at the action level to help one construct a cosmological theory?
that could include o’ corrections to all orders. This is what was achieved by Hohm &

"Here and throughout, we assume the group with real elements, i.e., O(d, d) is meant to be shorthand
notation for O(d, d,R).

2An alternative approach to finding o’ corrections by taking advantage of T-duality has been developed
thanks to double field theory [19-30] (see also [31, 32]). This benefits from being a spacetime-covariant
approach, which does not have to rely on the assumptions of homogeneity and isotropy. This avenue has
led to promising applications in cosmology [33-37]. While this path will not be explored in the present
work, we believe that it is worthy of mention. In passing, it is also worth mentioning additional approaches
to constructing o’-corrected stringy actions and their application to stringy black holes (see, e.g., [38-41]).



Zwiebach [42, 43] (generalizing [44]), who found the form of the most general action for the
metric, the dilaton and the b-field when these fields only depend on time, which is invariant
under O(d, d) transformations and which includes o’ corrections to all orders. The inclusion
of coupling to other matter fields was then first explored in [45], and applications to string
cosmology have been explored in a few studies so far [42, 43, 45-50], often discovering new
potential solutions, such as de Sitter-like or loitering backgrounds, which are otherwise
often difficult to find in string cosmology (see, e.g., [51-54]).

The current paper’s aim is to go beyond these recent works on string-cosmology back-
grounds to all orders in o’. The precise goal shall be twofold: putting recent developments
on firmer grounds and addressing the question of cosmological singularity resolution. The
former is relevant since it has been realized that subtleties arise when coupling matter to
an O(d, d)-invariant theory with o’ corrections to all orders, and this plays an important
role when it comes to describing physical cosmological scenarios with matter. In particular,
we unveil that pressure can have different definitions, and we show the role of symmetries
in constraining allowed theories. From this, we give a proof that if the theory does not
couple to external fields (or even with matter satisfying some specific equation of state
[EoS]), constant-dilaton solutions only admit Minkowski or de Sitter (dS) backgrounds. As
a consistency test, we also show how the linear dilaton conformal field theory (CFT) is
recovered in the present theory. Furthermore, we explore the role of matter in the differ-
ent regimes of the theory; specifically, we show how the low- and high-energy limits can
fix the allowed equations of state of matter. The latter is most easily tackled from the
point of view of energy conditions, which are at the core of the singularity theorems in
GR [1-3]. Indeed, given some matter content, one can derive effective energy conditions
such as the strong energy condition (SEC) or the null energy condition (NEC), and the
violation of these conditions are often necessary for finding certain cosmological solutions,
such as accelerating and non-singular ones. From this, we can comment on the viability
of the theory to yield dS-like accelerating solutions and finally address the question of
singularity resolution. Specifically, we explore different physically motivated ansétze and
the resulting phase space of the theory, seeking for consistent non-singular solutions. The
results shall be interestingly nuanced: previously claimed non-singular cosmological solu-
tions are actually ruled out, but we find other ansétze that do admit, e.g., non-singular
cosmological bounces; however, fully singularity-free solutions remain hard to find and are
at the level of toy models, and so, it may indicate that singularity resolution might not be
so straightforwardly implied from string theory, even with o’ corrections to all orders.

Outline. We start by revisiting o/-complete cosmology in section 2, first reviewing the
basics of the theory and the resulting equations of motion in vacuum (section 2.1) and
with the addition of matter (section 2.2). Then, section 2.3 clarifies the different defini-
tions of pressure in an O(d, d)-invariant theory. The low- and high-curvature limits of the
theory are discussed in section 2.4, and the linear dilaton CFT is presented in section 2.5.
Constant-dilaton solutions and their implications for dS spacetime are carefully studied
in section 2.6. The topic of energy conditions is the subject of section 3, exploring both
the SEC (section 3.1) and NEC (section 3.2), their violation and the corresponding impli-



cations. Section 4 is devoted to finding non-singular bouncing cosmological backgrounds,
deriving general requirements (section 4.1) and exploring specific models (section 4.2). We
summarize the results in section 5, together with further discussions.

Notation. Throughout this paper, we follow as much as possible the notation of [42, 45],
though with some slight differences. In particular, let us use sans-serif fonts to denote
general matrices (e.g., G), bold italic for spacetime tensors of any rank (e.g., G), and
standard italic for scalar quantities (in the mathematical sense) and tensorial components
with indices (e.g., n, gij, Gyv). Also, there are D = d + 1 spacetime dimensions, p,v,... €
{0,1,...,d}, 4,7,... € {1,...,d}, and we use the mostly plus signature (—,+,...,+).

2 Revisiting a’-complete cosmology and coupling to matter

2.1 Brief review of the gravitational O(d, d)-invariant action

The universal massless Neveu-Schwarz sector of all superstring theories is composed of
three fields: the symmetric spacetime metric tensor (G), the antisymmetric Kalb-Ramond
tensorial field (Byg)), and the dilaton scalar field (¢). Upon considering a purely time-
dependent (d + 1)-dimensional string background,

Gudatde” = —n(t)*dt® + gi;(t)da'da’ , By = bij(t)da’ Ada?, ¢ =¢(t), (2.1)

these fields can be reassembled to form field representations of the O(d, d) symmetry group,

O =2¢—1Ing, (2.2a)
bg™t g —bg'b

S = , 2.2b

(g‘l —-g'b (2.25)

where the shifted dilaton ® is an O(d, d)-invariant scalar field, and S is an O(d, d)-covariant
2dx 2d matrix constructed out of the matrix components of the two-form field b;;, the spatial
metric g;; and its inverse ¢g"/. Note that g := det(g) and v—G = n,/g, with G := det(G).
The lapse function is denoted by n(t).

Starting with the background ansatz (2.1), further assuming isotropy and flatness (so
gij(t) = a(t)?8;;, i.e. taking a Friedmann-Lemaitre-Robertson-Walker [FLRW] metric) and
setting the two-form field to zero (so b;;(t) = 0), the O(d, d)-invariant action for these fields
takes the general form [42]

S[®,n,S] = % / dtne ® (-(Dtcp)? + i(a’)k*cktr [(DtS)%D : (2.3)
k=1

where a spatial-volume integral is omitted since everything only depends on time, 2 oc £¢~1
essentially defines the D-dimensional Newton constant (the proportionality factor varies
according to the 10-dimensional theory considered), D; := n~10; defines the time-reparame-
trization invariant time derivative, ¢c; = —1/8 according to the known tree-level, low-energy
effective action of bosonic string theory, and the other ¢;’s are generally unknown (they



depend again on which type of string theory is considered). Extremizing this action with
respect to (w.r.t.) ®, n, and S yields the equations of motion (EOMs)

2D Z “Legtr [ DtS)Q’“} —0, (2.4a)

(D, @)% — i(a’)k_l(Qk — Degtr [(DS)*] =0, (2.4b)
k=1

( *‘1’2 N4k, S(DS) 1) =0, (2.4¢)

respectively. Note that the action (2.3) takes into account an infinite tower of o/ string
corrections in a flat cosmological background in the absence of the antisymmetric field. Al-
though these corrections appear as higher-order derivative operators multiplied by generally
unknown coefficients, their form is constrained by the ansatz and the O(d,d) invariance
such that they depend only on the first time derivative of S (higher-derivative terms can
always be recast into single-derivative terms via field redefinitions as shown by [42]). How-
ever, imposing a vanishing two-form field has its costs. As one can easily check, the matrix S
transforms under O(d, d) transformations as a rank-two tensor. Thus, a continuous O(d, d)
rotation mixes g and b together. By considering b = 0, the group is explicitly broken down
to the discrete scale factor duality [11, 55]. Had the two-form field been non-vanishing,
other corrections would have been present as multi-trace operators. The explicit derivation
of the EOMs and search for solutions in this case has been recently obtained in [50] in the
absence of matter, while another approach which includes matter and specific conditions
so that these multi-trace corrections can be ignored has recently been developed in [56].
Nonetheless, some of the following results apply even with full O(d, d) symmetry, and these
cases will be explicitly discussed.

2.2 The matter sector and the equations of motion

The gravitational action (2.3) coupled to matter in an O(d, d)-invariant fashion is [45]

S[®,n,S, x| = /dtne (— Z “Leptr { DtS)Qk]> +Su[®,1,S,x], (2.5)

where x represents any additional matter fields (denoted as a scalar here, but there could
be many such fields and they could just as well have different spins). The matter action,
Sh, is assumed to be O(d, d) invariant. Then, one can define an energy-momentum tensor

of the form
2 6Sn

V=G IGw

At this point, since ®, n, and S are independent fields in an O(d, d)-covariant formalism,

Ty = — (2.6)

the variation w.r.t. the inverse metric tensor components G*” is taken keeping the other
fields fixed. Specifically, when evaluating Ty, one varies w.r.t. G = —n=2, so one is
really varying w.r.t. n. Similarly, when evaluating 7;;, one varies w.r.t. GY = ¢, so one

is really varying w.r.t. S [recall eq. (2.2b)]. In doing so, one must keep n and ¢ fixed.



This is counter-intuitive since ® = 2¢ — In /g appears to have explicit g dependence, but
this dependence must be ‘ignored’ to be consistent with how the EOMs are derived in the
O(d, d)-invariant formalism. In [45], the variations were done w.r.t. the O(d, d) multiplet
fields, and as a result the variation w.r.t. the spatial metric at constant ® was naturally
encoded in a 2d x 2d O(d,d) tensor, which was a source to S. As is discussed below in
section 2.3, this is different than what is done in standard [not O(d, d)] string cosmology,
nevertheless consistent.?
One can also define the ® charge density by

where the same logic as above is considered: the variation w.r.t. ® must be performed
keeping the other variables fixed, in particular n and S, even though both ® and S can be
thought of as functions of g;;. The purpose of the notation sometimes used as in eq. (2.7)
is to make this explicit.

From the definition of the energy-momentum tensor and assuming a perfect fluid,
where T#,, = diag(—p,péij), the energy density and the pressure are readily defined by
eq. (2.6) to be

1 6Sm
p = _ﬁ?n , (28&)
2 g9 (68,
=29 (%m) 2.8b
p=-rs7 (55) (28b)

Finally, considering these matter sources defined in a flat FLRW background (taking
n(t) =1 and g = a(t)?l, where | is the identity matrix), and using the left-hand side
(Lh.s.) of (2.4), the EOMs reduce to [45]

®* 4+ HF'(H) — F(H) = 2k%%p, (2.9a)
HF'"(H) — ®F'(H) = —2dre®p, (2.9b)
20 — &% + F(H) = k%e%7, (2.9¢)

where a bar denotes multiplication by /g = a? (e.g., p := \/gp), H(t) := a/a is the Hubble
parameter, dots and primes denote derivatives w.r.t. to time and H, respectively, and the
function F(H) is given by

H)=2d> (=) e, 22 B (2.10)

These EOMs can be related via the continuity equation

. 1.
ptdHp— 507 =0, (2.11)

3Indeed, the fact that one is considering O(d, d) covariance as opposed to diffeomorphism covariance as
a starting point leads one to consider field redefinitions that mix the metric, the dilaton, and the two-form
(in general). This is simply a choice, and it is very much similar to what one does in multi-field inflation to
distinguish between adiabatic and entropic perturbations or just in cosmological linear perturbation theory,
where the physical variable is a gauge-invariant combination of the metric and the matter perturbations.



which can be equivalently used to replace one of the EOMs in (2.9). As discussed above,
these equations are invariant under the scale factor duality transformation a — 1/a, since
under this transformation we have

H—--H, -, FMH)—FH), p—p, p—>—-D, 0—0. (2.12)

A note about the symmetries. The function F'(H) is an even function, and it can be
directly linked to the term

T (DiS)*]
k=1

in the original action (2.3) by an overall —1 factor. In other words, the gravi-dilaton
Lagrangian is proportional to e~ ®[—®2 — F(H)] on FLRW when the lapse is set to unity.
Thus, the symmetry F(H) — F(H) must be satisfied for the full action to be O(d,d)
invariant. From eq. (2.10), another requirement is that F(H) must vanish when H = 0,
i.e., one must recover the Minkowski solution.

Notice, though, that a given solution to the EOMs might not be invariant under the
scale factor duality stated above. In fact, the symmetry may well be spontaneously broken.
However, the point is that the symmetry remains at the level of the full action and EOMs,
so the duality always allows one to take a solution to another (different) solution [57]. Yet,
since F'(H) has to be invariant under the duality at the level of the action, any ‘solution’
for F(H) must respect the symmetry. To be clear, string theory may provide some sets of
parameters ¢, that determine possible expressions for F'(H) exactly, so F' is not the solution
to any EOM, it is an input. As almost all the parameters ¢ are yet to be calculated from
string theory, the best one can do at this point is to determine whether certain solutions
admit acceptable functions F'(H). In that sense, proposing different ansétze for the function
F(H) may yield different possible background solutions, but the reverse can also be done:
given some sensible background solution, one can determine what form F(H) must take
and judge whether it is theoretically admissible or not.

2.3 The different definitions of pressure

As it was discussed above, the EOMs are obtained after considering independent variations
of the action in relation to the O(d, d)-covariant fields {n,®,S}. Thus, when the action
is varied in relation to S, which encodes the spatial components of the metric, one could
think that it would be equivalent to varying the action in relation to the spatial part of the
metric, thus defining the pressure. However, this is generally not the case as the metric also
appears implicitly in the shifted dilaton, which is kept fixed while the action is varied in
relation to S. Therefore, the pressure defined in (2.8b) is not the ‘total pressure’, p, which
also includes the variation of the volume factor in its definition. Note that this was already
partly noticed in the literature (see, e.g., [58] for more details). The difference between
an O(d, d)-covariant pressure and a diffeomorphic-covariant one, and its consequences, has
also been explored in [37].

To make a connection between the different definitions of pressure, one can calculate
the total pressure using the typical definition from GR or non-O(d, d)-covariant dilaton



gravity,

2 ¢gU§S, 2 g4 - Y
g7 58 g {(55‘) 8S, O } (2.13)
[

Pe= TG d 5g - =G d |\dg 5O bgii
This is the definition of pressure that enters in the usual dilaton-gravity EOMs found in,
e.g., [59, 60]. Comparing it with egs. (2.7) and (2.8b), it becomes clear that

ij
pt= % (Tz'j + g.%j) =p+ % ; (2.14)
where the T;; in the first equality includes only the dependence on g~ ! through S, i.e., it
is the spatial part of the O(d, d)-covariant energy-momentum tensor, and so we may also
call p the ‘O(d,d) pressure’ when there is possible confusion with the total pressure p.
The importance of emphasizing the relation between p; and p will be seen, for instance,
after considering the low-energy limit of o/-complete cosmology in order to recover Einstein
gravity. This is discussed in the next subsection.

To gain intuition about the different definitions of pressure, let us consider the possi-
bility of writing the matter action as

Su[®, 1,5, ] = / dt ne=® Lonn, S, . (2.15)

where Ly, is the matter Langrangian density. This is not meant to be the most general
expression for the matter Lagrangian. However, there exists motivation for exploring such
an expression. By the dilaton theorem [61-63], one expects any explicit ® dependence
in the matter action to appear as an overall exponential factor. The matter Lagrangian
could still involve couplings to derivatives of the dilaton, i.e. dependencies of the form
Di®, but as shown in [42, 45], such dependencies can be removed by field redefinitions.
Therefore, we argue that a matter action of the form of eq. (2.15) — where we may say that
matter is minimally coupled to the O(d,d) dilaton in the string frame — is very generic.
Another possibility would be the case where there is strictly no ® dependence is Sy, (this
is the case of, e.g., strings themselves [31, 55, 60]), in which case the dilaton charge density
always vanishes. Most of the results in string cosmology actually assume that there is no
® dependence in the matter action, so that matter couples only minimally to the metric
in the string frame. In such a case, this is sorting out the metric as special in relation to
the two-form and dilaton fields, and the O(d, d) invariance is explicitly broken down to the
discrete scale factor duality already at the level of the action.

An implication of (2.15) is that when the Lagrangian is independent of the spatial
metric, i.e. L, = Ly[n, x|, it follows that p = 0 and p; = 0/2. An explicit example is
discussed in section 2.5, but let us mention another example here already: one expects a
scalar field in an FLRW background that minimally couples to the metric in the string
frame and that respects O(d,d) invariance to enter the matter action as in (2.15) with
L = x?/(2n%) — V(x). It is clear that this is independent of the spatial metric, hence the
O(d,d) pressure vanishes. The naive EoS of a scalar field is only recovered through the
calculation of the total pressure in such a case. In fact, one could argue that most matter
Lagrangians minimally coupled to the O(d,d) dilaton in the string frame, i.e. entering



the action as in (2.15), should be independent of the spatial metric in a cosmological
background. Indeed, matter fields in FLRW should just be functions of time (and thus
also of the lapse) in the action; they certainly are not expected to directly depend on the
scale factor. Consequently, cases where p = 0 shall be explored with special interest.

2.4 Low- and high-curvature limits

2.4.1 Recovering Einstein gravity

Intuitively, the Einstein-gravity limit corresponds to the case where the dilaton is constant,*
so that there is no distinction between the string frame and the Einstein frame, and where
the o/ corrections are negligible. This can be seen explicitly by taking the lowest-order
limit in o/ in (2.9) to get (recall F(H) = —dH? to lowest order)

d(d—1)

20° — 2dHo + 5 H? = K2e*p, (2.16a)

H—2H + dH? = k?e*%p, (2.16b)

4 — 4¢* + 4dHp — 2dH — d(d + 1)H? = k%e*0 . (2.16¢)

Then, eliminating H and H? from eq. (2.16¢), one obtains the following equation for the
dilaton,

b—24% +dH¢ = —“2§2¢ (p —dp— ;’) : (2.17)

from which it is clear that a vanishing-¢ solution is only possible if the right-hand side
(r.h.s.) is vanishing, i.e. if

p—dp—g:() (2.18)
or equivalently p —dp; + (d — 1) /2 = 0 recalling (2.14). Thus, using the above, egs. (2.16)

for a constant dilaton ¢ = ¢g reduce to

d(dgl)fﬂ =i%p, —(d-1D)H=F*(p+p), (2.19)

where &2 := k2e2%. Providing the total pressure with an EoS parameter wy := p; /p and the
dilatonic charge density with an EoS parameter A := o/p, the constraint equation (2.18)

can be equivalently written as

1 d—1
wt:d<1+2 ) : (2.20)

Correspondingly, egs. (2.19) are the (d 4+ 1)-dimensional Friedmann equations sourced by
a fluid with EoS satisfying the above, i.e. where fixing the matter EoS amounts to fixing
the dilatonic charge density or vice versa. However, we point out that one does not have
the freedom to give arbitrary values to both wy and A — they must be related according
to (2.20) for a low-curvature, fixed-dilaton solution to be consistently recovered.
Therefore, for a constant dilaton and ¢ = 0 (A = 0), but with p # 0 so that we are
not in vacuum, the only consistent matter is a radiation fluid with p/p = p¢/p = 1/d (in

4Note that constant-dilaton solutions break the scale factor duality spontaneously.



agreement with the known result [64]). Thus, to have an arbitrary EoS wy, the dilatonic
charge must be non-vanishing for a constant dilaton field when the lowest-order equations
are being considered.

A note on the Einstein frame. Transforming the dilaton-gravity matter action at 0"

order in o to the Einstein frame (EF) — cf. appendix A — yields an action in the form (A.3)

EF)

with the addition of a matter action Sr(n . The resulting EOMs can be written as®

1 m

Ruy — 5 RGyuy = T{Y) + T, (2-21a)
7(m)

O¢ = G“"Vuqub _ % - (2.21b)

where the energy-momentum tensor of the dilaton is given by
1 Q
TS = 0,606 — 3G G 020050 . (2.22)

and 7™ .= G T,Sryn) is the trace of the energy-momentum tensor of matter, which is
defined as before, except for the Einstein-frame matter action in this case. The Einstein-
frame ¢ charge (o4) is similarly defined as before. From the above, it is clear that a
constant-¢ solution reduces to Einstein gravity. Such a solution is only obtainable, however,
if the r.h.s. of eq. (2.21b) vanishes, i.e. if

o T™ o p—dp
R T SR

=0, (2.23)

where the second equality applies for a perfect fluid in FLRW. This is exactly the same
requirement as in the string frame [cf. below eq. (2.18)], recalling that equations of state
should remain frame invariant and that o4 = 20 (which simply follows from the fact that
o is the variation of the matter action w.r.t. ®, while oy is the variation w.r.t. ¢, and one
has 0® = 2§¢). In particular, when o, = 0, the constraint is p — dp; = 0, which is the
EoS of radiation. When this requirement is met in the matter sector, the dilaton EOM
simply becomes ¢ = 0, or ¢+ dH¢ = 0 in FLRW, i.e., it is the Klein-Gordon equation of
a massless scalar field. It is clear that there are two solutions: ¢ = 0, from which Einstein
gravity immediately emerges, and ¢ x a~%. For the latter, note that ¢ x a~% — 0 as
a — 00, so Einstein gravity is recovered asymptotically in the small-curvature limit, as
expected. Note that something similar happens when looking at the Einstein-gravity limit
of other modifications to GR that involve a scalar field non-minimally coupled to gravity.
For instance, in Brans-Dicke gravity, Einstein gravity with the addition of a massless scalar
field is recovered when the trace of the matter energy-momentum tensor vanishes (e.g., as
is the case for radiation); see, e.g., [65-67].

5We drop the subscript ‘E’ in this paragraph; everything is meant to be in the Einstein frame. We also
temporarily use units with Mp; = 1.
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To all orders in o’. Back to the EOMs (2.9), one can define A(H) := F(H) + dH?, so
that using eq. (2.10),
A(H) = 2dH* Y (~1)*22FH ey (o/ HA)". (2.24)
k=1

Thus, A(H) represents all the o corrections, starting at order (o/)!, i.e. pulling out
the expected lowest-order contribution from F(H). Accordingly, F/ = —2dH + A’ and
F" = —2d+ A”, so the EOMs (2.9) read

®2 —dH? + HA' — A = 2K2%e%p, (2.25a)
—2dH + HA" + 2dH® — A" = —2dr>e®p, (2.25b)
20 — &% — dH? + A = k2% . (2.25¢)

To explore the Einstein-gravity limit, consider the ansatz® ¢ = 0 (say ¢ = ¢p), which
implies ® = —dH, hence the EOMs become

1 1
d(d2)H2 + §(HA/ —A) =R?p, (2.26a)
. 1 .
H 4 dH? — (HA"+dHA") = R, (2.26b)
H+ T -g2 —A=—— 2.26
T 2d 2d" 7 (2:26c)

where all the terms involving A(H) represent the o/ corrections to the Friedmann equations
starting at O(a’H*). Assume now there is a solution H(t), which at a given moment in
time satisfies

H =bM;, (2.27)

where M := 1/4; ~ 1/v/a' is the string mass and b is some positive constant. If b < 1,
it corresponds to a low-curvature regime. Then, focusing on the modified Friedmann
constraint equation (2.26a), the H? term in the Lh.s. scales as b>M2, while the ‘new’
contribution scales as HA' — A ~ A ~ o/ H* + O(a/?H®) ~ b*M2 + O(b°M2). Clearly,
this is much smaller than the H? contribution by a factor of b?> < 1, therefore it cannot
contribute much. Rather, it must be the r.h.s., #2p, that scales as H? ~ b>M2. Here,
k2~ Mlil_d for a fixed dilaton at weak coupling, so p must scale as b2MS2Mgl_ ! This can
also be written as p ~ b2(MS/MP1)2Mgf“1, where in the weak-coupling regime, one has
M/ Mp) = e2?0 <« 1, s0 p is much smaller than the Planck density Mglﬂ. Still, the matter
source dominates over the higher o/ corrections in the weak-curvature regime. This makes
sense: when H is small, the o/ corrections are very small, and H? ~ %%p, so most matter
contents actually dominate over curvature corrections. In that sense, one can say that
‘Einstein gravity is recovered.

SNote that it is not possible here to isolate H? from eq. (2.25a) and correspondingly obtain an equation
for ¢ in the form of eq. (2.17) as it was possible for the 0" order in o’. Thus, it is not possible to write down
a simple constraint equation on the matter sector for the solution d) = 0 to be obtainable. Nevertheless, it
is assumed that the solutions can be obtained and the corresponding consequences are explored.
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2.4.2 The high-energy limit

Let us consider the high-energy limit and the role that matter plays at such scales. In a
high-curvature regime where H ~ M [so b ~ O(1) in eq. (2.27)], one has A(H) ~ M2
(to all orders in o), and it looks like it is rather the o’ corrections that dominate over
matter, unless #2p is also of order M2. However, this can be the case if p ~ MfMgl_l =
(Mj /Mpl)QMgiH < Mgfrl in the weak-coupling regime. Thus, even in the sub-Planckian
density regime, matter can be as important as the non-perturbative o’ corrections when
the curvature scale is the string scale. Correspondingly, exploring the role of matter in
high-curvature regimes such as in the very early universe is well justified. This is further
developed in the second part of the paper.

In a high-scale regime and for duality preserving solutions (as motivated by examples
of stringy early universe cosmologies such as string gas cosmology and pre-big bang cos-
mology), constant-dilaton solutions are not expected since their O(d, d) transformation has
a time-dependent dilaton for H(t) # const., spontaneously breaking the O(d, d) invariance.
In the context of very early universe cosmology, one should check case by case whether the
solutions have some ‘graceful exit mechanism’, i.e. moving away from the high-curvature
regime into a small-curvature regime corresponding to, e.g., the onset of radiation domi-
nation and onward. Moreover, the dilaton should” freeze (i.e., reach the ‘Einstein-gravity
limit’ with ¢ = 0), wishfully dynamically, although there could exist other mechanisms
enabling the dilaton to freeze.® The present paper shall not be concerned though with the
construction of full cosmological scenarios. This has been first explored in, e.g., [48, 49]
and deserves to be extended in future work.

2.5 Recovering the linear dilaton CFT

In this section, a well-known result related with the cosmological constant case is recov-
ered: the linear dilaton CFT, with {G .., Buv, ¢} = {1, 0, V,z#}, where V# is a constant
vector. This solution should hold to all orders in o/ because the dilaton is a linear function
of the worldsheet embedding coordinates, and so its coupling in the Polyakov action is
such that the path integral is Gaussian after a shift in variables.” If one works in arbi-
trary D dimensions, then the spacetime action for the string background fields contains a
term [72, 73]

_ ! [arey—G —2¢(_2 _ )__1/17 @
Sm—2/€2/d vV —Ge 30/(D D.)) = 52 d“zne "A, (2.28)

with A :=2(D — D.)/(3¢’), where D, is the critical dimension of the string theory consid-
ered. If D # D, such a term in the action is mandatory for consistency with the vanishing

" Actually, it may be that the dilaton does not have to freeze completely. A time-dependent dilaton in
late-time cosmology could still be consistent with observations and various constraints, provided how much
the dilaton couples to everything else satisfies certain bounds (see, e.g., [68]).

8For instance, there could be some condensation mechanism or some symmetry breaking coming from
some dilaton potential. Some other form of dilaton potential could also presumably allow for a dynamical
freeze out of the dilaton, see [69, 70].

°This had already been noticed in [71]. They arrived at the same conclusion by analyzing what would
be the corresponding shape of the EOMs in the presence of all o corrections in a background with constant
curvature and a linear dilaton, and then they inferred such a background would be a solution.
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of the 3, functional. This term enters as a ‘cosmological constant’ in the string-frame ac-
tion as it has the same dilaton-dependent overall factor as the Ricci scalar term associated
to the string metric. As such, it is a genuine cosmological-constant term when the dilaton
is constant.

Upon assuming the full metric to be flat (so in particular H = 0), the EOMs (2.9)
reduce to

d2 = 2k%e®p = A, (2.29a)
20 — % = k20 = —A, (2.29h)

where the energy density, the dilatonic charge and the O(d, d) pressure were evaluated for
the above matter action. Note that the O(d,d) pressure vanishes here, and the pressure
equation (2.9b) is trivially satisfied in this case. This is an interesting example where the
matter action is of the form of (2.15) and where the presence of dilatonic charge implies
two different definitions of pressure. The O(d, d) pressure that naturally enters the EOMs
is not the expected one with FoS p = —p for a positive cosmological constant. Rather, one
has p = 0, and it is the total pressure which satisfies p; = p + /2 = —e~®A/(2xk%) = —p.
The solution to (2.29) for ®(t) is

®(t) = 2¢(t) = VAt + constant (2.30)

which is exactly of the form ¢(t) = V,a# for V# = —\/A/48, (the constant can be
set to zero by changing the origin of time). For consistency, A > 0 and so D > D..
This is compatible with the fact that a purely time-dependent linear dilaton of the form
¢(t) = V,a# should have a time-like derivative vector V,¢ = V,,. Thus, the linear dilaton
CFT solution is recovered for the fully o’-corrected equations, a successful test of the
framework, which had not been previously appreciated.

From eqgs. (A.5) and (A.7) in appendix A, the Einstein-frame evolution corresponding

to the above solution is )

HEzgv

(2.31)

which corresponds to a solution of the (d+ 1)-dimensional Friedmann equations with effec-
tive EoS wg = (2 —d)/d, thus saturating the SEC (we expand on this topic in section 3.1).
Indeed, the above is equivalent to ap o |tg|. Therefore, the non-critical static background
in the string frame with running dilaton corresponds to non-accelerating expansion in the
Einstein frame (though non-decelerating either, i.e., it is precisely on the margin).

2.6 A note about constant-dilaton solutions

The linear dilaton CF'T background in the last subsection is an example of a solution with
a trivial string-frame metric (Minkowski) that translates to a non-trivial Einstein-frame
cosmology due to the running of the dilaton. One immediate question is whether there are
solutions with constant dilaton such that there is no difference between the frames. In the
following, it is shown that consistent solutions with constant dilaton and vanishing O(d, d)
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pressure!’ have H(t) # constant if and only if p # —o /2, and the only solutions in vacuum
with constant dilaton are Minkowski or dS ones. To show this, let us first set the dilaton
to be constant in the EOMs (2.9), yielding

d*H? + HF'(H) — F(H) = 2&*p, (2.32a)
HF"(H)+dHF'(H) = —2di&?p, (2.32b)
—2dH — d’H? + F(H) = #%0, (2.32¢)

2

where as denoted before &2 = k22?0, Adding the first and third equations and eliminating

H using the second equation, we arrive at
(F"(H) +2d*)HF'(H) = 2&* [(p + ;’) F'"(H) - 2d2p} . (2.33)

If we assume p+0/2 = 0 and p = 0, then possible solutions are found only if F”/(H) = —2d?,
H =0, or F/(H) = 0. In every case, this is only possible if the Hubble parameter is a
constant, H = Hjy. Upon reinserting this in (2.32), we arrive at the following consistency
relations:

d*HZ — F(Hp) = 2&%*(p +p) (2.34a)
HoF'(Hy) = 2&* <p + g) = —2R%p. (2.34b)

If we assume p = 0 again, it implies that p + 0/2 = 0 must follow by consistency, and
furthermore, one recovers HoF'(Hjy) = 0, whose solutions are Hy = 0 or F'(Hp) = 0,
together with the additional constraint that F(Hy) = d*?Hg — 2&2p.

So to summarize: if we assume a constant dilaton (¢ = 0) and vanishing O(d, d)
pressure (p = 0), then the equations are only consistent if the matter sector satisfies
p = —o /2, which is equivalent to a total pressure p; = p + 0/2 = —p. This is possible
with a cosmological constant EoS (this solution was first found in [45]) or in vacuum
(p = p = 0 = 0). The resulting allowed solutions are either Minkowski with H = 0 (in
vacuum) or dS with H = Hy # 0 (in vacuum or with matter satisfying the aforementioned
EoS) as long as F'(Hy) = 0 and F(Hy) = d*HZ — 2&%p. Put differently, if we assume
a vacuum, then the only allowed solutions are Minkowski space or dS space. Note that,
in the latter case, one really means exact dS spacetime since the dilaton is constant, and
hence, there is no distinction between the string frame and the Einstein frame. While the
fact that adding matter with EoS py = —p to the system yields a dS solution is not a
surprise,'! finding a dS solution in vacuum and in the Einstein frame'? is quite unusual,
though this was first discovered in [50].

1OWe recall that p = 0 is well motivated for most matter Lagrangian densities that minimally couple to
the string-frame metric (cf. section 2.3) and that this is in most cases not equivalent to having pressureless
matter with p, = 0.

"The discussion above applies directly to the cosmological constant case considered in the last subsection,
since w = 0 and A = —2 for that case, i.e., there is also a solution with constant dilaton and constant Hubble
parameter that is a dS solution sourced by a cosmological constant. However, as discussed in [47], it is
worth mentioning that there can be non-trivial dS solutions with w = 0 and A = —2, although with
running dilaton.

2In [42], an argument against vacuum dS solutions with constant dilaton was developed. However, it
was assumed that F'(Ho) # 0, which is precisely the condition for having the dS solution above. There is
a priori no reason not to allow F'(Hy) = 0 as a possibility.
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Generically, higher-derivative corrections in an action may bring extra degrees of free-
dom into the dynamics since extra initial conditions would be required to solve the higher-
order EOMs. However, in the o/-complete cosmology framework, the EOMs are still second
order, and there should not be extra propagating degrees of freedom compared with the
lowest-order theory.'® This fact also matches what is expected from string theory, as the
o/-corrected spacetime theory should have only the graviton, dilaton, and Kalb-Ramond
fields in the universal massless spectrum. After turning off the matter sector and imposing
a constant dilaton, the dynamics for a FLRW background is determined by an equation
for a(t), with solution space fully constrained by the Hamiltonian constraint (the EOM for
the lapse function). The equation for a(t) (2.32b) fixes H to be a constant, and in this
case the tower of o corrections in the action may act as an effective cosmological con-
stant. At lowest order, F(H) = —dH? < 0, and the only solution to the constraint (2.32a)
is a Minkowski solution, but if the function F’(H) has non-trivial roots Héi), such that
F(H(()i)) = dQ(H(gi))2 > 0, there are non-perturbative dS solutions for the constraint. Since
all o/ corrections contribute to the effective cosmological constant, H(gi) is expected to be
at the string scale, with \/CYHéi) ~ 1, thus avoiding the no-go theorem in [75]. More
comments on this shall be given in the discussion section.

3 Effective energy conditions and their violation

The singularity theorems of GR, [1-3] ensure the incompleteness of geodesics in spacetimes
that satisfy reasonable assumptions. In particular, the strong energy condition (SEC)
is assumed for proving timelike incompleteness in cosmological contexts, while the null
energy condition (NEC) is required for the proof of null incompleteness in gravitational
collapsing spacetimes. In the proof of such theorems, the Einstein field equations are used
to connect purely geometric quantities (expansion of null or timelike geodesic congruences)
with properties of the matter energy-momentum tensor. Thus, there is no difference in
asserting that the energy-momentum tensor T}, or the Ricci tensor R, satisfies a given
energy condition, insofar as the Einstein equations are considered.

However, if the gravity action contains higher-order terms, the Einstein equations are
modified and then one needs to be careful with what a given energy condition implies. It is
still possible to use the singularity theorems provided that the energy conditions are seen as
a geometrical condition to be applied on the Ricci tensor. Operationally, all modifications
to the Einstein equations are added to the matter side of the equations such that the
system is described by GR sourced by an effective energy-momentum tensor T;jlf,f. Thus,
geometric conditions on the Ricci tensor are equivalent to energy conditions on Tﬁlf,f. It
is in this sense that the energy conditions are discussed in this section. Moreover, since

13In the context of effective field theory approaches to modifying GR, higher-curvature corrections that
yield at most second-order EOMs on an FLRW background have been explored in [74]. An interesting
observation is made: the resulting theory is modified in a very similar fashion to what is found in the string
theory context of this paper with an infinite tower of o’ corrections. It is also noticed that new dS solutions
are allowed (in particular in vacuum) when the Hamiltonian constraint (which is an infinite series in H)
has non-trivial roots. As is pointed out though, such a solution remains at the level of a toy model (it can
only be exact dS); in particular, it cannot continuously evolve toward a low-energy GR-like regime.
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parallel transport depends on frame, geodesic incompleteness and the singularity theorems
are not invariant under metric field redefinitions, such as the one used to switch from the
string frame to the Einstein frame (and vice versa). In this section, conditions are applied
to the Ricci curvature of the Einstein-frame metric, RED := R,,,[GE], such that the GR
theorems’ results can be promptly applied.

The discussion above is relevant for constructing potentially non-singular solutions
from the o'-corrected equations considered in the previous sections. For cosmological
spacetimes, violation of the SEC is required for accelerating solutions, while non-singular
bouncing cosmologies should violate the NEC during the bouncing phase. Hence, inves-
tigating violations of these energy conditions in o’-complete cosmology can help establish
accelerating and/or bouncing non-perturbative solutions. From the string theory perspec-
tive, these solutions would avoid supergravity no-go theorems [76, 77] by means of the
tower of duality-invariant o’ corrections.

3.1 SEC violation and accelerating solutions

The SEC states that REl,u“u” > 0 at every spacetime point for any timelike vector u*.
Physically, this ensures that any observer would locally measure gravity to be ‘attractive’,
in the sense that timelike geodesics will be focused due to the spacetime curvature. For a
perfect fluid satisfying the SEC, comoving observers in a cosmological background would
measure (d — 2)piotal + APtotal > 0 and piotal + Protal > 0. In particular, an EoS piotal <
(2 — d)protal/d violates the SEC, and one notices that this is precisely the condition for
a perfect fluid to yield an accelerating background solution in GR. As will become clear
below, SEC violation may thus be used as a criterion for finding accelerating solutions in
the Einstein frame.

For a flat (d+1)-dimensional FLRW background in the Einstein frame and for comoving
observers with u# = (1,0), the SEC reduces to

dH
Ry = —d (dt]f + H%) >0, (3.1)

and using egs. (A.7) and (A.8b) of appendix A, this further implies

ROEO:m(q>+H+H(<I>+H)) >0 (3.2)

in terms of string-frame quantities. Thus, in order to violate the SEC, we need string-frame

solutions satisfying
d+H+H@®+H)<0 (3.3)

at some time ¢. Note that, according to (A.8a), the above is completely equivalent to
the condition d?ag/dt: > 0, which makes the connection between SEC violation and
accelerated expansion in the Einstein frame explicit. Using the EOMs (2.25) to write

P = % (erq)& + &2 + dH? - A(H)) , (3.4a)
H= (1 — Al;g“”) - |:H2€q>]3 + ¢ (H — A;(f)ﬂ , (3.4b)
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which holds as long as A”(H) # 2d [i.e., F"(H) # 0],'* SEC violation can be equivalently
written as
; 2, 20 (-,0 -\ _ 7, gi—@/

(& + H)? + 2 <p+2 p> AGH) + DA + S () <0, (35)
which is a condition on the matter sector (encoded in o, p and p) and on the o/ corrections
[encoded in A(H)].

A couple of checks for egs. (3.3) and (3.5) can be done. First, for a constant dilaton
& = ¢, one has & = —dH, and eq. (3.2) becomes

il .
Rfy = —dewr (H + H?) (3.6)

which has the same structure as eq. (3.1). This should be so, since for a constant dilaton,
the Einstein- and string-frame variables are proportionally related (in fact, the exponential
factor in the equation above can be set to one by a redefinition of ). Secondly, considering
the vacuum case and turning off o’ corrections, the SEC cannot be violated. This is
immediately seen from eq. (3.5) upon setting A(H) = 0 and p = p = 0 = 0, which yields
the always-positive term (@ + H)? on the Lh.s.. This should be so as, in this specific case,
the system consists of a metric and a massless scalar field in the Einstein frame.

To understand how different matter contents can allow for SEC violation and thus

accelerated expansion in the Einstein frame, let us consider the set of solutions found

in [47] of the form
dw

T 11 A/2

with a positive, non-trivial, constant Hubble parameter Hj, and where the equations of

H(t) = Hy, ) Hy, (3.7)

state in the matter sector are specified as w := p/p and X := o/p # —2. For this class of
solutions, violation of the SEC, eq. (3.3), is equivalent to'®

w < —% (1 + ;) : (3.8)

assuming A > —2. Note that for simple Lagrangians as discussed below (2.15) for which
p = 0, the above can never'® be met, i.e., the SEC is always satisfied, and thus, accelerated
expansion in the Einstein frame can never be achieved. This is an intriguing result already;
for example, a simple, general scalar field that minimally couples to the dilaton in the string
frame admits constant-H solutions in the string frame with running dilaton according

1 A5 a series expansion, one expects from (2.24) A”(H) o< o/ H? + ..., with a proportionality constant of
at most O(1), and o’ H? is also expected to be at most O(1) if H ends up being bounded. Thus, it appears
safe to assume 1 — A”/(2d) > 0. Of course, the assumption should always be checked for a given model.

5Note that the case where w = —(1 4+ \/2)/d corresponds to saturating the SEC, and from (A.7), it
corresponds to Minkowski space in the Einstein frame. This is the basis of the loitering solution studied
in [48, 49, 78].

The only exception is when A\ = —2, in which case it can be shown [47] that the solution H = Hy and
& = —BH, is stable for any constant 8 > 0. Then, violating the SEC is possible whenever 8§ > 1. An
example of matter with w = 0 and A = —2 is the cosmological constant coupling to the dilaton as discussed

in section 2.5.
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o (3.7), but it does not admit any accelerating solution in the Einstein frame. More
generally, recalling that we can write wy, = w + \/2 from p; = p+ 0/2 and wy := pi/p, the
above is also equivalent to

1 (d-1)
—= A .
From this, one recovers the result that the SEC is violated provided wy < (2 — d)/d when
A= —2(d—3)/(d—1), which vanishes in d = 3 spatial dimensions. Furthermore, whenever

the matter does couple to the dilaton in the string frame (i.e. A # 0), the condition can be
either relaxed or strengthened. As an example, if, say, A = 2, then SEC violation demands
w < —2/d or equivalently wy < 1 —2/d. In such a case, the condition on the total pressure
is quite weak; in particular, it can be positive, which is usually much more easily achieved
for standard matter. However, we do not know of a specific simple example which would
yield equations of state satisfying the above conditions.

3.2 NEC violation and non-singular solutions

The NEC states that RE,/k“k” > 0 at every spacetime point for any null vector k*. For a
perfect fluid in the Einstein frame and considering the same ansatz we considered for the
SEC, this means that the whole matter sector, which also includes the dilaton field in this

frame, has to satisfy piotal + Protal > 0. Looking at (2.19), one can see that this implies!”

dHg <

0. 3.10
dtg — ( )

Thus, NEC violation happens whenever the Einstein frame’s Hubble parameter grows in
time. Note that NEC violation implies SEC violation [cf. eq. (3.1)].

Using eq. (A.7), the condition for violating the NEC can be written in terms of the
string-frame quantities as

<I>+H+(<I>+H)<H+ df1><o, (3.11)

and it is worth noting that saturating the NEC leads to the condition for a dS solution
in the Einstein frame (Hg = constant). One can see that violating the NEC is more
stringent than violating the SEC since, in comparison to eq. (3.3), the above condition can
be written as

(@ + H)?

dP+H+H(®+H) < - i

<0. (3.12)
Let us consider the condition for violating the NEC (3.11) written in terms of the o
corrections, the matter variables and the standard dilaton. By using eqgs. (2.25a)—(2.25c¢)
to eliminate H, H, and ® in (3.11), and eq. (2.2a) to rewrite everything in terms of ¢, the

"Despite (2.19) being derived for a constant dilaton, it still holds for a dynamical dilaton as long as
its contribution to the pressure and energy density are also taken into account, thus defining an effective
perfect fluid.
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condition for violating the NEC is given by

1 B 22¢>< 1) 'z_A”( d+1/2)
1_%<(d DrZe? (p+p+50) +407 — o5 {44+ -4
_iK262¢A// (2(d+1)p+(d_1)U)i£\/g(A’_4¢)A"
4d 8d2(d — 1)
O N (@D g 1) ag® L
+ 5 A - A" —2d(d —1) 4dd_1<z>A <0, (3.13)

where the + sign depends on the branch solution taken for H, and

A = 4d (467 +2(d = )2 p + (d = 1) A) + A’ (A 8dd) . (3.14)
To connect the above condition with the Einstein-gravity limit (cf. section 2.4.1), one can
first ignore all the o/ corrections by imposing A(H) = 0 in eq. (3.13), resulting in

p+p < — k272292 < 0. (3.15)

d—1
From this, we see that an evolving dilaton makes the condition stronger, i.e., it is harder
to violate the NEC the larger the rate at which the dilaton is running. Conversely, if the
dilaton is constant, the condition reduces to p 4+ py < 0, as in standard GR (as expected).

From the above, a straightforward way to avoid the singularity theorems and po-
tentially to have a non-singular solution is to have solutions satisfying (3.11) or equiva-
lently (3.13) at least for some time. Note that ‘non-singular’ refers to the behaviour in
the Einstein frame, so the solution can still have a singular behaviour in the string frame
— the quest for non-singular solutions is only well defined once the frame in which this
property holds is properly specified.'® We will now turn to the question of trying to find
actual solutions that could effectively violate the NEC and be non-singular.

4 Bouncing cosmology

4.1 General requirements

In this section, we specialize to explore the possibility of finding non-singular bouncing
solutions. These solutions are particularly relevant for the early universe as they could
potentially explain how the spectrum of cosmological fluctuations observed today were
produced (e.g., [54, 82-91]), thus representing alternatives to inflation. It is known that
bouncing solutions in GR are generically singular in a flat FLRW background, so the
existence of new physics is typically assumed (e.g., [92-101] and more references therein)
to account for the non-singular behavior of the universe. In our context, the hope is that
this new physics is given by the infinite tower of o’ corrections as motivated by string theory.

8Some works in the literature (e.g., [79-81]) suggest that spacetime singularities in GR may be removable
thanks to field redefinitions (including frame transformations). While this appears formally true, we believe
it remains an issue of determining in which frame matter as we observe it today couples minimally to the
metric, or put differently, what are the actual fields at play (i.e., which redefinition) that correspond to the
observed physical processes in the universe.
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To have a bounce, two conditions need to be met in the Einstein frame: (i) Hg(tg,0) = 0
at the so-called bounce time tg o, which represents the transition point between contraction
and expansion; and (ii) dHg/dtg > 0, meaning the rate of expansion is increasing over
time for some interval in tg, which carries the transition of the Hubble parameter from
negative to positive. This precisely corresponds to having the NEC violated for a given
period of time.

To get started, let us consider the dilaton to be constant so the dynamics is the same
for both frames. Looking at the EOMs when ¢ = 0 [egs. (2.26a)(2.26¢)], we notice that
a bounce — at which point H = 0, which implies that A(H) identically vanishes — can
occur only if p = 0 and p = —0/(2d) > 0 at that point in time. Considering all these
conditions into eq. (3.13), the NEC-violating condition reduces to o < 0. Note, however,
that this also means that the ‘standard’ general relativistic NEC in the matter sector has
to be violated, i.e., p + py < 0. Consequently, even when o corrections are included, a
bounce cannot be achieved without violating the matter NEC if ¢ = 0 at that point.

Thus, we need to consider a more general setup where the dilaton is also dynamical if
we hope to find non-singular bouncing solutions in the framework of o/-complete cosmology.
In the Einstein frame, using eqs. (A.7)—(A.8b), one can obtain a bounce where Hg = 0 and
dHg / dtg > 0 if

P4+ H=0 and d+H<O (4.1)

at that point in time. Substituting the requirement ® = —H in the EOMs (2.25a)—(2.25¢),
we obtain

= d+1_, A 9 0
d— “H?4+ = — 4.2
5 +2 Kt (4.2a)
: 2 Lo " / 2,9~
H+H —ﬁ(HA + HA') = k%e"p, (4.2b)
d—1 A
—TH2 +HA — 5= K2e®p. (4.2¢)

Summing the above three equations, one can see that the condition d + H < 0 becomes
equivalent to

%HA’ - %HA”, (4.3)

where we recall py = p+ /2. Note that eq. (4.2¢c) can be used to eliminate p. To zeroth

K2e®(p+pr) < —(d—1)H? +

order in « (when A(H) = 0), the condition reduces to p; < p < 0. This means that, when
no o’ corrections are included, a bounce point is only achieved if the matter energy density
becomes negative at that point (and if the total pressure is even more negative than that).
This requires very exotic matter, and the hope is that the o/ corrections may allow for the
bouncing conditions to be met without the need of exotic matter.

With o corrections, one may have p > 0 at the bounce point from eq. (4.2¢) only if

2HA'(H) — A(H) > (d — 1)H?. (4.4)

It is straightforward to see that if o’ corrections are small, then the above condition will
be hard to realize. To see an example where ‘large’ o/ corrections might help, consider for
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instance a function & la Dirac-Born-Infeld (DBI)!?

4 16

/H2 12 H4
Auﬁ::dHQQ-—V1—a%ﬁ):2dH2<a + 2 +.“>. (4.5)

Then, the condition (4.4) for p > 0 reduces to

26d? —4d — 1 — (2d + 1)V/44d? + 4d + 1 _
50d2

oH? < 1. (4.6)

The above lower range value is itself in the approximate numerical range [0.176, 0.246] for
d € [3,25]. So typically, as long as o/ H? 2 1/4, one will have p > 0 at the putative bounce
point thanks to the o’ corrections in the above example.

Working some more with eq. (4.5) as an example for A(H), one finds that eq. (4.3)
becomes

2 —B—dB* —2¢(1—B) —3(a’H*)?(2¢ — 1) — o' H%(5 — B — 9¢ + 2¢B)
B2(B + d(5/H? + 2B — 3)) ’

(4.7)

wy <

assuming eq. (4.6) holds, and where we let B := v/1 — o/ H? to lighten the expression. Also,
we denote the matter EoS by wy = py/p as before and the string-frame ‘background EoS’
by € := —H/H?, akin to the slow-roll parameter in inflation. The above is a relatively
complicated condition, but let us give a few numerical examples. The condition boils
down to wy < —0.5+e€if /H2 = 1/2 and d = 3, wy < —2.3 + 1.9¢ if o/H? = 1/4 and

~

d =3, and wy < —44 + 3.8¢ if ’ H> = 1/4 and d = 25. In the first couple of examples,
a ‘sensible’ background EoS, say € € (1, 3), yields the condition for the matter EoS to be
smaller than a number in the approximate range [0.5,2.5] or [—0.4, 3.5], respectively. Thus,
standard matter fluids with, e.g., wy € [0, 1] could potentially satisfy the Einstein-frame
bounce requirement. However, in the third example (large number of spatial dimensions),
the condition is very severe with wy having to be very negative, i.e., matter itself strongly
violating the NEC. In summary, this is all case-by-case study, but it looks like there seem
to exist sensible situations where standard matter may allow for a NEC-violating, non-
singular bounce in the Einstein frame, thanks to the o’ corrections. However, to go beyond
the simple observations made here, one needs to study the full dynamics of some chosen

ansétze, which we turn to in the following subsection.

A note on string-frame bounces. Beforehand, let us make a short commentary on
the possibility of having a bouncing solution in the string frame. The O(d,d) equa-
tions (2.25a)—(2.25¢) written in terms of ¢ are

2&2—2dH¢+fK{;1)H2+;(HAK—A):uﬁe%p, (4.8a)
1?—2H¢+dﬂ2+§%(@é—dﬂpy—zﬁﬂ):n%%p, (4.8b)
4¢ — 4 + 4dH¢p — 2dH — d(d + 1)H? + A(H) = k*¢*%0 . (4.8¢)

19The motivation for such an ansatz is discussed at more length in the following subsection.
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In the string frame, if we ask for the conditions for a transition in the scale factor to occur
(i.e., a string-frame bounce), then we can check the consistency of the EOMs when H = 0
and H > 0,

202 = K2*p, (4.9a)
H = r%e*p, (4.9b)
4 — 4¢? — 2dH = r*e*0 (4.9¢)

where we recall that A(H) = A'(H) = A”(H) =0 when H = 0. From the above, it is clear
that H > 0 is only possible if p > 0. In particular, if p = 0 (which is the case whenever
py = 0 /2 or for vacuum; cf. section 2.3), only the trivial Minkowski solution is obtainable,
ie, H=0and H = 0; a string-frame bounce is certainly not achievable if p = 0. This
is in tension with the results from [102, 103], where non-singular bouncing solutions had
been obtained?’ in the absence of any matter sector.

4.2 Exploring explicit ansatze

In this subsection, we explore the consequences of different F'(H) functions. String theory
should provide us with the functional form of F'(H) if one could compute beta functions
to all loops. Since this is currently not reachable, we attempt to guess particular forms
for F(H) that respect the symmetries and the lowest-order expansion F'(H) should have
(cf. section 2.2), and we see if this ansatz for F'(H) yields sensible cosmological background
solutions. In the end, we do not attempt to claim that a particular function F(H) is better
than another (or that we find the ‘correct’ F(H) function), but we simply aim at exploring
the potentiality of the theory. In this approach, a proof of principle for the existence of
bouncing solutions supported by the tower of o/ corrections might be achieved.

4.2.1 DBI

Let us start with the ansatz already introduced in the previous subsection, namely a DBI-
like function for A(H) as in (4.5), or equivalently,

F(H) = —dH?*\/1 - o/ H? = —dH? (1 - %o/Hz + O[(a’H2)2]> . (4.10)

This function satisfies the lowest-order requirement F(H) ~ —dH? and possesses the cor-
rect symmetries [invariance under H — —H and F(H = 0) = 0]. Furthermore, DBI-like
terms in the action are ubiquitous in string theory when certain D-branes are included
(see, e.g., [104-107]), and the distinctive form of the square root function is peculiar: for it
to be real valued, its argument must have a bounded range of validity; consequently, it is
notorious for admitting non-singular solutions in string-inspired models and more generally
(e.g., [108-110]). This naturally begs the question whether the above DBI-like function for

20The issue with the solutions found in [102, 103] appears to be that at the point in time where H = 0
and H > 0, one does not recover F'(H) = 0 as one should. This is due to a problem when inverting the
solution for H(t) to find time in terms of H: the inversion is ill defined at the point H = 0, hence the
solution cannot continuously hold through H = 0.

- 29 —



F(H), non-perturbative in o/ H?, admits non-singular (bouncing) solutions in the context
of this paper.

At this point, one can in principle use the above input for F(H), substitute it in
the full EOMs and attempt to solve them. In practice, though, this is generally nearly
impossible to achieve analytically, and numerically it may be hard to have a global view of
the allowed solutions once one chooses arbitrary initial conditions. This is when examining
the trajectories in phase space becomes handy. Recalling that the EOMs can be written
in the form of (3.4), it is clear that the system can reduce to a two-dimensional system of
first-order ordinary differential equations of the form

4 /3 .
at \H Fo(, H)
when the r.h.s. of (3.4) depends only on & and H. This can be achieved upon using the

constraint equation. In fact, combining eqs. (2.25a)—(2.25¢) and denoting w = p/p and
A = & /p as before, we can write the EOMs in the above form with

et (3) (o)

Foy= (1 - Al;(f) ) - (ch— %ch’(H)Jr% [—dH2+<i>2+HA’(H) —A(H)D . (4.12Db)

Thus, upon specifying the equations of state w and A characterizing the matter sector,
all trajectories in phase space can be visualized by looking at the streamflow of the sys-
tem (4.11).

Taking A(H) in accordance with (4.10) and looking at w = A = 0 as a first example,
the trajectories in phase space are shown in figure 1 by the gray arrows. At this point,
it is important to mention that the constraint equation is not imposed at the level of
the phase space trajectories. Therefore, only a subset of the trajectories actually represent
physical solutions to the EOMs. In general, one can search for initial conditions that satisfy
the constraint equation (2.25a), and those set of valid initial conditions {®q, ¢, H} then
select specific flow lines in phase space. If we take a vacuum for instance (p = 0), then the
constraint equation reads ®2 — dH? + HA'(H) — A(H) = 0, and it fully determines the
allowed trajectories in (<i>, H)-space. This is depicted by the pink curve in the left plot of
figure 1. As such, if one considers the H > 0 sector (expansion), then only the blue, cyan,
and olive curves are allowed trajectories. Note that only the blue and cyan curves have a
well-defined Minkowski limit by reaching the point (®, H) = (0,0), i.e. the origin. Looking
at the blue curve of the bottom right quadrant, we see that the universe starts at a finite
value of H > 0 [some high-energy scale va/H ~ O(1/2); we use units with o/ = 1 in the
plots| and $ < 0 and expands toward Minkowski with H < 0. The cyan curve is essentially
the reversed process with H > 0 throughout (it is a ‘genesis’ in the string frame).

If we have non-vacuum matter with?! w = X\ = 0 (which implies w; = 0), then we can
look at the initial constraint surface (really just a curve here) for some value of x2e®p. In

21 An example of such pressureless matter in string theory could be a gas of stringy black holes [111].
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Figure 1. Phase space diagram for the DBI ansatz (4.10) obtained from eqs. (4.11)—(4.12) for
matter with w = A\ = 0. Units with o’ = 1 are used, and the number of spatial dimensions is set to
d = 3. The pink curve depicts the constraint (2.25a) in vacuum (p = 0; left plot) and for matter
at the ‘initial’ time when k2e®0py = 107! (right plot). The dashed trajectories (in blue, cyan, and
olive) show examples of consistent solutions. The green line shows the Einstein-frame bouncing
condition ® + H = 0, and the point where the condition is met on a physical trajectory is depicted
by a red dot. See text for discussion.

the right plot of figure 1, the pink curve depicts the example with x2e®0py = 107!, where
the subscript 0 means that the function is evaluated at some chosen time ¢y. In that case,

the blue, cyan, and olive curves are just selected examples of allowed trajectories.

At this point, this represents the evolution in the string frame, but one can ask if
the corresponding evolution in the Einstein frame admits a non-singular bounce. We
recall from (4.1) that an Einstein-frame bouncing point when Hg = 0 is crossed whenever
® = —H in the string frame. This is the meaning of the green curve in all the figures of this
section, and we highlight the point where the condition is met on a selected trajectory by a
red dot. In the plots of figure 1, we see that the green line crosses only the olive admissible
trajectory. The green line is crossed from the bottom left to the upper right (following
the direction of the arrows under forward time evolution), meaning that, at the red dot,
one has & > 0 and H > 0, hence ® + H > 0. This is contrary to the condition of (4.1)
for this point to represent an Einstein-frame bounce; rather, it seems to be a ‘turnaround’
point, when the universe would go from expansion to contraction. The same happens in
the upper left quadrant of the plots: physical trajectories that start on the pink constraint
curve cross the green line only with @ > 0 and H > 0. Consequently, no Einstein-frame
bounce is present in the entire phase space, and it is found that changing the numerical
value of e®0p in the right plot does not change the conclusion.

This statement is nevertheless only valid when w = A = 0, and we can now explore
a few other equations of state to see how the phase space is modified. For example, in
figure 2 we show the case where w = 0 and A\ = 2 (left plot) and the case where w = 1
and A = 0 (right plot). Note that for both cases wy = w + A/2 = 1, which is known
as a stiff EoS. The left plot of figure 2 shows very little differences compared to the
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Figure 2. Same plots as figure 1, except now for w = 0 and A = 2 (left plot) and w =1 and A =0
(right plot).

right plot of figure 1, where A was 0, so it appears coupling to the dilaton does not affect
the phase space much in this context. In fact, in all cases, we recover the same general
features; in particular, the condition Hg = 0 is never satisfied for trajectories that have
® + H < 0 at that point, meaning a NEC-violating bouncing point in the Einstein frame
is not achievable in these cases. A NEC-violating EoS with wy < —1 could potentially
change this conclusion, but this is not the goal here. We rather see that for ‘reasonable’
matter, the tower of o corrections in the gravitational sector is not sufficient to obtain a
non-singular Einstein-frame bounce for a DBI-like F'(H) function.

A few more observations are in order. In the right plot of figure 2, we see that the
phase space is somewhat modified by the appearance of a non-vanishing O(d, d) pressure
(w # 0). For instance, while the blue trajectory in the right plot is comparable to that
in the left plot, the cyan trajectory is somewhat different: it represents a solution that
has H = 0 initially, which is then contracting, bouncing (when it crosses H = 0 again),
and expanding until vVo/H ~ O(1/2). Tt is thus an example of solution that undergoes
a non-singular bounce in the string frame. Nevertheless, the whole solution is not fully
free of singularities. Indeed, the vertical dashed gray line around vo/H ~ O(1/2) (also
at its negative value) represents a singularity in the system, and all physical trajectories
either start or end there. The mathematical origin of this singularity can be tracked to the
point A”(H) = 2d in the H EOM [cf. eq. (4.12b) or (3.4b)]. The resulting singularity is
somewhat peculiar in that |H| is everywhere bounded, but it is only H (and subsequent
higher derivatives) that diverges at that point. As a future singularity, this is known
as a sudden future singularity [112]; correspondingly, we may call its past equivalent a
sudden past singularity, where the universe emerges out of nothing with finite energy, but
nevertheless with a divergent initial acceleration. One could also call this a ‘mild’ big bang.
Such a singularity (whenever A”(H) = 2d) appears hard to avoid in the context of this
work. That is true even when an actual non-singular bounce is obtained in the Einstein
frame, as we will see next.

— 95—



4.2.2 Functional renormalization group inspired

Let us explore another ansatz in this subsection. Specifically, let us choose

2 3/2
A(H):—1—23H2+(§+H2) In <1+fg>+ﬁ<l+H2> / arctanh <‘H‘>,

12 |H | 2(1+H?)
(4.13)
accordingly,
F(H)=—dH? 4+ A(H) = —dH?> <1 — zia’Hz +0 [(O/H2)2D . (4.14)

As before, this function respects the symmetries and the lowest-order requirement. The
inspiration for this specific functional form comes from the work of [113, 114] (also explored
in [115]), which uses functional renormalization group techniques to derive F'(H). We
remain agnostic about whether or not this fundamentally represents the general functional
form of F(H) in string theory, but nevertheless explore some of its consequences from a
phenomenological point of view.?

Using the same methodology as described earlier, the above function for A(H) allows
us to fully describe the system with (4.11)—(4.12) and the constraint (2.25a). This is first
shown in figure 3 in the case of vacuum. Interestingly, the overall phase space is not too
different from the one obtained with the DBI-like ansatz (figure 1). Indeed, the overall
behavior of the blue, cyan, and olive examples of physical trajectories match one another.
What changes, though, is the location of the point depicted by a red dot where the Einstein-
frame bouncing condition ® + H = 0 in green crosses a physical trajectory: it now occurs
to the left of the separatrix around vo/ H & 2.15 (the singularity, which we will come back
to). This means that a potential Einstein-frame bounce now occurs along a trajectory that
has a well-defined Minkowski limit (the blue trajectory reaches the origin where H = 0),
and since the trajectory evolves with H < 0 (arrows pointing to the left), it may potentially
satisfy the Einstein-frame NEC-violating condition ® + H < 0 at the bounce point. In the
left plot of figure 3, the red dot is very close to the separatrix (vertical dashed gray line),
which separates, for instance, the blue and olive trajectories. To visualize more clearly
that the green line crosses the blue trajectory, we plot on the right of figure 3 a zoomed-in
version of the left plot. In particular, we use logarithmic scales and move the origin to the
point (H,®) = (H,,—H.,), where H = H, ~ 2.15/v/a/ denotes the singular point in the
EOMs where A”(H) = 2d. In this zoomed-in version, it is clear that the red dot falls on
the blue trajectory at a point where H < 0 and where, though P >0 ¢« |H |, hence we
can confidently say that ® + H < 0. Therefore, the conditions of (4.1) are satisfied at that
point, and so the red dot is a proper bouncing point in the Einstein frame.

One can then explore how the addition of matter with various equations of state affects
the phase space. Let us show a single such example with w = 0 and A =2 (so wy = 1) in
figure 4. It is immediately clear upon comparison with figure 3 that the changes are very

*2Note that, in fact, the choice (4.13) does not exactly represent the function F(H) found in [114].
Upon removing a cosmological constant and correcting dimensions, our choice of A(H) differs by an overall
negative proportionality constant. It is in that sense that (4.13) is only phenomenologically inspired by [114].
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Figure 3. Phase space diagram for the ansatz (4.13) obtained from eqs. (4.11)—(4.12) in vacuum
(so with p = w = A = 0). The same conventions as in figure 1 are used. The plot on the right
shows the same content as the plot on the left, except that it zooms in closer to the red dot and
uses logarithmic scales for both axes. For this illustrative purpose, the horizontal axis in reflected
(i-e., it is a function of —H), and both axes are shifted by an amount —H,, where H, = 2.15 is the
point at which the singularity in the EOMs is reached. See text for more details.

10
log,o(H. — H)

Figure 4. Same plots as figure 3, except now for matter with w = 0 and A = 2. The following
numerical value is used for the pink ‘initial’ constraint curve: e®°py = 1072,

small, qualitatively speaking. In particular, the location of an Einstein-frame bouncing
point is again to the left of the separatrix at vo/ H, ~ 2.15, along the blue trajectory and
such that ® + H < 0.

Let us investigate this particular trajectory in more detail. Picking any point along the
blue trajectory of figure 4, one can numerically solve the full set of EOMs [(2.25) with the
ansatz (4.13) for A(H)] forward and backward in time with the specified parameters and
units (d = 3, w = 0, A = 2, e®9py = 1072, o/ = 1). The results are shown in figure 5 for
the background quantities H and e = —H /H? in the string frame and (the absolute value
of) Hg and dHg/dtg in the Einstein frame. The conversion from the string frame to the
Einstein frame is also done numerically upon integrating (A.5) and then using eqs. (A.7)
and (A.8b).
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Figure 5. Numerical solution in the string frame (left plots) and in the Einstein frame (right plots)
corresponding to the blue dashed trajectory in figure 4. The vertical dashed line in the right plots
marks the separation between satisfying the NEC and violating it (NEC), and the vertical dotted
line denotes the bouncing point.

To the future (as t,tg — 00), we see that H — 07, while ¢ — constant > 1, indicating
that one has an expanding FLRW cosmology with an asymptotically constant effective
background EoS. This is similarly recovered in the Einstein frame with Hgy — 07 and
dHg/dtg — 07, and as expected, the NEC is satisfied in that regime. This is the low-
energy regime of the theory. To the past (as t,tg — 07), we find that H  H, ~ 2.15, so
H is bounded thanks to the infinite tower of o/ corrections in the high-curvature regime,
but we also find that € — oo (i.e., H diverges to —oo). This is the same kind of divergence
as in the previous example with a DBI-like ansatz, namely a sudden past singularity. Once
again, the same behavior is found in the Einstein frame, though now with Hy reaching a
negative constant value and dHg/dtg diverging to +00. The reason is that, through the
evolution, the universe undergoes a non-singular bounce in the Einstein frame. The bounce
point where Hg = 0 is depicted by a vertical gray dotted line in the right plot of figure 5
around tg ~ 1075, In fact, the NEC is violated with dHg/dtg > 0 for the whole regime
tg < 107! (to the left of the vertical gray dashed line). Thus, the model successfully yields
a sustained regime of NEC violation such that the Einstein-frame cosmology undergoes a
non-singular bounce, but the whole cosmology remains singular due to the sudden past
singularity. A more successful model would need to exit the NEC-violating phase to the
past in a similar fashion to what it does to the future. However, the present ansatz does not
allow for such a fully non-singular background, and it remains unknown whether any F'(H)
could allow for a fully singularity-free solution in that manner. Practically, trajectories in
phase space would need to ‘bend’ such that a point where A”(H) = 2d is never reached.
How this may be achieved remains unknown at this point.
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5 Discussion and conclusions

In the current paper, we first revisited some recent developments in o’-complete string
cosmology. This allowed us to clarify the relation between the O(d,d) pressure (that
naturally arises from an O(d, d)-covariant approach) and the total pressure that is more
common in dilaton gravity. We also clarified how Einstein gravity may be recovered at
low curvature, i.e., what matter content allows for late-time Friedmann equations with
fixed or decaying dilaton. Moving on to solutions that encapsulate the whole tower of
o corrections, we showed that the linear dilaton CFT is recovered, while for the case
of a fixed dilaton, we showed that the allowed solution space is very constrained when
the O(d, d) pressure vanishes: only Minkowski and dS solutions are allowed. In vacuum,
recovering Minkowski is expected, but the possibility of dS solutions is remarkable and
deserves further discussion.

From the results of section 2.6, the duality-invariant framework allows for vacuum dS
solutions in the Einstein frame, provided the function F'(H) satisfies some conditions, which
also restrict the possible values of the dS radius. Given the present ignorance about fully
non-perturbative time-dependent backgrounds in string theory, it is currently unknown
whether string theory would supply an F'(H) that satisfies such conditions. Recently, the
existence of dS backgrounds in string theory has been intensively debated (e.g., [116-124]).
The swampland program (see [125] for a review) aims to identify low-energy effective field
theories that cannot be consistently coupled with string theory. In particular, the dS con-
jecture states that the potential for the scalar fields parametrizing a given string compactifi-
cation construction is not flat enough to sustain a meta-stable dS background [51, 126, 127].
However, these conjectures are not in direct conflict with an admissible function F'(H) that
would satisfy the conditions for the existence of dS: as discussed in section 2.6, the non-
perturbative dS solutions from a/-complete cosmology are likely to have a dS radius of
the order of the string length and so are not in tension with the swampland program that
constrains low-energy solutions with energy scales much smaller than the string scale.

The non-perturbative dS solutions here require the whole tower of o’ corrections to
exist, i.e., they cannot ever be described by any truncation of the fully corrected theory. In
that sense, there is no ‘effective description’ of such backgrounds, as they are not solutions
to the low-energy effective field theory (supergravity). A very similar conclusion is also
found in the M-theory analysis of [128-132], in which the authors claim that the only way
to have a dS background with a hierarchy between the terms in the tower of higher-order
corrections (in the curvature and fluxes) is for the fluxes and internal cycles to be time
dependent. Moreover, if all the fluxes are made time independent or even turned off, then
the only way to get a dS solution in their approach is for all the corrections to contribute
with the same scaling, meaning a breakdown of the effective description, resonating with
what we obtain from the duality invariant framework. In light of these remarks, it is possible
that the swampland conjectures are not in conflict with the existence of non-perturbative
dS backgrounds in string theory.

The second part of this paper focused on the exploration of the violation of typical
relativistic energy conditions and the corresponding consequences. This allowed us to show
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that for solutions with constant H of the form (3.7), when the O(d, d) pressure vanishes
and excluding the possibility of including a cosmological constant, violation of the effective
SEC is impossible, meaning that accelerated expansion in the Einstein frame can never be
achieved. If an O(d, d) pressure is included, then the situation changes drastically: not only
are accelerating Einstein-frame solutions admissible, they can moreover be achieved with
positive total pressure thanks to the tower of o/ corrections. It would thus be interesting
to see if one could find a sensible stringy matter Lagrangian, which has a non-vanishing
O(d, d) pressure and positive total pressure, that would allow for Einstein-frame accelerated
expansion (in the very early universe for instance).

We similarly derived the conditions for violating the effective NEC in the Einstein
frame. While the conditions are generally quite complicated, we estimated that when one
enters the high-curvature regime with o/ H? ~ O(1), reasonable matter with positive en-
ergy density and pressure could in principle allow for NEC violation, once again thanks
to the tower of o’ corrections. We then explored a couple of phenomenologically moti-
vated non-perturbative F'(H) functions that allowed us to describe the whole phase space
of permitted solutions. In doing so, we found interesting solutions such as non-singular
bouncing cosmologies, either in the string frame or in the Einstein frame. However, such
solutions are far from being generic; quite the contrary, they rather appear hard to find,
and moreover, we could not find solutions that remained non-singular throughout time.
Indeed, most solutions remained plagued with sudden — though mild — singularities.
Nevertheless, the non-singular bouncing toy models that were found serve as a proof of
principle that an infinite tower of o’ corrections may allow for singularity resolution in
cosmological backgrounds.

These conclusions are restricted to our exploration of a few F'(H) functions. Of course,
this is far from being exhaustive, and so one cannot reach generic conclusions. There may
well exist a particular functional form for F(H) that would yield fully singularity-free
cosmologies. However, our small exploration showed that ‘simple’ F'(H) functions could
not completely resolve singularities, which might suggest that o corrections (even to all
orders) are not sufficient to properly describe the physics all the way to very high-energy
scales. For instance, our work certainly did not include any loop corrections, i.e., we always
remained in the weak-coupling regime. Such corrections are certainly expected to introduce
yet more higher-curvature corrections (see, e.g., [59, 60] are references therein), but those
would effectively just change the functional form of F'(H), so loop corrections are perhaps
not sufficient to fully resolve singularities. Our work also did not explore the possibility
of a potential for the O(d, d) dilaton, V(®). While it is not clear if this is fundamentally
allowed in string theory, it certainly respects O(d, d) covariance — with regard to spacetime
covariance, this is said to be a non-local potential (see [12, 55, 58-60, 133]). At zeroth order
in o/, it is already known that the appropriate choice of potential allows for singularity
resolution (see [58-60, 133]), so it would be interesting to see how this generalizes with the
addition of an infinite tower of o’ corrections. Whether or not a non-local dilaton potential
is the way to go, non-locality is certainly an interesting feature of string theory that is hard
to capture at the effective field theory level, and which may well be key to properly resolve
singularities in string theory. Some other approaches in that direction worthy of mention
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include infinite-derivative gravity (see, e.g., [134, 135] and subsequent works) and S-branes
(e.g., [136-139]).

Let us end by commenting on the applicability of o’-complete string cosmology to ac-
tual scenarios of the very early universe. Recent developments, including this current work,
certainly pave the way to finding new stringy descriptions of the early universe. Beyond in-
flation, it may lead to developments in string gas cosmology (see [48, 49]), but it would also
be interesting to apply the framework to other alternative approaches, including pre-big
bang cosmology (as envisioned in [71]) and complementary stringy descriptions of the high-
density state of the very early universe such as in the stringy black hole gas scenario [111].
To go beyond background models, though, lies an important challenge. Indeed, the as-
sumptions of homogeneity and isotropy are paramount to the whole program of stringy o’
corrections to all orders in cosmology, and a proper description of the very early universe
has to be able to tackle cosmological perturbations. In particular, going beyond homo-
geneity and including spatial dependence shall be a major obstacle to circumvent for the
o’-complete program to become phenomenologically reliable after including perturbations.
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A The general transformation to the Einstein frame

The general idea of the Einstein frame (EF) is to take the stringy action
1 — v
sEG, ¢, -] = @/dDa: —Ge 2 (R[G] + 4G* 0,00, + -+ ) , (A1)

which is said to define the string frame (SF), and transform it via the Weyl field redefinition
(the sub/superscript ‘E’ indicates an Einstein-frame quantity; it is in the string frame

otherwise)
4¢(x)
GEV(@ =e 572 G,u,l/(x) y (A2)

such that the second derivative part of the action for GEV is the Einstein-Hilbert action,

D—2
My

SEN @R, ¢, -] = /dDiE\/—GE (

R[GEg] — %G%Vau¢E8y¢E + .- ) . (A3)
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where the Einstein-frame dilaton ¢g is now a dimensionful, minimally coupled scalar field
with canonical kinetic term.

Starting with a flat FLRW metric in the string frame, eq. (A.2) implies that the
Einstein-frame metric is also of the FLRW form, with lapse function and scale factors
given by

_20(1) _29(t)
ng(tg)dtg = e P2n(t)dt, ag(tg) = e DP-2af(t). (A.4)

Choosing the lapse functions in both frames to be unity, the Einstein-frame time tg is

fixed b
Y t 2@
tE(t) —tgo = dte D-2 | (A5)

to

N

[V

where tg o := tg(tp). For a given solution in the string frame, one may solve this integral
to find t(tg) and write ag(tg). The Hubble rate in the Einstein frame is related to the
string-frame variables as

dInag 2¢_dlnag 2¢_ 2q5
Hp = —eD2—— —~ —¢eD2 | H — — A6
BT Ay O Tar© ( D—2> ! (4.6)
and recalling e~® = a%2?, this can be written as
o 75T eaoT
ed- . ad-Ted- .
HE:—d_l(H—HI)):— d_l (H+d). (A7)
Similar algebra yields
d2aE 20 /@ 2 a - 2 . azj—_fe% . . .
—=qed 1 (- —--tp——-p|=——— (H+ P+ HH+ P A8
az ~ (a i—1a” d—1¢) 1 EHE+HE+D), (A8
dH, it H+d
E aqd-1ed— . . .
= — H+d+(H+d)|H A.8b
dtg d—1 T o+ (H+ )( +d—1> ’ ( )

which are useful formulae throughout this work.
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