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ABSTRACT: We show that four-dimensional de Sitter space is a Glauber-Sudarshan state,
i.e. a coherent state, over a supersymmetric solitonic background in full string theory. We
argue that such a state is only realized in the presence of temporally varying degrees of
freedom and after including quantum corrections, with supersymmetry being broken spon-
taneously. On the other hand, fluctuations over the resulting de Sitter space is governed
by the Agarwal-Tara state, which is a graviton (and flux)-added coherent state. Once de
Sitter space is realized as a coherent state, and not as a vacuum, its ability to remain out
of the swampland as well as issues regarding its (meta)stability, vacuum energy, and finite

entropy appear to have clear resolutions.
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1 Introduction & setup

The search for four-dimensional de Sitter (dS) has led to claims varying from having numer-
ous solutions [1-4] to having none [5-8]. The standard picture of a landscape of vacua [9],
along with an anthropic principle to explain our own universe [10], runs into problems
not because of any no-go theorem [11-14], or technical hindrances [15, 16], but due to
obstructions against dS spacetimes ingrained in some fundamental aspects of quantum
gravity [17-22]. These include trans-Planckian issues [23] challenging the very notion of
a well-defined, unitary Wilsonian effective action for accelerating backgrounds [17-19], or
that of instabilities associated with the vacuum state for dS leading to a quantum swamp-
land [24]. It was recently shown that the hurdles related to an effective field theory de-
scription of dS, as summarized in [30], can, in principle, be overcome once time-dependent
degrees are switched on [25-29]. In this work, we show that other fundamental obstructions
are also avoided if four-dimensional dS space itself is regarded as a coherent state over a
Minkowski spacetime. Although similar setups have been considered before [31-35], what
is new here is an explicit construction of such a configuration realized in full string theory.!
Remarkably, the resulting construction of dS space hints at natural resolutions to problems
related to its stability, vacuum energy and entropy.
We shall focus on dS in the flat slicing, with a metric of the form:

ds?

_ 1 2 2 2 2

= 1P (—de? + da? + da3 + da}) (1.1)
where A is the cosmological constant and the temporal coordinate ¢ has a range —oo < ¢t < 0,
with the late time regime given by ¢ — 0. We choose this specific realization of dS (1.1)
only for computational efficiency and other realizations, specifically of Kasner-type, have

LA more detailed version, with proofs and computations, appears in [36].



been considered earlier [25]. The question is how to realize a metric like (1.1) in, say, type
IIB string theory? A natural first conjecture is the following metric configuration:
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(—de + da?) + H2(y)gun (y)dy™ g™, (1.2)
where H(y) is the warp-factor that only depends on the coordinate of the internal six-
dimensional manifold whose unwarped metric is given by gun(y). Crucially, note that the
internal space is time-independent. To see what kind of fluxes are required to support a
configuration like (1.2) in IIB string theory, we uplift the configuration to M-theory. This
uplift is only for computational advantage, and has no deeper implications as the degrees
of freedom remain unchanged. The uplifted metric becomes:

ds® = g;8/377m,dx“dm” + gs_2/3H29MNddeyN + gﬁ/?’]dz]Q, (1.3)

where g, = v/A |t| H(y) is the IIA string coupling which is now a function of both 3™ and
t, implying that in M-theory the internal manifold becomes time-dependent and g; — 0
denotes late time. Additionally, since we require (gs/H) < 1, our analysis would only make
sense in the interval: 1

- —=<t<O. (1.4)
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Beyond this limit, we lose all quantitative control on the dynamics. Consequently, this
means that not only is our solution trustworthy only below the quantum break-time of
dS [22] and the TCC limit [17], but it also provides a simple resolution of the coincidence
problem of dark energy by limiting the age of our universe by the current Hubble time [37],
and avoids problems of Boltzmann brains.

The dynamics is controlled by metric and fluxes because, to support such a manifold,
we need G-fluxes on an eleven-dimensional space whose topology is:

2

Mg =R> x Mg =R>! x My x My x P];, (1.5)
where (u, v) parametrize R%!, (M, N) parametrize the six-dimensional base with unwarped
metric gyn(y) and z% parametrizes the toroidal fibre modded out by the isometry group G.
Let Gunpq and Giings, where (M, N) € Mg and (a,b) € %2, denote the 4-fluxes switched
on in the internal space. Fluxes on a compact space cannot be arbitrary: they have to
satisfy Gauss’ law (or alternatively, cancel anomalies), solve the EOMs, and be quantized.
The quantization condition is [38]:

[(;ﬂ - pliy) € H (y,2), (1.6)

where G is a four-form G-flux component, p;(y) is the first Pontryagin class and H*(y, Z)
is the fourth cohomology class. In a time-dependent internal space like (1.3), this quantiza-
tion condition cannot be satisfied with time-independent G-flux components. Additionally,
EOMs also require fluxes to become time-dependent raising, in turn, serious questions about
how could these fluxes be quantized, and how could they satisfy Gauss’ law. On the dual



IIB side, this means that the three and the five-form fluxes should become time-dependent,
leading to similar questions. The axio-dilaton however remains time-independent because
we are in the constant-coupling scenario of F-theory [25, 41]. In the absence of quantum
corrections and time-dependent fluxes, as shown in [25], all the questions raised above
cannot be answered and the system s inconsistent, stemming from the loss of g, and M,
hierarchies, leading to a breakdown of effective field theory as another manifestation of
the swampland conjectures [30]. More importantly, a metric like (1.3) is still a bit too
constrained to be a solution, and what really works is a metric of the form:

ds® = 9;8/377Wda7“d1‘” + 9(9_2/3H2 (Fl(t)gagdyadyﬂ
+ Fo(t)gmndy™dy™ ) + g2/*|dz[2, (1.7)

where (a, ) € Mg and (m,n) € My of (1.5). The additional time-dependences governs
how the six-dimensional manifold Mg = My x My changes with respect to time. On the
IIB side this converts (1.2) to the following:

ds? (~de? + ot + da} + da}) (1.8)

1
A
+ H2(y) (F1(£)90p (1) dy*dy” + Fo(t)gma(y)dy™dy" ),

making the internal space time-dependent. To preserve four-dimensional Newton’s con-
stant, we additionally require F1F3 = 1 and both F;(t) — 1 as g5 — 0. Imposing all these
conditions, the system becomes tightly constrained but does have a solution, answering all
the questions that we raised above, as shown in [25]. However, even after we get an effective
potential which supports dS space in string theory, there still remains questions whether
the radiative corrections, calculated for some vacuum state, leads to instabilities [24] or
if the obstructions regarding trans-Planckian issues [17] lingers on. To answer these, we
attempt to see if a metric like (1.8) or (1.7) can be realized as a state instead of a vacuum.

2 The Glauber-Sudarshan state

The state that we have in mind is the Glauber-Sudarshan state [39, 40], commonly called
a coherent state, because such a state is closest to a classical configuration which can be
realized in a quantum theory. Our aim would be to realize (1.7) as a Glauber-Sudarshan
state over a supersymmetric solitonic vacuum. (Then, by dualization, (1.8) can also be
realized as such a state.) The supersymmetric vacuum would be a warped Minkowski
space. The supersymmetric solitonic background that we have in mind is of the form:

1

where h(y) is the warp-factor, and can be supported by self-dual G-fluxes of the form
GI(SI%\IPQ(y), as well as G%M, where (M, N) € Mg. Such a background has been studied
in detail in [43]. If we study fluctuations over this background, they are classified by

modes which may be easily determined. These modes will typically have non-trivial spatial



behavior, whose dynamics will be governed by a Schrédinger equation over a non-trivial
potential, but their temporal behavior would be simple (~ e“x!). This will help us to
avoid any trans-Planckian issues, but new subtleties lie in the construction of the Glauber-
Sudarshan state itself. In the original work of [39, 40], the state was created by shifting the
free vacuum (or the harmonic vacuum) by a displacement operator. One of the main issue
in our case is that there is no free vacuum in a highly interacting theory like M-theory!
Secondly, M-theory has metric as well as G-flux components, so a Glauber-Sudarshan state
would be more complicated to account for fluctuations of all these ingredients. Thirdly,
even if we manage to construct such a state, how do we know that such a state survives
the set of quantum corrections coming from perturbative, non-perturbative, non-local and
topological interactions?

Let us start by answering the first question, related to the construction of the Glauber-
Sudarshan state. Since there is no free vacuum once interactions are switched on, we only
have the interacting vacuum |Q) to build our state from. We shall shift the interacting
vacuum by a displacement operator and ask if this creates a state resembling the Glauber-
Sudarshan state, namely:

o) = D(0)[$2), (2.2)

at a specific time ¢t = t5. D(0) is the displacement operator and o = ({ay}, {Sc}) where
{ay} and {fc} are the two sets of parameters associated with all the metric and the C-
field components, respectively. The definition of a displacement operator in an interacting
theory is, however, not clear. In the free theory, a displacement operator is constructed

from annihilation ax and creation alT( operators for a given spatial momentum k, so in an

interacting theory we expect analogous operators aqg(k) and alﬁ(k) to replace them, with
aer (k) annihilating the interacting vacuum. Unfortunately this information is not enough
to fix the form of acg(k), the latter being is a complicated function that mixes the free-
field annihilation and creation operators for different spatial momenta [36]. Due to this,
D(0) is not a unitary operator anymore. However, there does exist one possible choice for
D(o) that not only fixes the form for aeg(k), but also reproduces the background (1.7) as
expectation values of the metric operators in the state (2.2). This choice works for any

time ¢ and is given by:

D(o,t) = Do(o) exp <z /tT dUx Hint> , (2.3)

where 7" — oo in a slightly imaginary direction; and Hiy = Hint(9Mmn, Cpqr) is the full
interacting part of the M-theory Hamiltonian. Dy(o) is the displacement operator for the
harmonic vacuum, meaning that it displaces the harmonic vacuum by o = o(t) to create
the required Glauber-Sudarshan state with one minor difference: it is the non-unitary
part of the usual free vacuum displacement operator. In writing (2.3) we have ignored a
multiplicative constant piece that is proportional to the overlap between the interacting
and the harmonic vacuum, i.e. (£2|0). One can also work out the wavefunction in the
configuration space for the state (2.2) satisfying (2.3). For example, say, for the spacetime



mode for the graviton, the wave-function of the state (2.2) may be expressed explicitly as:

+o0
W (g t) = exp | [ dk log(g ()20 (24)

where \\I/l(f) (t)) is the Glauber-Sudarshan state in the Heisenberg representation for a given
spatial mode k and g, (k) is the Fourier component of the graviton.

Indeed, this is all we need for the present purpose, as all of the background quan-
tities simply appear by taking expectation values over the state (2.2) with the wave-
function (2.4). For example, let us concentrate on the space-time metric again. The
expectation value of the metric operator may be expressed as:

_ I[Dg#V]eiSDT(U)guVD(U) _ 77#1/
<g,uu>a - f[DgW]eiS]D)T(U)D(U) - (A\t!2H2(y))4/37 (25)

where S = S(gmn, Cpqr) is the total M-theory action. Since D(0) = D(o(t),t) is non-
unitary, not only does it necessitate a division by another path integral as shown in the
middle equality, but also it keeps the numerator from vanishing. In fact, D(o) does what it is
expected to do: it shifts the vacuum in such a way that the one-point functions do not vanish

and ensures that they have the necessary expectation values. In addition, the choice (2.3)
9s
Mj
relies on two essential objects: (i) the space-time wave-functions (not the configuration

guarantees that there are no (9( ) corrections to (2.5) [36]. The above computation

space wave-functions!) which come from solving a class of Schrodinger equations with
non-trivial potentials, and (ii) the Glauber-Sudarshan wave-function (2.4). Similarly, the
expectation value of the G-flux components over the state (2.2) becomes:

®) g5\ /*
(GMNPQ)o = ZQMNPQ(y) (H) ) (2.6)
2
where (M,N) € Mg with p € % and p > % The latter condition stems from various

criteria, including flux EOMs, Bianchi identities and subtleties with localized fluzes, as
elaborated in [25]. We want to emphasize that the bound on p tells us that there are no
time-independent fluxes allowed in this set-up.

Note that supersymmetry is broken spontaneously because the G-flux on the internal
space is no longer self-dual, i.e.

(Ga)o — (¥8Ga)o| > 0, (2.7)

where Gy is the four-form operator and g is the Hodge dual with respect to the un-warped
metric of the solitonic background (2.1). Note that the fluxes Gio), supporting (2.1), are
self dual and preserve supersymmetry for the solitonic vacuum (thereby canceling the
zero-point energies) and, subsequently, supersymmetry is broken spontaneously by the
Glauber-Sudarshan state. The cosmological constant is much lower than the energy scale
of supersymmetry breaking due to suppression by a factor of the unwarped volume [36].



3 Fluctuations & the Agarwal-Tara state

Next, to study instabilities associated with QFT in dS, we wish to explore fluctuations
over dS space in such a setting. Since dS itself is a state over the solitonic vacuum, the
fluctuations should also come from a related state appearing as some deformation of the
Glauber-Sudarshan state. It turns out that the required deformation is another well-known
state, called the Agarwal-Tara state [45], or alternatively, as the graviton added coherent
state. For us, this needs to be generalized in the same vein as the Glauber-Sudarshan state
so that the Agarwal-Tara state will have to be both graviton and flux-added coherent state,
which is given by:

‘\111(5162)(75)> = [e1 + 26 (ax + al; 1) ]xpl(j>(t)> : (3.1)

where we have used (2.3), and denote acg(k) and alﬁ(k) by ax and aL to simplify the
notation, and ¢; are constants with |co| < |c1|. We have further restricted to the graviton
sector to avoid over-burdening the formula with complications from the flux sector. G(w,t)
could be thought of as a polynomial function of w with time-dependent coefficient (details
appear in [36]). Subtleties aside, what is significant for us is that the expectation of the
graviton operator in such a state gives us:

Nuv
Suv crea) — —  _ A/2 3.2
Bl = (i ) o

+ea [ d ik ko) oy (K, ko) v,y 2) €

where «,, is precisely the parameter from the set {ay} of 0 = ({ay}, {Sc}) that defines the
Glauber-Sudarshan state (2.2). ¥ (x,y, z) is the eleven-dimensional spatial wave-function
that appears from the Schrodinger equation over the solitonic background alluded to earlier.
We have also taken ¢; = 1, so only ¢ appears in (3.2). h(k, ko) is the Fourier component
that comes from G(w,t) function in (3.1). The crucial take-home point from (3.2) is that
the temporally varying frequencies wy (t) that we get from fluctuations over a dS vacuum
are nothing but artifacts of the Fourier transforms over the Glauber-Sudarshan state. In
other words:

exp (—iwn (£)t) = / dko h(k, ko) e ot (3.3)

where wy(t) is in general a complex function. Such a conclusion seems to point out that
there are no trans-Planckian censorship required for our construction [17] because all modes
originate secretly from fluctuations over our solitonic background (2.1). (We also satisfy
the conditions of having a underlying Lorentz-invariant spacetime, with a local vacuum,
required to avoid the original trans-Planckian problem [23].) As a result, Wilsonian analysis
can be performed for these fluctuations because all modes in our theory can be expressed
as linear combinations of the ones over the solitonic background with time-independent
frequencies. Since our dS space, itself, is a state which results from these modes, it is
no surprise that we also get fluctuations on top of dS as another consequence of them.
However, we still need to demonstrate the stability of our construction, which we shall
address next.



4 Stability

How do we know that the quantum corrections do not take us away from the back-
ground (1.7) and G-flux (2.6) configurations? In fact, any small changes to the F;(t)
factors in (1.7) will switch on some time-dependence of the Newton’s constant. In order to
avoid this, we have to establish the stability of the solution. This also gets tied up with the
equations of motion in the presence of all possible quantum corrections. It turns out that
the background equations may be presented most succinctly as Schwinger-Dyson equations
(SDEs). The SDEs [46-48] are expressed as expectation values over the Glauber-Sudarshan
state and therefore suits our construction very well since we have considered the metric,
the G-fluxes as well as the fluctuations as expectation values. The SDEs for our case may
be divided into two set. One set is easy to write down and is given by:

5S(@) 5S(0)
5<gMN>U - (;<CMNP>(7

=0, (4.1)

where S(@) = S(9) ((gyn)o, (Cpqr)o) differs from S = S(gyn, Cpqr) in

_ f[DgW]eiS]D)T(a)gW]D)(a) _ Npv
®)o = " Dy, D)D) (AP “2)

by the appearance of the expectation values in the integrands themselves. The second set

of equations are however more involved and they include both the Faddeev-Popov ghosts
and the displacement operator [36]. For us (4.1) will suffice, as the form of these equations
precisely imply the equations of motion already studied in [25] and, therefore, pursues the
path laid down there, as follows. Once we express the equations order by order in (%—5),
the zeroth order equations precisely determine the background (1.7) with the G-fluxes as
n (2.6). Going to the higher orders in (%) then switches on three things: (a) higher orders,
ie p > 3 in (2.6) for the G-fluxes, (b) higher order terms for the F;(t) factors in (1.7),
and (c) higher order quantum terms discussed in [25]. Together, they balance each other
in such a way that the zeroth order metric and G-fluxes, from (1.7) and (2.6) respectively,
do not receive any corrections [36].

We can also see how moduli can be stabilized in such time-dependent background.
The time-independent fluxes and the quantum corrections that are required to support the
solitonic background (2.1) also stabilize the Kéhler and the complex structure moduli of the
internal manifold without breaking any supersymmetry. The time-dependent background
can then be generated by taking the expectation values of the metric and the G-flux
operators as in (4.2) and (2.6). This means the stabilized moduli at the solitonic level
now vary in a controlled way as the internal metric (1.7) evolves in time. Thus at every
instant of time the moduli are stabilized with no Dine-Seiberg runaway [50]. We call this
dynamical moduli stabilization.

An advantage of choosing M-theory, as against type IIB theory, to do our computations
is that we are, in fact, taking into account the full string spectra, which includes the NS
and RR sectors of IIB. In M-theory the graviton state, when dimensionally reduced over
the 11-dimensional cycle, reproduces the zero mode gravitons. On the other hand, most



of the massive gravitons coming out of stringy excitations decay at the tree and one-loop
level so that they do not contribute to the dynamics of the coherent states. The remaining
has been integrated out and they contribute to the infinite tower of perturbative and
non-perturbative, including non-local and topological, quantum corrections. Surprisingly,
it has been shown that the coherent state is stable under all these contributions from
higher order curvature (and flux) terms that come out of the combination of the zero
mode gravitons, the instanton gases and the perturbative loops [36]. The action S() above
contains all types of quantum corrections, for instance, non-perturbative corrections of the
BBS [49] and KKLT [1] type instantons as well as the action of the branes and surfaces,
including fermionic interactions, as shown in [36]. Taking this exhaustive array of quantum
corrections allowed us to venture to the regime where the curvature could be more than
the string scale. In such a scenario, a countable (but large) number of perturbative and
nonperturbative quantum corrections become essential [36]. Indeed, this is an important
point since the cosmological constant in four-dimensions, in our formalism, emerges from a
delicate balancing between the fluxes and the quantum corrections but without any vacuum
energies [25]. Furthermore, since the fluctuations are ultimately built out of the interacting
vacuum of the solitonic background, perturbative quantum corrections do not lead to any
instabilities as everything is expressed in terms of time-independent mode expansions [36],
as opposed to the case of classical dS [24, 30]. Although our analyses demonstrates the
stability of our state against quantum corrections, we have not shown if the conditions
necessary for constructing this Glauber-Sudarshan state are generic or not. Put differently,
we have not examined whether this state is an attractor on the space of all such states
constructed on top of the warped-Minkowski background, which we leave for future work.

As already mentioned, what makes our solution more physically interesting is that it
resolves instabilities related to QFT of fluctuations on top of classical dS spacetime [24],
which are not unique to stringy constructions. Remarkably, these fluctuations also turn
out to be intimately connected to the entropy of dS spacetime, an old puzzle being the
origin of its finiteness within the context of full quantum gravity [9]. Specifically, in our
solution, a natural resolution would be in interpreting this as the entanglement entropy
between the fluctuation modes, on top of the time-independent solitonic vacuum, which
give rise to the Glauber-Sudarshan state itself. The way we get a finite von Neumann
entanglement entropy, due to this mode-coupling, is that we have a reduced density matrix
corresponding to tracing out the modes which are super-horizon, and treating the causal
patch of an inertial observer as our system. The key observation is that if the interactions
could be turned off, such an entanglement entropy would consist of diverging parts alone
but, in that case, we would have no dS space either as Hj,; is crucial in the construction
of (2.4). It had been heuristically argued earlier that, for a coherent state description
of dS, a finite number of gravitons is synonymous to the finite entropy associated with
it; furthermore, it was also noted that interactions between the gravitons are important
to arrive at this conclusion [22]. In our case, we sketch out the concrete reason as to
how one arrives at a finite number of highly-interacting gravitons (and flux particles) for
our Glauber-Sudarshan state necessary for having a finite entropy for the resulting dS
space. Our solution also satisfies the expectation of the dS symmetries being emergent for



a ‘reasonably’ short time-period, and are not eternal, which is a necessary condition for
having a finite entropy [52, 53]. Without going into details, note that the above procedure
is technically tractable due to the fact that the entanglement entropy corresponding to
coherent states coincide with that for the vacuum [36, 54].

5 Conclusion

To conclude, in this work, we have shown how the EOMs can be solved in full string theory
to obtain a dS spacetime by avoiding the swampland, once time-dependent degrees of
freedom are turned on, and including quantum corrections, by constructing the solution in
terms of a Glauber-Sudarshan state. Remarkably, this state (a) solves the trans-Planckian
censorship problem, (b) is stable against both perturbative and non-perturbative quantum
corrections, and (c) provides a microscopic understanding of its entropy as an inherently
quantum quantity. Furthermore, the order of magnitude of the time-limit before which
the system becomes strongly-coupled gives an easy way out of the coincidence problem
of cosmology as well as an escape from issues related to Boltzmann brains. This much
shorter timescale is a distinguishing feature of our model as opposed to the lifetime of dS
in compactifications such as KKLT scenario [1].
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