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1 Introduction

The Ryu-Takanayagi formula provides very deep insight into the underlying physics of the
AdS/CFT correspondence [2]. It suggests that the gravity dual is encoding the entangle-
ment structure of the CFT in a geometrical way [3]. This is strongly reminiscent of tensor
networks, which captures the entanglement of a given many body state it approximates
through a prudent choice of graph the network covers. This led to suggestions that the
tensor network is perhaps the microscopic explanation of the AdS/CFT correspondence [4].

Many models have been proposed since, capturing different aspects of the AdS/CFT,
in addition to the RT formula that first inspired the analogy. The perfect tensor and
the random tensor networks [5, 6] capture the error correcting properties [7], and explicitly
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realized the notion of entanglement wedge reconstruction. More recently there are different
algorithms developed to grow a bulk tensor network. See for example [8–11].

The tensor network also makes ready connection with notions of complexities [12–19],
allowing visualisation of complexity growth of the wavefunction simply through the count-
ing of tensors, giving extra support to the idea of volume/action of the AdS bulk being a
measure of complexity.

The tensor network also gives an intuitive picture to the island formula [20], the latest
breakthrough that potentially explains the black hole information paradox [21, 22].

The list of successes give strong support that the tensor network picture is capturing
some important essence of the AdS/CFT correspondence. One very important challenge
is therefore to turn these beautiful qualitative pictures into quantitative ones. That has
proved a very formidable task. There are two parts in this challenge. On the one hand,
we need to be able to accurately read off the CFT and its observables from the tensor
network. On the other, we have to identify gravitational observables in the tensor network.
The former is hard if we build the tensor network using tensors engineered to recover
nice bulk properties, such as the perfect/random tensor networks. In those constructions,
it is unclear what the boundary CFT is. The latter task is always hard, whether we
start with a tensor network with known or unknown CFT connections. One needs to
identify matter excitations in the bulk, and also the metric of the background space-time.
Identification of matter content can be done in some toy models [23, 24] so that Witten
diagrams emerge to some extent. But these results are far from satisfactory in most cases
where the tensor network as a discretization breaks most of the symmetries of AdS space.
The hint for geometrical data lies mostly in the Ryu-Takayanagi formula that connects
entanglement with areas of minimal surfaces. But practically, to extract the metric from
it remains cumbersome, particularly if the theory deviates from the fixed point, and that
the corresponding tensor network describes a background that deviates from the pure AdS
space. Some attempts based on the Fisher metric between density matrices and correlation
functions of the CFT [17, 25–27] have been made, and they resemble known gravitational
solutions to different extent.

To make progress, one needs to put these proposals to further tests by showing that
the dynamics of gravity should emerge from the tensor network description of the CFT as
well. All the difficulties described above mingle in this task. There are some progresses
based on extremalising relative entropies [28–32] and complexities, but the results either
require various assumptions (such as the applicability of the RT formula [31], or certain
behaviour of the modular hamiltonian of the matter fields [32]), or that they are not
explicitly covariant, which is a common issue that plague tensor network reconstruction of
CFT states.See also some progress obtaining the Einstein equation using the bit-threads
approach [33, 34].

There is an ideal testing ground where quantitative computations can be more readily
made. If making overly simplistic choice of tensors has little hope of recovering well-behaved
CFT’s and AdS bulks, then perhaps the second best option is to work with a simplified
version of the AdS/CFT correspondence. The p-adic AdS/CFT [35, 36] is such a perfect
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arena where the correspondence preserves much of the essence of the AdS/CFT.1 The
boundary CFT is sufficiently simple that can be precisely reconstructed by a tensor network
covering the dual bulk — which is naturally discrete in this case [23, 24, 43]. We note that
this construction recovers the CFT partition function rather than a state at a given time
slice, and so it naturally avoids issues of covariance mentioned above. Many of the well
known items in the AdS/CFT dictionary, such as the correspondence between primary
operators and bulk fields, their bulk-boundary propagators, the HKLL formula [44, 45]
and Witten diagrams quantitatively emerge from the tensor network representation. It
remains to show that this tensor network can describe space-times deviated from the pure
Bruhat-Tits tree geometry, the p-adic analogue of pure AdS space, and that the interplay
between matter and geometry follows rules that can be interpreted as the Einstein equation
on a discrete graph.

In this paper, which is an extended companion to [1], we will take the tensor network
construction of the p-adic CFT partition function in [24], and achieve precisely this goal,
perturbatively away from the pure Bruhat-Tits geometry. Our procedure comes in 6 steps.

1. Define the notion of bulk operator insertion in the tensor network so that it is consis-
tent with the AdS/CFT dictionary, including the correct bulk-bulk propagator and
the HKLL formula. The bulk and boundary correlation functions where the bound-
ary conditions correspond to the CFT fixed points are consistent with a quantum
field theory living on the Bruhat-Tits tree. We can read off the bulk action as well.
This is reviewed and expanded in section 2.

2. Obtain a deformed geometry by picking appropriate boundary conditions of the tensor
network. This has been defined and partially studied in our previous sequel [24].
These boundary conditions are the direct analogue of choosing non-trivial boundary
conditions of bulk scalar fields which corresponds to turning on non-trivial relevant
operators in the CFT to drive an RG flow. We can then read off the expectation
value of bulk matter fields from the tensor network when the boundary conditions of
the tensor network have been deformed. This is explained in section 2.

3. In the deformed geometry, one needs to define the notion of distance. Rather than
making guesses, we assume that it has to depend on tensor network data locally and
isotropically. In the case where deviations from the CFT fixed point boundary condi-
tion is small, this dependence can be expressed as a power series of the deformation
parameters. We treat the expansion coefficients, with symmetries following from the
locality and isotropy assumptions, as unknowns to be determined. This is discussed
in section 3.

4. The notion of graph curvature is generically a local function of edge distances on
the graph [46–48]. We also stay agnostic about the precise definition of the graph
curvature, and consider an expansion of the curvature as a power series of deviation

1More recent progress see [37–42].
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of edge distances from the pure Bruhat-Tits space. The coefficients are again con-
strained by locality and isotropy, but otherwise kept as unknowns. This is discussed
in section 3.

5. Having a tentative assignment of curvature and expectation values of bulk operators,
an emergent Einstein equation is a relation between these data. To systematically
look for this relation, we construct an action that encodes the bulk data. We have the
notion of Einstein-Hilbert term given the assignment of curvature discussed above.
Then, on the part of the matter fields, we covariantize the matter action previously
read off from the tensor network when the bulk is a pure Bruhat-Tits geometry.
Again we will expand their dependence on the edge lengths as a power series. This
is discussed in section 4.

6. With the graph curvature and covariant matter action in place, we can obtain a
graph Einstein equation by varying the edge lengths. We substitute the expectation
values of the bulk scalar fields and also the edge lengths as a power series of boundary
conditions into the equations of motion. Since the boundary conditions are chosen to
be arbitrary, assuming that the Einstein equation is satisfied becomes a very stringent
constraint on the unknown parameters that we have introduced thus far. In fact this
is an over-determined system that is not guaranteed to have any solutions at all.
Amazingly, a solution exists, and that the unknown coefficients can be determined
uniquely (up to some overall normalizations). The resultant graph curvature as a
function of edge lengths recovers the proposal in the mathematics literature! This is
discussed in section 4.

A review of p-adic CFT has appeared in many places. Since the current paper is
focussed on bulk physics, we will relegate a brief review to the appendix A for completeness
and for setting notations for the tensor network.

We will conclude in section 5.

2 Tensor network reconstruction of p-adic AdS/CFT — RG fixed point
and deformations

A tensor network that recovers the p-adic CFT partition function was introduced in [24].
(For completeness a very brief review of p-adic CFTs is included in appendix A.) It is a
tensor network that covers the Bruhat-Tits tree. The Bruhat-Tits tree is an infinite tree
graph whose isometry is given by the conformal group of the p-adic CFT. Each vertex has
p+ 1 legs. The case for p = 2 is depicted in figure 1.

For concreteness, we will focus on a 1-dimensional p-adic CFT that lives in the p-adic
line x ∈ Qp, where Qp is the p-adic number fields. Although as emphasized before [35],
generalization to n dimensions corresponds to replacing Qp by a field extension Qpn . The
bulk becomes a pn+1 valent tree, and all expressions basically change by replacing p→ pn.
Therefore without loss of generality and to avoid clutter we will take n = 1 in the rest of
this paper.
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Figure 1. The tensor network representation of a p = 2-adic CFT. The diagram depicts three
bulk operator insertion. When these bulk insertions are pushed to the asymptotic boundary they
are equivalent to boundary insertions. The boundary condition VΛi

here are chosen to be the fixed
point tensor V a

f = δa
1 . Each vertex tensor is given by Cabc and each edge of the tensor with index

a is weighted by p−∆a .

The tensor network constructed in [24] puts a tensor at every vertex of the Bruhat-tits
tree. The indices of these tensors are labeled by the primary operators of the CFTs. The
value of the tensor Ta1···ap+1 is given by the fusion tree of p + 1 primaries, with fusion
coefficients given by the OPE coefficients of the CFT (see appendix A). i.e.

T a1a2···ap+1 =
∑

b1···bp−2

Ca1a2b1Cb1a3b2 · · ·Cbp−2apap+1 . (2.1)

In the special case where p = 2, we simply have T a1a2a3 = Ca1a2a3 . Tensors sitting at two
vertices connected by an edge have one paired index contracted, with the sum over the
index weighted by p−∆a , where ∆a is the conformal dimension of the primary operator Oa
in the p-adic CFT.

2.1 Boundary conditions and the bulk field theory

The asymptotic boundary of the Bruhat-Tits tree is the Qp line. The tensor network has
to be cutoff near the asymptotic boundary of the Bruhat-Tits tree — analogous to the
cutoff introduced in AdS space. The dangling legs of the tensors are contracted with a
reference vector

|Vf 〉 ≡
∑
a

V a
f |a〉, V a

f ≡ δa1 . (2.2)

i.e. it projects the dangling legs to the identity operator label. The tensor network evaluates
to a number for such boundary conditions. This number is interpreted as the (normalized)
partition function of the p-adic CFT. To insert operator Oa(x) into the partition function,
the dangling leg located at x is projected to label a instead.

One can see that the computation of CFT correlation functions naturally reduces to
sums of Witten diagrams, constructed from bulk-boundary propagators Ga(xi, v) meeting
at bulk vertices v. These bulk-boundary propagators are given by

Ga(x, v) = ζp(2∆a)
p∆a

p−∆ad(x,v), (2.3)

where d(x, v) counts the number of edges connecting the boundary vertex linked to x and
the bulk vertex v. Let us emphasize here that the result of the correlation functions of
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the CFT is read-off directly from the tensor network without reference to any action. And
yet, it has the appearance of being composed of this propagators which are solutions to
the graph Klein-Gordon equation

(�v +m2
a)Ga(x, v) = δx,v, m2

a = − 1
ζp(∆a − 1)ζp(−∆a)

, ζp(s) ≡
1

1− p−s . (2.4)

�vφ(v) ≡
∑
u∼v

(φ(v)− φ(u)). (2.5)

The result of the tensor network thus implies the existence of a massive bulk field
φa in 1–1 correspondence with each CFT primary Oa. We can define the notion of bulk
operator insertion at a bulk vertex v by fusing an extra leg with label a to the bulk vertex.
For fusion rules that are commutative such that Cabc is completely symmetric in the three
indices, we can simply stick an extra bulk leg to the vertex v without worrying about
the order of the fusion. This is illustrated in figure 1. The computation of a three point
correlation function of the CFT is also illustrated there. When these bulk insertions are
pushed to the boundary they become boundary operator insertions. i.e. This definition
of bulk operator insertion ensures that the extrapolation dictionary — where boundary
operator corresponds to moving a bulk operator towards the asymptotic boundary — is
automatically realized.

One can thus compute bulk correlation functions, which would be given by sums of
Witten diagrams constructed from bulk-bulk propagators meeting at other bulk vertices.
The bulk-bulk propagator is simply given by the same Ga in (2.4), with the boundary
vertex label x moved to the bulk.

By construction, each bulk vertex where propagators meet gains a factor of the OPE
coefficients. A three point vertex is weighted by Cabc.

These suggest that at least where the operator insertion at the boundary is sparse, the
tensor network can be described by an emergent bulk quantum field theory with action
given by

Sm =
∑
〈xy〉

1
2
(
φax − φay

)2
+
∑
x

1
2m

2
a (φax)2 +O

(
φ3
)
, (2.6)

where x denotes the vertices, and a denotes different fields whose mass is ma. The a
labelling a primary is summed over though not shown explicitly. More accurately speaking,
since the vertex where propagators meet in the tensor network is unique, it exactly matches
with the semi-classical limit of the field theory, one where the masses ma approach infinity,
or equivalently, ∆a →∞, so that the interaction vertex would be fixed at the intersection
of geodesics.

To set the normalization rigorously, simple insertion of legs at a bulk vertex x corre-
sponds to inserting a field φ̃x that is related to the canonically normalized φa(x) appearing
in the above action by

φ̃ax ≡
(
ζp(2∆a)
p∆a

)− 1
2
φax, (2.7)
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so that the two point function read off from the insertion of extra bulk legs is simply
given by

〈φ̃axφ̃ay〉 = p−∆ad(x,y) (2.8)

In this normalization, the action is expressed as

Sm =
∑
〈xy〉

ζp (2∆a)
2p∆a

(
φ̃ax − φ̃ay

)2
+
∑
x

ζp (2∆a)
2p∆a

m2
a

(
φ̃ax

)2
+O

(
φ̃3
)
. (2.9)

One can rewrite the summation over vertices to a sum over edges, which gives

Sm =
∑
〈xy〉

ζp (2∆a)
2p∆a

(
φ̃ax − φ̃ay

)2
+
∑
〈xy〉

ζp (2∆a)
2p∆a

1
p+ 1m

2
a

((
φ̃ax

)2
+
(
φ̃ay

)2
)

+O
(
φ̃3
)
.

(2.10)

The factor 1/(p+ 1) is to cancel the p+ 1 times overcounting since each vertex attaches to
p+ 1 edges.

2.2 RG flow via deformed boundary conditions

RG flow of the p-adic CFT was considered in [24]. In the tensor network, the RG flow of
the CFT can be driven by changing the boundary conditions at the asymptotic boundary.
Instead of projecting the boundary leg to the vector V a

f defined in (2.2), we pick instead

|VΛ〉 ≡
∑
a

V a
Λ |a〉 (2.11)

which generically turns on other primaries at the boundary. The subscript Λ labels the
cutoff surface on the tensor network at which these reference vectors are inserted. The RG
flow considered in [24] respects translation invariance along Qp. In that case, all boundary
legs are projected to the same |VΛ〉. More generally, one can pick different |VΛi

〉 for every
boundary leg xi.

We note that p such boundary vectors would be fed to the same vertex tensor at the
cutoff surface, which would then return a new vector |VΛ−1〉:

|VΛ−1〉 ≡
∑
ap+1

V
ap+1

Λ−1 |ap+1〉 =
∑

a1···ap,ap+1

p−(∆a1+···∆ap )T a1···apap+1V a1
Λ1
· · ·V ap

Λp
|ap+1〉 (2.12)

i.e. Λ− 1 labels the legs one step away from the cutoff surface.
Note that the vector |Vf 〉 is in fact a fixed point under this flow, explaining how a

CFT partition function is recovered as fixed point vectors in the tensor network. For other
choices of boundary vectors |VΛ〉, a flow is driven down the network, so that different
parts of the network carry different weights. Homogenous boundary conditions have been
studied quite generally in [24], where we show that the flow would eventually lead to a
new fixed point vector, corresponding to a CFT driven by relevant perturbations that
eventually reaches another new CFT. The geometry in the interior of the network would
thus resemble pure Bruhat-Tits geometry again, where the vertices eventually contribute
equally to the partition function. That the actual weights of the tensors contributing
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differently is suggestive of a varying metric in the tree. How the metric should depend on
the tensors is the crux of reading off geometry and subsequently gravity from the tensor
network. We will pick up this problem in the next section.

This is a highly non-linear flow and it is difficult to keep analytic control. To make
further progress, we will consider small deviations from the fixed point vector |Vf 〉. i.e. In
the following, we will consider

V a
Λi

= δa1 + λvaΛi
, (2.13)

and treat λ as a small parameter in a power series expansion around the CFT fixed point.
Note that the subscript “Λi” denotes the position i at the cutoff surface. At first sight,
it may appear that a translation invariant boundary condition is simpler. But as we are
going to see below, by assuming the most general perturbations λΛi

at the boundary, it
gives the strongest constraint of the emergent Einstein equation.

2.3 Local data of the tensor network and expectation values

Consider the p-adic tensor network as shown in figure 3(a). Expanded in the contributing
tensors, it takes the form

Z =
∑

...,a,b,c,d,e,...

. . . p−∆ap−∆bCabcp−∆cCcdep−∆dp−∆e . . . . (2.14)

We can rewrite Z as

Z =
∑
c

V cp−∆c Ṽ c, (2.15)

defining

V c ≡
∑
...,a,b

. . . p−∆ap−∆bCabc, (2.16)

Ṽ c ≡
∑
d,e,...

Ccdep−∆dp−∆e . . . . (2.17)

When one is restricted on the red edge, V a and Ṽ a carry all the information in the tree.
They follow from contracting all the tensors above or below the edge. This is illustrated in
figure 2.

Using these definitions, the two point function on this edge regardless of boundary
condition can always be written in terms of the pair of V a and Ṽ a

〈φ̃αφ̃β〉 =
∑
h,c,g

V hChcαp−∆cCcgβṼ g, (2.18)

as shown in figure 3(b).
In the p-adic vacuum where the boundary legs are projected to the fixed point vector

|Vf 〉, as expected, V a and Ṽ a are both equal to the fixed point vector.

V a = δa1 , Ṽ
a = δa1 , (2.19)

– 8 –
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Figure 2. Vector V a
xy and Ṽ a

xy following from the contraction of tensors above (colored red) and
below (colored green) the edge 〈xy〉 respectively. The boundary conditions VΛi

generically deviate
from the fixed point vector. The curvature of the patch centered at x depends on the graph distances
d〈xyi〉 symmetrically.

(a) (b)

Figure 3. (a): here we demonstrate the p = 2 case for simplicity. (b): the two black legs are bulk
legs. We insert them near the vertices to make the labelling more transparent. They should be
understood as inserted on the vertices.

Now, anticipating what will be needed when we begin considering curvatures, let us
in particular consider the following local patch of the p-adic tensor network as shown in
figure 4. The edge xy is connected with {xyi} and {xiy}. When one is restricted within
this part, we can express all relevant information describing this patch from the collection
{V a

i } and {Ṽ a
i } located at each of the out-stretching legs. One can see that for edge xyi,

its V a is V a
i , while for edge xiy, its Ṽ a is Ṽ a

i . Perturbed around the vacuum under generic
boundary conditions (2.13), we have

V a
i = δa1 + ωai , ωai ≡ λai + ηai +O

(
λ3
)
,

Ṽ a
i = δa1 + ω̃ai , ω̃ai ≡ λ̃ai + η̃ai +O

(
λ3
)
, (2.20)

where λai , λ̃ai ∼ O(λ), ηai , η̃ai ∼ O(λ2), and λ� 1.
Reading off from the tensor network, we have

〈φ̃ax〉 = λap−∆a + λ̃ap−2∆a +O
(
λ2
)
, (2.21)

〈φ̃ay〉 = λ̃ap−∆a + λap−2∆a +O
(
λ2
)
, (2.22)

– 9 –
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Figure 4. The edge xy is connected with {xyi} and {xiy}. When one is restricted within this part,
{V a

i } and {Ṽ a
i } encode all the information needed.

where λa, λ̃a are defined by

λa ≡
p∑
i=1

λai , (2.23)

λ̃a ≡
p∑
i=1

λ̃ai . (2.24)

3 Distances and graph curvature from the tensor network

We have discussed the local data that is encoded in the tensor network in detail in the
previous section. In this section, we would like to explain how one should assign dis-
tances to edges and graph curvatures to patches based on the local data obtained from the
tensor network.

3.1 Edge distances from the tensor network

As discussed in the previous section using figure 3(b), all the information carried by an
edge e is completely captured by V a

e and Ṽ a
e at the two ends of the edge. So it’s natural to

propose that the edge length de is also determined by V a
e and Ṽ a

e . It is a bit challenging
to obtain the complete dependence of the edge length on V a

e and Ṽ a
e . However, if we are

working with the perturbative limit, where V a
e and Ṽ a

e admit a perturbation expansion of
the form (2.20):

V a
e = δa1 + wae = δa1 + λae + ηae +O

(
λ3
)
, (3.1)

Ṽ a
e = δa1 + w̃ae = δa1 + λ̃ae + η̃ae +O

(
λ3
)
. (3.2)

then the edge distance de also admits an expansion in λae , λ̃ae , ηae , η̃ae .
But first, we note that when the boundary condition corresponds to the fixed point

vector, every vertex and thus every edge gives equal contribution to the partition function.
Therefore precisely at the fixed point, all edge distances are equal, and we can conveniently
set it to 1. Therefore, under perturbation away from the fixed point, the edge length at
each edge is also admitting small deviation from unity as follows:

de = 1 + je (3.3)

– 10 –
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with je � 1, and this deviation should depend on the local data on the tensor network.
Therefore we can also expand it in powers of λ as follows:

je = Aa (ωae + ω̃ae ) +Bab
(
ωaeω

b
e + ω̃ae ω̃

b
e

)
+ Cabωae ω̃

b
e +O

(
ω3
)

= Aa
(
λae + λ̃ae

)
+Bab

(
λaeλ

b
e + λ̃ae λ̃

b
e

)
+ Cabλae λ̃

b
e +Aa (ηae + η̃ae ) +O

(
λ3
)
, (3.4)

with Bab, Cab symmetric matrices that parametrise this expansion. Here we have used the
symmetry of ωae ↔ ω̃ae , i.e. V a

e ↔ Ṽ a
e , since the edge should depend symmetrically on the

information at its two ends. These unknown parameters, as we are going to find out, are
almost uniquely fixed if a consistent Einstein equation is to exist at all.

3.2 Graph curvature from edge distances and the Einstein-Hilbert action

We would like to define graph Ricci curvatures given the set of edge distances we have now
defined on the tensor network. Graph curvatures have been considered in the mathematics
literature [46–49]. Inspired by them, we consider the Ricci curvature R(dxy1 , dxy2 , . . . ,
dxyp+1) of a patch around a vertex x to be a symmetric function of the lengths dxyi of
edges emanating from the vertex x. For the precise dependence however, we first take the
agnostic approach, and consider the most general expansion of the curvature on the edge
distances perturbed away from unity. We expect that there is a regular expansion since
the curvature should evaluate to a constant when all edges have equal lengths.

We parametrize the expansion of the graph Ricci curvature R(dxy1 , dxy2 , . . . , dxyp+1) as
a power series in {jxyi} as:

R(dxy1 , dxy2 , . . . , dxyp+1) = a0 + a1
∑
i

jxyi + b
∑
i

j2
xyi

+ c
∑
i 6=k

jxyijxyk
+O(j3). (3.5)

Here we have imposed symmetric dependence of all edges connected to x. These coeffi-
cients a0, b, c are dependence of curvatures on distances and they should be universal and
independent of the tensor network.

Now we would like to write down the analogue of the Einstein-Hilbert action on the
graph. On Riemann manifold the Einstein-Hilbert action takes the form:

SEH[gµν ] =
∫
ddx
√
−g(R+ Λ), (3.6)

with Λ the cosmological constant and R the Ricci scalar which is a function of the
metric gµν .

Having defined the graph scalar curvature in (3.5), the Einstein-Hilbert action on the
BT tree should take the general form:

SEH =
∑
x

R(dxy1 , dxy2 , . . . , dxyp+1) +
∑
〈xy〉

dxyΛ, (3.7)

where the first sum runs over all bulk vertices x, and ∑〈xy〉 indicates a sum over edges.
The second term is proposed to mimic the cosmological constant term. In the continuous
case, the volume form is given by ddx√−g. Therefore it is natural to propose that

ddx
√
−g ∼ dxy, (3.8)

which leads to the second term in (3.7).
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4 Covariant matter action and a graph Einstein equation

Having obtained an ansatz of edge distances and graph curvature, we would like to consider
covariantizing the matter action, and eventually obtain a graph Einstein equation.

4.1 A covariant matter action

The matter action read off from the tensor network when the boundary conditions are
taken to be the fixed point vectors except at isolated locations of operator insertion is
given by (2.10). This is essentially the action for pure BT space.

We would like to covariantize this action, to couple edge lengths to the matter fields.
This has been considered in [48]. However we find the ansatz quite restrictive there, and we
would like to write down a more general ansatz that mimics closely the covariant coupling of
matter to the background in the continuous case, although very much like in our treatment
of the edge lengths and graph curvature, the ansatz allows for a collection of parameters
that cannot be fixed purely by symmetry and locality considerations.

Recall (3.8), then ∫
ddx
√
−gf(x)→

∑
〈xy〉

dxyfxy. (4.1)

A natural ansatz for the covariantized matter action Scov
m therefore takes the following

form:

Scov
m =

∑
〈xy〉

dkxy
ζp(2∆a)

2p∆a
(φ̃ax − φ̃ay)2 +

∑
〈xy〉

dxy
ζp(2∆a)

2p∆a

1
p+ 1m

2
a((φ̃ax)2 + (φ̃ay)2) +O(φ̃3),

(4.2)

where k is some constant we can’t determine now since (φ̃ax−φ̃ay)2 may contribute additional
1/d2

xy. Writing down the general O(φ̃3) term explicitly, Scov
m becomes

Scov
m =

∑
〈xy〉

dkxy
ζp (2∆a)

2p∆a

(
φ̃ax−φ̃ay

)2
+
∑
〈xy〉

dxy
ζp (2∆a)

2p∆a

1
p+1m

2
a

((
φ̃ax

)2
+
(
φ̃ay

)2
)

+
∑
〈xy〉

(
h(dxy)Habc

(
φ̃axφ̃

b
xφ̃

c
x+φ̃ayφ̃byφ̃cy

)
+r (dxy)Rabc

(
φ̃axφ̃

b
xφ̃

c
y+φ̃ayφ̃byφ̃cx

))
+O

(
φ̃4
)
,

(4.3)

where h(dxy), r(dxy) are functions of dxy, and Habc is totally symmetric, while Rabc is
symmetric in a, b.

Similar to our previous treatment of the graph curvature, we can expand h(dxy), r(dxy)
in powers of perturbations jxy of the edge lengths:

h(dxy) = h0 + h1jxy + h2j
2
xy + . . . , (4.4)

r(dxy) = r0 + r1jxy + r2j
2
xy + . . . . (4.5)

– 12 –



J
H
E
P
0
6
(
2
0
2
1
)
0
9
4

4.2 A graph Einstein equation

We have proposed the ansatz for an Einstein-Hilbert action and a covariant matter action.
We are now ready to obtain a graph Einstein equation by varying the total action SEH+Scov

m

with respect to the edge lengths. This gives

δStot
δdxy

= δSEH
δdxy

+ δScov
m

δdxy
= 0, i.e. G+ T = 0, (4.6)

with

G≡ δSEH
δdxy

= Λ+2a1+4bjxy+c

 ∑
i

(yi 6=y)

jxyi +
∑
i

(xi 6=x)

jxiy

+O
(
j2
)
, (4.7)

T ≡ δS
cov
m

δdxy
= k

ζp (2∆a)
2p∆a

(
φ̃ax−φ̃ay

)2
+ ζp (2∆a)

2p∆a

1
p+1m

2
a

((
φ̃ax

)2
+
(
φ̃ay

)2
)

(4.8)

+
(
h1H

abc
(
φ̃axφ̃

b
xφ̃

c
x+φ̃ayφ̃byφ̃cy

)
+r1R

abc
(
φ̃axφ̃

b
xφ̃

c
y+φ̃ayφ̃byφ̃cx

))
+O

(
φ̃4
)
,

One very important fact to note is that by considering the equations following from varia-
tion of dxy, the edge data involved in the equation span a patch that is precisely given by
figure 4, which was anticipated there.

4.3 Solving the Einstein constraints to order λ2

We have obtained from the tensor network expectation values of some scalar field φ̃a. We
have also read off edge lengths and edge curvatures based on data of the tensor network.
The issue at hand is that — we have a solution in search of an equation relating these data.
Using very few assumptions, based on locality and also correlation functions of these scalar
fields at the CFT fixed point, we have written down an ansatz of an action up to some
undetermined coefficients, which led to an Einstein equation. Here we would like to ask
the following question: if the expectation values and geometrical data that we have read
off from the tensor network are indeed related by the purported graph Einstein equation,
what are the allowed values of the undetermined parameters so that the Einstein equation
can indeed be satisfied, if at all?

We are therefore going to treat the Einstein equation as a constraint on the undeter-
mined parameters. The surprising result is that this over-determined system does have a
unique solution (up to some overall normalizations) that naturally recovers results in the
mathematics literature and satisfies all other consistency conditions.

We will demonstrate this order by order in the λ expansion.
Plugging (2.21), (2.22) into (4.9), we find that

T =
p−3∆a

(
k(p+ 1)

(
p∆a − 1

)2
+m2

a

(
p2∆a + 1

))
2(p+ 1)

(
p∆a − 1

) (
p∆a + 1

) (λaλa + λ̃aλ̃a) (4.9)

+
p−3∆a

(
2m2

ap
∆a − k(p+ 1)

(
p∆a − 1

)2
)

(p+ 1)
(
p∆a − 1

) (
p∆a + 1

) λaλ̃a +O(λ3). (4.10)
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For the edge xyi, its V a and Ṽ a can also be read off from the tensor network:

V a = V a
i = δa1 + λai +O

(
λ2
)
, (4.11)

Ṽ a = δa1 + (λa − λai ) p−∆a + λ̃ap−2∆a +O
(
λ2
)
. (4.12)

Similarly, for the edge xiy, its V a and Ṽ a are given by

V a = δa1 +
(
λ̃a − λ̃ai

)
p−∆a + λap−2∆a +O

(
λ2
)
, (4.13)

Ṽ a = Ṽ a
i = δa1 + λ̃ai +O

(
λ2
)
, (4.14)

where we recall that the definition of λa and λ̃a first appeared in (2.21).
For the edge xy, its V a and Ṽ a are given by

V a = δa1 + λap−∆a +O
(
λ2
)
, (4.15)

Ṽ a = δa1 + λ̃ap−∆a +O
(
λ2
)
. (4.16)

Plugging them into (3.4) and recalling that dxy = 1 + jxy, we can obtain jxy, {jxyi},
{jxiy}. Plugging all the j into (4.7), we find that

G = Λ + 2a1 +Aa
(
λa + λ̃a

)
p−2∆a

(
4bp∆a + c

(
p2∆a + (p− 1) p∆a + p

))
+O

(
λ2
)
.

(4.17)
To satisfy G+ T = 0 order by order in λ, we should have

Λ + 2a1 = 0, (4.18)
Aa = 0, (4.19)

since T ∼ O(λ2) and
(
4bp∆a + c

(
p2∆a + (p− 1)p∆a + p

))
is zero for at most two ∆a.2

Then (3.4) becomes

de = 1 +Bab
(
λaeλ

b
e + λ̃ae λ̃

b
e

)
+ Cabλae λ̃

b
e +O

(
λ3
)
, (4.20)

which means we can work out the O(λ2) term only with λae , λ̃ae . Plugging them into (4.7),
this time we find that

G= p−2(∆a+∆b)
(
4bBabp∆a+∆b +Babc

(
−2p∆a+∆b +p∆a+∆b+1+p

)
+cCabp2∆a+∆b

)
(λaλb+λ̃aλ̃b)

+p−2(∆a+∆b)
(
4bCabp∆a+∆b +2Babc(p−1)

(
p∆b +p∆a

)
+cCab

(
p2∆a +p2∆b

))
λaλ̃b

+
∑
i

c

2
(
2Bab(1+p−∆a−∆b)−Cab(p−∆a +p−∆b)

)
(λai λbi+λ̃ai λ̃bi)+O(λ3). (4.21)

To satisfy G+ T = 0, firstly we should have∑
i

c

2
(
2Bab

(
1 + p−∆a−∆b

)
− Cab

(
p−∆a + p−∆b

)) (
λai λ

b
i + λ̃ai λ̃

b
i

)
= 0, (4.22)

2The two solutions are ∆a and d− ∆a, where d is the dimension of the CFT which is conveniently taken
to be one here.
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since other terms in G+ T only depend on λa, λ̃a. It is obvious that c = 0 is one solution
for it. That is too stringent. We are interested in c 6= 0 case which is more non-trivial, and
this gives a constraint on the parameters

2Bab
(
1 + p−∆a−∆b

)
− Cab

(
p−∆a + p−∆b

)
= 0, (4.23)

which is already made symmetric in a, b since it was contracted with a symmetric tensor
λai λ

b
i . So we have

Cab =
2Bab

(
1 + p−∆a−∆b

)
p−∆a + p−∆b

. (4.24)

Now comparing G with T , we notice that Bab should be diagonal. And this gives

G=Baap−4∆a

(
4bp2∆a + 1

2c
(
−2p3∆a +2p5∆a +2p∆a+1+2p3∆a+1

)
p−∆a

)
(λaλa+λ̃aλ̃a)

+2Baap−3∆a

(
2b
(
p2∆a +1

)
+c
(
p2∆a +2p−1

))
λaλ̃a+O(λ3). (4.25)

Then G+ T = 0 gives

Baap−4∆a

(
4bp2∆a + 1

2c
(
−2p3∆a + 2p5∆a + 2p∆a+1 + 2p3∆a+1

)
p−∆a

)

= −
p−3∆a

(
k(p+ 1)

(
p∆a − 1

)2
+m2

a

(
p2∆a + 1

))
2(p+ 1)

(
p∆a − 1

) (
p∆a + 1

) , (4.26)

and also

2Baap−3∆a

(
2b
(
p2∆a + 1

)
+ c

(
p2∆a + 2p− 1

))
(4.27)

= −
p−3∆a

(
2m2

ap
∆a − k(p+ 1)

(
p∆a − 1

)2
)

(p+ 1)
(
p∆a − 1

) (
p∆a + 1

) . (4.28)

And m2
a can be solved by b, c, k:

m2
a = −k(p+ 1)−

ck(p+ 1)
(
p1−∆a + p∆a

)
2b− c . (4.29)

Recall that for scalar field φa on the BT tree, its mass is related to the conformal
dimension by

m2
a = − 1

ζp(∆a − 1)ζp(−∆a)
= −p− 1 + p1−∆a + p∆a , (4.30)

which is obtained by analyzing its Green’s function. Comparing (4.29) with (4.30), we
find that

k = 1, (4.31)
2b
c

= −p, (4.32)
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which ensures that k, b, c do not depend on ∆a as they are universal geometric dependence
independent of the tensor network.

This result is amazing! Firstly, since k, b, c do not depend on ∆a, there may be no
solution to match (4.29) with (4.30) if (4.29) were not satisfied. The existence of the
solution is a strong evidence that Einstein equation is indeed encoded in the tensor network.
Secondly, supposing k, b, c are known at the beginning, the mass-dimension relation can
be derived from the Einstein equation. Let us emphasize that it would be inconsistent
had (4.30) not been satisfied. The reason is that the effective action that we wrote down
to match the correlation functions read off from the tensor network already suggested
that (4.30) is satisfied. Therefore the Einstein equation that descends from this effective
action is only consistent if (4.30) is satisfied — otherwise it would suggest that the tensor
network does not admit an effective field theory description in the bulk.

We discover a known relation with a new perspective. Thirdly, 2b/c = −p means that
to leading order

G ≡ δSEH
δdxy

= 4bjxy + c

 ∑
i

(yi 6=y)

jxyi +
∑
i

(xi 6=x)

jxiy

 = −c�jxy, (4.33)

where the graph Laplacian for an edge degree of freedom �je is defined by

�je ≡
∑
f∼e

(je − jf ). (4.34)

Here ∑f∼e denotes the sum over all edges f that share a vertex with a fixed edge e. Our
result is similar to the one that appears in [48]. The authors in [48] start with a reasonable
definition of Ricci curvature on graphs and then obtain a result similar to (4.33). Assuming
only locality and isotopy in our ansatz and requiring that the resultant Einstein equation
is satisfied leads to a unique expression that matches with the mathematics literature for
G in the perturbative limit away from the pure BT geometry.

Having k = 1, 2b/c = −p, we further get

Baa = 1
2c(p+ 1)

(
1− p2∆a

) . (4.35)

4.4 Solving the Einstein constraint to order λ3

To order O(λ2), we have no restriction on the interaction term φ̃3 in the action since
φ̃3 ∼ O(λ3). While a solution for Einstein equation to this order is non-trivial — as we
have seen above it involved various non-trivial constraints on the mass that happens to
be consistent with the AdS/CFT dictionary — we note that the variation of the relative
entropy also led to an Einstein equation to this order. In this section we would show that
such constraints can also be solved in the λ3 order leading to a self-consistent result. This
is certainly beyond kinematics and provide strong evidence that the correct dynamics are
indeed encoded in the tensor network.
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Now let’s work out G and T to order O(λ3) and see what kinds of interaction terms
we will get. The procedure is the same as before, but the calculation becomes more
complicated.

We still consider the graph shown in figure 4. The setup is the same as before. Now
we have

φ̃ax =λap−∆a +λ̃ap−2∆a +ηap−∆a +η̃ap−2∆a +γa+γ̃ap−∆a +λbλ̃cp−∆bp−2∆cCabc+O(λ3),
(4.36)

φ̃ay = λ̃ap−∆a +λap−2∆a +η̃ap−∆a +ηap−2∆a +γ̃a+γap−∆a +λ̃bλcp−∆bp−2∆cCabc+O(λ3),
(4.37)

where

ηa ≡
∑
i

ηai , (4.38)

η̃a ≡
∑
i

η̃ai , (4.39)

γa ≡
∑
i 6=j

λbiλ
c
jC

abcp−∆bp−∆c , (4.40)

γ̃a ≡
∑
i 6=j

λ̃bi λ̃
c
jC

abcp−∆bp−∆c . (4.41)

Here ∑i 6=j denotes the sum of all possible ways of picking two edges from p edges. We can
also express γa, γ̃a as

γa = 1
2

(
λbλcCabcp−∆bp−∆c −

∑
k

λbkλ
c
kC

abcp−∆bp−∆c

)
, (4.42)

γ̃a = 1
2

(
λ̃bλ̃cCabcp−∆bp−∆c −

∑
k

λ̃bkλ̃
c
kC

abcp−∆bp−∆c

)
. (4.43)

Plugging (4.36), (4.37) into (4.9), we get

Tλ3 = r1R
abcp−2(∆a+∆b+∆c)

((
λ̃ap∆a +λa

)(
λ̃bp∆b +λb

)(
λ̃c+λcp∆c

)
+
(
λ̃a+λap∆a

)(
λ̃b+λbp∆b

)(
λ̃cp∆c +λc

))
+h1H

abcp−2(∆a+∆b+∆c)
((
λ̃a+λap∆a

)(
λ̃b+λbp∆b

)(
λ̃c+λcp∆c

)
+
(
λ̃ap∆a +λa

)(
λ̃bp∆b +λb

)(
λ̃cp∆c +λc

))
+
(
λa−λ̃a

)
p−3∆a

(
p∆a −1

)((
p∆a −1

)
p−2∆a

(
−η̃a+(γa−γ̃a)p∆a +ηa

)
+Cabc

(
λbλ̃c−λcλ̃b

)
p−∆b−2∆c

)
1−p−2∆a

+
(
p∆a −p

)
p−4∆a−∆b−2∆c

(p+1)(p∆a +1)

[(
γ̃aλ̃a+2λaη̃a+2ηaλ̃a+γaλa

)
p∆a+∆b+2∆c

+
(
γ̃aλ̃a+γaλa

)
p3∆a+∆b+2∆c +

(
2λaγ̃a+2γaλ̃a+η̃aλ̃a+ηaλa

)
p2∆a+∆b+2∆c

+
(
η̃aλ̃a+ηaλa

)
p∆b+2∆c +Cabcp2∆a

(
λaλcλ̃b+λbλ̃aλ̃c

)
+Cabcp3∆a

(
λcλ̃aλ̃b+λaλbλ̃c

)]
.

(4.44)

Here Tλ3 is the O(λ3) term in T .
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For edge xyi, after careful analysis its V a and Ṽ a are

V a = V a
i = δa1 + λai + ηai +O(λ3), (4.45)

Ṽ a = δa1 + (λa − λai ) p−∆a + λ̃ap−2∆a + (ηa − ηai ) p−∆a + η̃ap−2∆a + γ̃ap−∆a

+
(
λb − λbi

)
λ̃cCabcp−∆bp−2∆c + γa − λbi (λc − λci )Cabcp−∆bp−∆c +O

(
λ3
)
. (4.46)

Similarly for edge xiy, its V a and Ṽ a are

Ṽ a = Ṽ a
i = δa1 + λ̃ai + η̃ai +O

(
λ3
)
, (4.47)

V a = δa1 +
(
λ̃a − λ̃ai

)
p−∆a + λap−2∆a + (η̃a − η̃ai ) p−∆a + ηap−2∆a + γap−∆a

+
(
λ̃b − λ̃bi

)
λcCabcp−∆bp−2∆c + γ̃a − λ̃bi

(
λ̃c − λ̃ci

)
Cabcp−∆bp−∆c +O

(
λ3
)
. (4.48)

For edge xy, its V a and Ṽ a are

V a = δa1 + λap−∆a + ηap−∆a + γa +O
(
λ3
)
, (4.49)

Ṽ a = δa1 + λ̃ap−∆a + η̃ap−∆a + γ̃a +O
(
λ3
)
. (4.50)

This time the precision of (3.4) is not enough since it is only of order O(λ2). Now we
persevere to recover the order O(λ3) term, which is given by

de = 1 +Bab(ωaeωbe + ω̃ae ω̃
b
e) + Cabωae ω̃

b
e +Dabc(ωaeωbeωce + ω̃ae ω̃

b
eω̃

c
e)

+ Eabc(ωaeωbeω̃ce + ω̃ae ω̃
b
eω

c
e) +O(ω4)

= 1 +Bab(λaeλbe + λ̃ae λ̃
b
e) + Cabλae λ̃

b
e + 2Bab(λaeηbe + λ̃ae η̃

b
e) + Cab(λae η̃be + ηae λ̃

b
e)

+Dabc(λaeλbeλce + λ̃ae λ̃
b
eλ̃
c
e) + Eabc(λaeλbeλ̃ce + λ̃ae λ̃

b
eλ
c
e) +O(λ4), (4.51)

where Dabc is fully symmetric and Eabc is symmetric in a, b. Here we have used Aa = 0,
which means expanding V a, Ṽ a to O(λ2) is enough to obtain de to O(λ3).

Plugging V a, Ṽ a above into (4.51), we can obtain jxy, {jxyi}, {jxiy} to order O(λ3).
Plugging all the j into (4.7), we can obtain G to order O(λ3). Since j ∼ O(λ2), we have
j2 ∼ O(λ4). Therefore it is consistent to ignore the O(j2) term in G.

Let us denote the order O(λ3) term of G by Gλ3 . After careful calculation, we can work
out Gλ3 + Tλ3 . After using the Bab, Cab, b = −pc/2 we have obtained before, in Gλ3 + Tλ3

the term which depends on {ηai }, {η̃ai } automatically vanishes. Finally we find

Gλ3 +Tλ3 =
p∑
j=1

Mabc
1 (λajλbjλcj+λ̃aj λ̃bj λ̃cj)+

p∑
k=1

Mabc
2

(
λakλ

b
k(p∆cλc+λ̃c)+λ̃akλ̃bk(p∆c λ̃c+λc)

)
+Mabc

3 (λaλbλc+λ̃aλ̃bλ̃c)+Mabc
4 (λaλbλ̃c+λ̃aλ̃bλc), (4.52)
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where

Mabc
1 =

p−∆a−∆b−∆c

(
2c(p+1)

(
Dabc

(
p∆a+∆b+∆c−1

)
+Eabc

(
p∆c−p∆a+∆b

))
−Cabc

)
2(p+1) ,

(4.53)

Mabc
2 = 1

4p
−∆a−∆b−2∆c

4c
(
Eabcp∆a+∆b−Ebcap∆a−Ecabp∆b +3Dabc

)
+ Cabc

4(p+1)
p2∆c−5 +p+1

 ,
(4.54)

Mabc
3 = 1

4p
−2(∆a+∆b+∆c)

4r1R
abc
(
p∆a+∆b +p∆c

)
+4h1H

abc
(
p∆a+∆b+∆c +1

)

+4cEabcp∆a+∆b+2∆c +4cDabc
(
p−(p+3)p∆a+∆b+∆c

)
+
Cabc

(
p2∆a +3

)
p∆a+∆b+∆c

(p+1)
(
p2∆a−1

)
 ,

(4.55)

Mabc
4 = 1

4p
−2(∆a+∆b+∆c)

(
12cDabc

(
(p−2)p∆a+∆b +(p−1)p∆c

)
+Cabc

(
(p+1)

(
p2∆a−1

)(
p2∆c−1

))−1 [
4
(
p2∆a+1−1

)
p∆c−4

(
p2∆a+1−1

)
p3∆c

+
(
3p2∆a−4p+1

)
p∆a+∆b+2∆c +

(
p2∆a +4p−5

)
p∆a+∆b

]
+4
[
3h1H

abcp∆a+∆b

+cEabcp∆c

(
p∆c−2p∆a+∆b+1

)
+cEbcap2∆a+∆b +cEcabp∆a+2∆b +r1R

cabp∆a

+r1R
bcap∆b +r1R

abc+p∆c

(
r1p

∆b

(
Rabcp∆a +Rcab

)
+r1R

bcap∆a +3h1H
abc
)])

.

(4.56)

Here we have used (4.42), (4.43), so γa, γ̃a do not appear in our final expression.
It is obvious that the Einstein equation is

Gλ3 + Tλ3 = 0, (4.57)

for any {λai }, {λ̃ai }. So we should have

M
(abc)
1 = 0, M

(ab)c
2 = 0, M

(abc)
3 = 0, M

(ab)c
4 = 0, (4.58)

where (ab), (abc) means the symmetrization of the matrix. The unknown matrices are
Dabc = D(abc), Eabc = E(ab)c, Habc = H(abc), Rabc = R(ab)c. They can be fully determined
by (4.58) since the number of unknown independent matrix elements is the same as the
number of independent equations.

Using M (abc)
1 = 0, we can get

Dabc =
3Cabc + 2c(1 + p)

(
(p∆a+∆b − p∆c)Eabc + (p∆b+∆c − p∆a)Ebca + (p∆a+∆c − p∆b)Ecab

)
6c(1 + p)(−1 + p∆a+∆b+∆c) .

(4.59)
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Plugging it into M (ab)c
2 = 0, we can get

(p2(∆a+∆b) − 1)Eabc −
(
p2∆a − 1

)
p∆bEbca + p∆a

(
−
(
p2∆b − 1

))
Ecab

= −
Cabcp−∆c

(
−5p∆a+∆b+∆c + p∆a+∆b+3∆c + 5p2∆c − 1

)
4c(p+ 1)

(
p2∆c − 1

) . (4.60)

By solving it, we obtain

Eabc = Cabc(−p∆a+∆b+2∆c−p∆a−∆b−p∆b−∆a +3p∆a+∆b−p2∆a+∆c−p2∆b+∆c−p−∆c +3p∆c)
4c(p+1)

(
p2∆a−1

)(
p2∆b−1

)(
p2∆c−1

) .

(4.61)
Using M (abc)

3 = 0, we can get

Habc = − 1
12h1

(
p∆a+∆b+∆c + 1

)( p∆a+∆b+∆cCabc

(p+ 1)
(
p2∆a − 1

) (
p2∆b − 1

) (
p2∆c − 1

)×(
3p2∆a+2∆b+2∆c + p2∆a+2∆b + p2∆a+2∆c + p2∆b+2∆c − 5p2∆a − 5p2∆b − 5p2∆c + 9

)
+ 4

[
3cDabc

(
p− (p+ 3)p∆a+∆b+∆c

)
+ cEabcp∆a+∆b+2∆c + cEbcap2∆a+∆b+∆c

+ cEcabp∆a+2∆b+∆c + r1R
abcp∆a+∆b + r1R

cabp∆a+∆c + r1R
bcap∆b+∆c + r1R

bcap∆a

+ r1R
cabp∆b + r1R

abcp∆c

])
. (4.62)

Plugging (4.59), (4.61), (4.62) into M (ab)c
4 = 0, we can get

2Rabc
(
p2(∆a+∆b) − 1

)
+ 2Rbca

(
p2∆a − 1

)
p∆b + 2Rcabp∆a

(
p2∆b − 1

)
= Cabcp∆a+∆b

r1
.

(4.63)
By solving it, we obtain

Rabc =
Cabc

(
p∆a+∆c − p∆b

) (
p∆b+∆c − p∆a

)
2r1

(
p2∆a − 1

) (
p2∆b − 1

) (
p2∆c − 1

) . (4.64)

Having Eabc, Rabc, we can further get

Dabc = −Cabcp−∆a−∆b−∆c

12c(p+1)
(
p2∆a−1

)(
p2∆b−1

)(
p2∆c−1

)(−3p∆a+∆b+∆c−3p2(∆a+∆b+∆c)

+p3∆a+∆b+∆c +p∆a+3∆b+∆c +p∆a+∆b+3∆c +p2(∆a+∆b)+p2(∆a+∆c)+p2(∆b+∆c)
)
,

(4.65)

Habc =
Cabcp−∆a−∆b−∆c

(
p∆a+∆b+∆c +p

)
12h1(p+1)

(
p2∆a−1

)(
p2∆b−1

)(
p2∆c−1

)(−3p∆a+∆b+∆c−3p2(∆a+∆b+∆c)

+p3∆a+∆b+∆c +p∆a+3∆b+∆c +p∆a+∆b+3∆c +p2(∆a+∆b)+p2(∆a+∆c)+p2(∆b+∆c)
)
.

(4.66)
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As we can see, Rabc is simple, while Eabc, Dabc, Habc are a bit complicated. And we no-
tice that

Dabc

Habc
= −h1
c(p∆a+∆b+∆c + p) . (4.67)

It is not trivial thatDabc, Eabc, Rabc, Habc can be exactly solved. It means that to satisfy
the Einstein equation the interaction term and the definition of edge length are fixed!

4.4.1 The interaction term in the semi-classical limit

As we have noted in section 2, the field theory exactly recovers the correlation functions in
the tensor network in the semi-classical limit where the masses approach infinity. Therefore
we would like to take this limit in the results obtained in the previous section.

Recall that 〈φ̃axφ̃byφ̃cz〉 = 〈OaxObyOcz〉. This is consistent with an action with cubic term.

Scubic = 1
3!
∑
x

Cabcφ̃axφ̃
b
xφ̃

c
x. (4.68)

At first glance our Habc, Rabc do not agree with (4.68). However, when we take the classical
limit, i.e. ∆� 1, we have

Habc = −Cabc

4h1(1 + p) , (4.69)

Rabc = 0, (4.70)

where we have used ∆a ∼ ∆b ∼ ∆c � 1. Then the interaction term in the action (4.3)
becomes ∑

〈xy〉

−h0C
abc

4h1 (1 + p)
(
φ̃axφ̃

b
xφ̃

c
x + φ̃ayφ̃

b
yφ̃

c
y

)
=
∑
x

−h0C
abc

4h1
φ̃axφ̃

b
xφ̃

c
x. (4.71)

Here we consider the vacuum case so that h(dxy) = h0 and we have changed the sum over
edges into vertices. We have noted in section 2 that at every vertex where propagators
meet, the tensor network dictates that it is weighted by a factor of the fusion coefficients. In
particular when there are exactly three propagators meeting at the vertex, the interaction
coupling is precisely Cabc.

Up to some ∆a independent normalizations that is not fixed by the Einstein constraints,
the latter led to (4.71) that is in complete agreement with results consistent with the
tensor network.

4.4.2 Fisher metric and the edge lengths

In the definition of de, Dabc, Eabc are a bit complicated. We find a way to simplify the
expression of de. Originally it is given by

de = 1 +Bab
(
λaeλ

b
e + λ̃ae λ̃

b
e

)
+ Cabλae λ̃

b
e + 2Bab

(
λaeη

b
e + λ̃ae η̃

b
e

)
+ Cab

(
λae η̃

b
e + ηae λ̃

b
e

)
+Dabc

(
λaeλ

b
eλ
c
e + λ̃ae λ̃

b
eλ̃
c
e

)
+ Eabc

(
λaeλ

b
eλ̃
c
e + λ̃ae λ̃

b
eλ
c
e

)
+O

(
λ4
)
. (4.72)
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Supposing the two ends of edge e are u, v, V a is on u side and Ṽ a is on v side. Then

φ̃au = λae + λ̃aep
−∆a + ηae + η̃aep

−∆a + Cabcλbλ̃cp−∆c +O
(
λ3
)
, (4.73)

φ̃av = λ̃ae + λaep
−∆a + η̃ae + ηaep

−∆a + Cabcλ̃bλcp−∆c +O
(
λ3
)
. (4.74)

We find that to order O(λ3)

1 + p∆a

2c (p+ 1)
(
1− p2∆a

) φ̃auφ̃av + r1R
abc

2c (p+ 1)
(
φ̃auφ̃

b
uφ̃

c
v + φ̃avφ̃

b
vφ̃

c
u

)
= de. (4.75)

The nonlocal term in T is given by

T♦xy = −2ζp (2∆a)
2p∆a

φ̃axφ̃
a
y + r1R

abc
(
φ̃axφ̃

b
xφ̃

c
y + φ̃ayφ̃

b
yφ̃

c
x

)
= p∆a

1− p2∆a
φ̃axφ̃

a
y + r1R

abc
(
φ̃axφ̃

b
xφ̃

c
y + φ̃ayφ̃

b
yφ̃

c
x

)
. (4.76)

So it turns out that

1 + T♦uv
2c (tp+ 1) = de. (4.77)

The edge length is closely related to the nonlocal part of T .
We can also introduce some states on the vertices u, v:

|u〉 ≡
∑
a

Na
(
φ̃au + φ̃buφ̃

c
uR̃

bca
)
|a〉, (4.78)

|v〉 ≡
∑
a

Na
(
φ̃av + φ̃bvφ̃

c
vR̃

bca
)
|a〉, (4.79)

where

Na =
√

p∆a

2c(p+ 1)(p2∆a − 1) , (4.80)

R̃abc ≡ r1R
abc(1− p2∆c)
p∆c

. (4.81)

Then we have

1− 〈u|v〉 = de. (4.82)

So de may also be understood as some information metric. In particular, let us consider the
semi-classical limit that is of direct relevance in the comparison with the tensor network.
One readily finds that

lim
∆a→∞

|u〉 = 1√
2c(p+ 1)

∑
a

φau|a〉. (4.83)

The wavefunction of this state is obtained by sticking a dangling leg to the vertex u of
the tensor network. The edge distance turns out to be given by the Fisher information
distance between two states each with a leg stuck at one of the two ends of the edge!
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5 Summary and discussion

In this paper, we study in detail the tensor network proposed in [24] with deformed bound-
ary conditions. We show that there is virtually a unique way of assigning geometrical data
to the tensor network based on its local data so that it satisfies a graph Einstein equa-
tion that is self-consistent with the field theory that is known to be encoded in the tensor
network. The emergent Einstein tensor also naturally recovers the proposals in the math-
ematics literature, at least in the perturbative expansion that we are considering [46–48].
This is arguably the first such quantitative demonstration of an emergent Einstein equation
with matter in a holographic tensor network that explicitly reconstructs known CFTs in a
controlled way, albeit (unfortunately) in a simplified setting of the p-adic AdS/CFT.

To summarise our feat slightly differently, the search for Einstein equation is to look
for a question whose answer we have — a tensor network carrying the CFT data. And we
constructed such a relation guided by the AdS/CFT correspondence, which helped us in
finding a bulk action that encodes the same correlation data as the tensor network.

There are several interesting observations and future problems that we would like to
comment upon. First of all, in the covariant tensor network reconstruction of the CFT
partition function rather than a wavefunction, the same choices of tensors can describe
different geometries. The important aspect is the sub-vector space that is explored —
which is controlled by the boundary conditions in the current construction. Near a fixed
point vector, only vectors close to the fixed point vector is actually contributing to the
partition function. When a different sub-space is explored, the same tensor network can
describe a vastly different geometry. This is in fact very close in spirit with the gravity
path-integral, where different saddle points are merely exploring different vector subspaces.

Second, the tensor network construction here bears uncanny resemblance to strange
correlators, a term coined in [50–52]. PEPS tensor networks produce (minimal) CFT
partition function by projecting each of the boundary leg to a particular fixed point vector.
Here, something almost identical happens. We can take the partition function we have
constructed as the overlap of a direct product state and a MERA like tensor network state
that covers the BT tree. i.e.

ZCFT =
(∏

i

〈Vf |
)
|Ψ〉, (5.1)

where |Ψ〉 is a “state” corresponding to the tensor network covering the BT tree and whose
“physical legs” are the dangling ones at the cutoff surface. We are currently pushing
this analogy to construct holographic tensor networks that describe real CFTs. Moreover,
we find our tensor network also a discrete realization of the recent consideration of [53],
where the partition function of a generic QFT can always be thought of as the overlap
between a “fixed point” state (which should be some direct product or gapped state) and
another wavefunction in one higher dimensions. By considering RG transformation of the
wavefunctions (which keeps the fixed point state invariant), one generates a holographic
radial direction — which is precisely what our BT tree tensor network achieved. Our
construction of geometries and Einstein equations therefore could inspire more general
constructions in real CFTs by making better use of this connection.
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Our tensor network is also known to be equivalent to a Wilson line network with gauge
group given by SL(2, Qp) [54]. This is parallel to the Chern-Simons formulation of the 3d
Einstein-Hilbert gravity [55]. Recently, it is noticed that Wilson line networks provide
more direct link with complexities. It would be very interesting to translate these results
here, which might give an alternative way of assigning curvatures to the tensor network.

Indeed given our tensor network’s connection with Wilson lines, it inspired an alter-
native way of bending the BT tree — by deforming the connection upon which the Wilson
line network is evaluated. In the process, one discovers a formulation of the BTZ black
hole in the p-adic Wilson line network that bears profound resemblance to the AdS BTZ
black hole, but unique in its way. We have also found a new set of coordinates on the BT
tree that is the analogue of black hole coordinates in AdS space and opens the door to
more general diffeomorphism transformation on the p-adic tree. The p-adic CFT, known
for its lack of descendants, should still contain intricate structures and accommodate local
conformal transformation. These exciting developments will be discussed in detail in our
sequel to appear together!

Before we end, we note that we have expanded only up to λ3 in the current paper.
Since the distance perturbation j is quadratic in λ, we obtained only a linear equation on
j. Starting from λ4 contributions of j2 would show up in the Einstein constraint. It would
be interesting to find out if the tensor network describes a truly “pure Einstein” action, or
if it involves other curvature terms.
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A Brief review of p-adic CFTs

Let’s begin with the brief introduction of p-adic number field Qp which is the field extension
of the rational numbers alternative to the real number R. For a given prime number p,
any rational number r ∈ Q can be written as

r = pk
a

b
, (k ∈ Z) (A.1)

where a and b are integers relatively prime to p. And the p-adic norm of r is defined as

|r|p = p−k, |0|p = 0. (A.2)

After the field extension by using the p-adic norm | . . . |p, the resulting number field is
called p-adic number field Qp. A p-adic number x ∈ Qp is usually expressed as an infinite
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series

x = pv
∞∑
i=0

aip
i, (v ∈ Z) (A.3)

where ai ∈ Fp = {0, 1, . . . , p− 1} and a0 6= 0. And its p-adic norm is

|x|p = p−v, (A.4)

which satisfies various axioms of norms:

|x| ≥ 0, (A.5)
|x| = 0↔ x = 0, (A.6)
|xy| = |x||y|, (A.7)

|x+ y| ≤ |x|+ |y|. (A.8)

Actually the Euclidean norm and the p-adic norm are the only two types of norms that
obey the four axioms above. Other than the real number R, the p-adic number Qp is the
only possible field extension of rational number Q.

The p-adic CFT is a field theory living in the p-adic number field Qp, i.e. its coordinates
x ∈ Qp. The global conformal symmetry of the p-adic CFT is defined as the transformation

x→ x′ = ax+ b

cx+ d
, (a, b, c, d ∈ Qp). (A.9)

It furnishes the matrix group PGL(2, Qp), the direct analogue of SL(2,R) in 1d conformal
transformation in real space-time. Similar to the CFT, there are two pieces of algebraic
data required to specify completely a p-adic CFT:

• First the spectrum of primary operators Oa with conformal dimensions ∆a, which
transform under conformal symmetry PGL(2, Qp) as

Oa(x)→ Õa(x′) =
∣∣∣∣ ad− bc(cx+ d)2

∣∣∣∣−∆a

p

Oa(x), (A.10)

• Second, OPE coefficients Cabc defined as

Oa(x1)Ob(x2) =
∑
c

Cabc|x1 − x2|∆c−∆a−∆b
p Oc(x2). (A.11)

The form of (A.11) follows from the fact that the p-adic CFT has no descendant which
is a consequence of the fact that on p-adic number field a locally-constant function has
zero-derivative. As usual, there must be a unique identity operator I = O1 of dimension
∆1 = 0 whose OPE coefficients satisfy Cb1a = C1b

a = δba. The totally symmetric OPE
coefficients Cabc ≡ ∑dC

ab
dC

cd
1 is most commonly used. After suitable orthogonalization

and normalization, we can always make Cab1 = δab. Then C1ab = Ca1b = Cab1 = δab. And
inserting the OPE into a 2-point function implies that

〈Oa(x1)Ob(x2)〉 = δab

|x1 − x2|2∆a
p

. (A.12)
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For the 3-point function we will obtain

〈Oa(x1)Ob(x2)Oc(x3)〉 = Cabc

|x12|∆a+∆b−∆c
p |x23|∆b+∆c−∆a

p |x31|∆c+∆a−∆b
p

. (A.13)

When considering the 4-point function, the crossing symmetry will lead to following
constraint ∑

c

CabcCcde =
∑
c

CbdcCcae, (A.14)

which is equivalent to the associativity of the fusion algebra defined by Cabc.

B Relation between cubic term and quadratic term

To avoid confusion, the summation of a, b, c in (4.9) and (4.51) is understood as∑
a 6=1,b 6=1,c 6=1. Then our result is valid for a 6= 1, b 6= 1, c 6= 1. Now let’s consider∑

a,b,c

h1H
abc
(
φ̃a

xφ̃
b
xφ̃

c
x + φ̃a

yφ̃
b
yφ̃

c
y

)
+
∑
a,b,c

r1R
abc
(
φ̃a

xφ̃
b
xφ̃

c
y + φ̃a

yφ̃
b
yφ̃

c
x

)
. (B.1)

When one of a, b, c is 1, it will contribute∑
a 6=1

(
3h1H

aa1
(
φ̃axφ̃

a
x + φ̃ayφ̃

a
y

)
+ r1R

aa1
(
φ̃axφ̃

a
x + φ̃ayφ̃

a
y

)
+ 2r1R

1aa
(
φ̃axφ̃

a
y + φ̃ayφ̃

a
x

))
. (B.2)

Here we have used φ̃1
x = 1 + . . . , Cab1 = δab and the symmetry of Habc, Rabc. Plug-

ging (4.64), (4.66) into (B.2), we will get

∑
a 6=1

(
− p2∆a + p

2(p+ 1)
(
p2∆a − 1

)(φ̃axφ̃ax + φ̃ayφ̃
a
y) + p∆a

p2∆a − 1
(
φ̃axφ̃

a
y

))
, (B.3)

which is exactly

−
∑
a 6=1

(
k
ζp(2∆a)

2p∆a
(φ̃ax − φ̃ay)2 + ζp(2∆a)

2p∆a

1
p+ 1m

2
a((φ̃ax)2 + (φ̃ay)2)

)
= −Tφ̃2 . (B.4)

Here Tφ̃2 is the quadratic term in T as shown in (4.9). It implies that regarding the identity
operator I as an elementary field, in the action the quadratic term can be included in the
interaction term in a compact way.

C Some identities in the flow of the boundary conditions

As described in subsection 2.2, the authors of [24] assume translation invariance along Qp.
Following (2.12), we also find some interesting relationship between the Fisher metric and
the matter field. Let the cutoff be denoted by Λ, without normalization,

|VΛ〉 =
(
aΛ +

∑
k

b
(k)
Λ vk

)
|1〉 (C.1)
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These are the boundary vectors, and p such vectors will return a new vector sharing the
same vertex tensor with them, which is

|VΛ−1〉 =
(
aΛ−1 +

∑
k

b
(k)
Λ−1v

k

)
|1〉 (C.2)

in which vk represents some primary field. According to (2.12), we have

|VΛ−1〉=
(
aΛ+

∑
k

p−∆kb
(k)
Λ vk

)p
|1〉 (C.3)

aΛ−1 = apΛ+C2
p

∑
i,j

N0
ija

p−2
Λ biΛb

j
Λp
−∆i−∆j +C3

p

∑
i,j,k,w

Cwk0Cijwap−3
Λ biΛb

j
Λb
k
Λp
−∆i−∆j−∆k+. . .

(C.4)

b
(k)
Λ−1 = p1−∆kap−1

Λ b
(k)
Λ +C2

p

∑
i,j

Cijkb
(i)
Λ b

(j)
Λ p−∆i−∆j +. . . (C.5)

and

λk = b
(k)
Λ
aΛ

(C.6)

plays the role of a source, which satisfies,

λk � p∆k−1 (C.7)

The fisher metric is

1− |〈VΛ−n|VΛ−n−1〉|2

〈VΛ−n|VΛ−n〉〈VΛ−n−1|VΛ−n−1〉
(C.8)

Let n be the steps from the cutoff surface to the layer we are considering, and expand
the fisher metric between the nth layer and n+1th layer to first order, the recurrence
relation tells us that the fisher metric should be

1−

(
aΛ−n−1aΛ−n+∑k b

(k)
Λ−n−1b

(k)
Λ−n

)2(
a2

Λ−n+∑k b
(k)
Λ−n

2
)(

a2
Λ−n−1+∑k b

(k)
Λ−n−1

2
) =

∑
k

p2n−2n∆k(p1−∆k−1)2 b
(k)
Λ

2

aΛ2 (C.9)

Now consider the expectation value of the operator inserted into some vertex x which
is n steps from the boundary of the tree, to first order it is

〈φx〉 =
∑
r

JG(x, r) (C.10)

First ignore the normalization factor of the bulk-boundary propagator defined in [35],
which is

C = 1− ps−2∆k

1− p−2∆k
(C.11)

Here s=1.

– 27 –
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We have

φ(k)
x = [pnp−n∆k +(pn+1−pn)p−n∆k−2∆k)+· · ·+(pn+w−pn+w−1)p−n∆k−2w∆k ]λk (C.12)

Similarly,

φ(k)
y = [pn+1−(n+1)∆k(1−p−2∆k)1−p(w−1)−2(w−1)∆k

1−p1−2∆k
+pn+wp−(n+1)∆k−2(w−1)∆k ]λk

(C.13)
y is the point just below x, and w represents the distance between x and the IR limit,
which goes to infinity. When ∆k is larger than 1

2 ,

(φ(k)
x − φ(k)

y )2 = p2n−2n∆k(p1−∆k − 1)2
(

1− p−2∆k

1− p1−2∆k

)2

λk
2 (C.14)

Now take the normalization factor into account and let

Φ(k)
x = Cφ(k)

x (C.15)

We can see that (Φ(k)
x − Φ(k)

y )2 is just equal to the first order in the expansion of the
Fisher metric between the two layers.

The same equality holds when s is not one. There is also an interesting property that

M2
n,n+m = 1− |〈VΛ−n|VΛ−n−m〉|2

〈VΛ−n|VΛ−n〉〈VΛ−n−m|VΛ−n−m〉
= (pm−m∆ − 1)2p2n−2n∆λ2 (C.16)

in which Mn,n+m represents the square root of fisher metric between the nth layer and
(n+m)th layer, and

Mij +Mjk = Mik (C.17)
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