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Abstract: We report a search for B decays to selected final states with the ηc meson:

B± → K±ηcπ
+π−, B± → K±ηcω, B± → K±ηcη and B± → K±ηcπ

0. The analysis is

based on 772 × 106 BB̄ pairs collected at the Υ(4S) resonance with the Belle detector at

the KEKB asymmetric-energy e+e− collider. We set 90% confidence level upper limits on

the branching fractions of the studied B decay modes, independent of intermediate reso-

nances, in the range (0.6–5.3)× 10−4. We also search for molecular-state candidates in the

D0D̄∗0 − D̄0D∗0, D0D̄0 + D̄0D0 and D∗0D̄∗0 + D̄∗0D∗0 combinations, neutral partners of

the Z(3900)± and Z(4020)±, and a poorly understood state X(3915) as possible interme-

diate states in the decay chain, and set 90% confidence level upper limits on the product

of branching fractions to the mentioned intermediate states and decay branching fractions

of these states in the range (0.6–6.9)× 10−5.

Keywords: Exotics, Quarkonium, e+-e- Experiments, B physics, Particle and resonance

production
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1 Introduction

Many exotic charmonium-like states are observed in the mass region above the DD̄ thresh-

old. Decays of B mesons provide a fruitful opportunity to study these states and to

find new ones. For example, the state X(3872) was first observed by Belle in exclusive

B+ → K+π+π−J/ψ decays [1] that was later confirmed by CDF [2], DØ [3] and BaBar [4].

It was also observed in the LHCb experiment [5, 6] in pp collisions and B decays. The

X(3872) mass is close to the mD0 + mD̄∗0 threshold, which engendered a hypothesis that

this state may be a D0D̄∗0 molecule [7]. The observation of the decay X(3872) → γJ/ψ

by BaBar [8] and Belle [9] established the charged parity of X(3872) to be positive. An-

gular analysis of the X(3872)→ J/ψπ+π− decay by LHCb [6] determined all its quantum

numbers: JPC = 1++.

If X(3872) is indeed a D0D̄∗0 molecule, there can exist other “X(3872)-like” molecular

states with different quantum numbers. Some may reveal themselves in the decays to final

states containing the ηc meson. For example, a D0D̄∗0 − D̄0D∗0 combination (denoted

hereinafter by X1(3872)) with quantum numbers JPC = 1+− would have a mass around

3.872 GeV/c2 and would decay to ηcρ and ηcω. Combinations of D0D̄0 +D̄0D0, denoted by

X(3730), and D∗0D̄∗0 + D̄∗0D∗0, denoted by X(4014), with quantum numbers JPC = 0++

would decay to ηcη and ηcπ
0. The mass of the X(3730) state would be around 2mD0 =

3.730 GeV/c2 while that of the X(4014) state would be near 2mD∗0 = 4.014 GeV/c2.

Recently, a new charged state Z(3900)± was found in Y (4260) decays by Belle [10]

and BESIII [11]. Since this particle is observed in the decay to π±J/ψ, it should contain

at least four quarks. BESIII [12] reported subsequently an observation of another decay

channel of the seemingly same state Z(3885)± → (DD̄∗)±. The Z(3900)± was confirmed

– 1 –
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in the decay to π±J/ψ by an analysis of CLEO-c data [13] that also reported evidence for

its neutral isotopic partner Z(3900)0. Another exotic charged state Z(4020)± was observed

by BESIII in decays to π±hc [14] and (D∗D̄∗)± [15]. There are some indications from these

analyses that the spin and parity of the charged states might be JP = 1+.

The near-threshold enhancement in the ωJ/ψ invariant mass distribution named

Y (3940) was first observed by Belle in exclusive B → KωJ/ψ decays [16]. Later, in

the same decay mode, BaBar discovered X(3915) [17], which was confirmed by Belle in

two-photon production [18] and by other BaBar measurements [19, 20]. The parameters

of Y (3940) are consistent with those of X(3915), so they are considered to be the same

particle. The quantum numbers of X(3915) are claimed to be JPC = 0++, but its nature

is still undetermined, and there are several interpretations describing this state [21–25].

To search for the particles described above, we reconstruct ηc mesons via the K0
SK
±π∓

mode and study the following four decays of charged B mesons:

1. the (π+π−) decay mode: B± → K±X → K±(ηcπ
+π−), where we look for X1(3872),

Z(3900)0 and Z(4020)0;

2. the (ω) decay mode: B± → K±X → K±(ηcω), where we look for X1(3872);

3. the (η) decay mode: B± → K±X → K±(ηcη), where we look for X(3730), X(4014)

and X(3915);

4. the (π0) decay mode: B± → K±X → K±(ηcπ
0), where we look for X(3730), X(4014)

and X(3915).

2 Event selection

The analysis is based on a data sample that contains 772 × 106 BB̄ pairs, collected with

the Belle detector at the KEKB asymmetric-energy e+e− collider [26],1 [27]2 operating at

the Υ(4S) resonance.

The Belle detector [28] (also see detector section in [29]) is a large-solid-angle magnetic

spectrometer that consists of a silicon vertex detector, a 50-layer central drift chamber

(CDC) for charged particle tracking and specific ionization measurement (dE/dx), an array

of aerogel threshold Cherenkov counters (ACC), time-of-flight scintillation counters (TOF),

and an array of 8736 CsI(Tl) crystals for electromagnetic calorimetry located inside a

superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux return

yoke located outside the coil is instrumented to detect K0
L mesons and identify muons. We

use a GEANT3-based Monte Carlo (MC) simulation to model the response of the detector

and determine its acceptance [30].

Charged tracks are selected with requirements based on the goodness of fit of the tracks

and their impact parameters relative to the interaction point (IP). We require that the

polar angle of each track be in the angular range (18◦–152◦) and that the track momentum

perpendicular to the positron beamline be greater than 100 MeV/c.

1And other papers included in this volume.
2And following articles up to 03A011.
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Pions and kaons are distinguished by combining the responses of the ACC and the

TOF with dE/dx measurements in the CDC to form a likelihood ratio Li/j = Li/(Li+Lj).
Here, Li is the likelihood that the particle is of type i. K0

S candidates are reconstructed

via the π+π− final state. The π+π− invariant mass must lie in the range 0.486 GeV/c2

< M(π+π−) < 0.510 GeV/c2. The flight length of the K0
S is required to lie within the

interval (0.1− 20) cm. The angle ϕ between the pion pair momentum and the line joining

the π+π− the vertex to the IP must satisfy cosϕ > 0.95.

The invariant masses of intermediate resonances must lie within ranges obtained

from signal MC and containing more than 95% of the signal yield: 2.9254 GeV/c2

< M(K0
SK
±π∓) < 3.0454 GeV/c2 for the ηc meson, 0.758 GeV/c2 < M(π+π−π0) <

0.808 GeV/c2 for the ω meson, 0.125 GeV/c2 < M(γγ) < 0.145 GeV/c2 for the π0 meson,

0.528 GeV/c2 < M(γγ) < 0.568 GeV/c2 and 0.538 GeV/c2 < M(π+π−π0) < 0.558 GeV/c2

for the η meson.

B candidates are identified by their center-of-mass (c.m.) energy difference ∆E =

(
∑

iEi) − Eb, and the beam-constrained mass Mbc =
√
E2

b/c
2 − (

∑
i ~pi)

2/c, where Eb =
√
s/2 is the beam energy in the Υ(4S) c.m. frame, and ~pi and Ei are the c.m. three-

momenta and energies, respectively, of the B candidate decay products. We define the

signal region by |∆E| < 0.02 GeV and 5.273 GeV/c2 < Mbc < 5.285 GeV/c2; the |∆E|
range extends to 0.04 GeV for some decay channels.

Although the continuum background (e+e− → qq̄, where q = u, d, s, c) is not dominant,

we suppress it using topological criteria. Since the produced B mesons are nearly at rest in

the c.m. frame, the signal tends to be isotropic, while the continuum qq̄ background tends

to have a two-jet structure. We use the angle Θthrust between the thrust axis3 of the B

candidate and that of the rest of the event to discriminate between these two cases. The

distribution of | cos Θthrust| is strongly peaked near 1 for qq̄ events but nearly uniform for

Υ(4S) → BB̄ events; we require | cos Θthrust| < 0.8. In addition, we require that the c.m.

polar angle θB of the reconstructed B meson satisfies | cos θB| < 0.8, where this angle is

measured relative to the z axis that is collinear with the positron beam.

The mean number of multiple B candidates per event varies from 1.2 to 2.0, depending

on the decay channel. If an event has multiple B candidates, we select the candidate with

the minimum value of the following expressions in the order described below:

1. |mK0
S
−M(π+π−)|,

2. |mηc −M(K0
SK
±π∓)|,

3. |mη −M(γγ)| (for η → γγ in the (η) mode) or |mπ0 −M(γγ)| (for the (ω) mode, for

η → π+π−π0 in the (η) mode and for the (π0) mode),

4. maximum difference between z coordinates at the closest-distance point to the z axis

among each pair of charged particles in the signal-B final state.

According to MC, this procedure selects the correct B candidate with 95% probability.

3I.e., axis n̂ that maximizes Σi|p̂i · n̂|, where the sum is over all considered particles momenta p̂i.

– 3 –
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Figure 1. The ∆E distribution for the decay B± → K±ηcω.

3 Reconstruction of final states

3.1 B± → K±ηc + hadrons

We search for D(∗)0D(∗)0 molecular-state candidates Z(3900)0, Z(4020)0, and X(3915) in

the following B meson decays: B± → K±ηcπ
+π−, B± → K±ηcω, B± → K±ηcη, and

B± → K±ηcπ
0. To determine the branching fractions, we perform a binned maximum-

likelihood fit of the ∆E distribution that is modelled by a peaking signal and featureless

background. For the (π+π−), (ω) and (π0) decay modes, the signal function is the sum

of two Gaussians (G) and the background function is a linear polynomial; the fitting

function is

f(x) = Ns [αG(x1, σ1) + (1− α)G(x2, σ2)] + c0 + c1x. (3.1)

For a given mode, we generate signal MC and fix the mean values x1 and x2, the standard

deviations σ1 and σ2, and the fraction of the first Gaussian α; we also obtain the detection

efficiency for the mode. Here and in the following the detector resolution is taken into

account. To account for the difference in resolution between MC and data, we replace

the resolution of the dominant second Gaussian in the fit with σ′2 =
√
σ2

2 + δ2, where

the resolution degradation δ = (7.1± 2.3) MeV/c2 is taken from the analysis of the decay

B± → K±ηc(2S)→ K±(K0
SK
±π∓) [31]. The ∆E distribution for the (ω) mode is shown

in figure 1.

In the (π+π−) and (π0) modes, we observe some significant signal and so perform a

two-dimensional fit of the KSKπ invariant mass (x) and ∆E (y) distributions:

f(x, y) = Nsu(x)v(y) +Nnon-resv(y) + c0 + c1x+ c2y, (3.2)

u(x) = b(Mηc ,Γηc)⊗G(0, σres), (3.3)

v(y) =

{
αG(y1, σ1) + (1− α)G(y2, σ2)

GLG(y0, σ, P )
(3.4)

– 4 –
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Figure 2. Projections of the two-dimensional fit in KSKπ invariant mass (left) and ∆E (right)

for the decay B± → K±ηcπ
+π−. Each projection is plotted for events in the whole fitting range of

the other projection.

for the (π+π−) and (π0) modes, respectively. The logarithmic Gaussian function is de-

fined as

GLG(x0, σ, P ) =
P√

2πσσ0

e
− ln2(1−P (x−x0)/σ)

2σ2
0

−σ
2
0
2
,

where σ0 = 1√
2ln2

sinh−1(P
√

2ln2) and P is the asymmetry parameter. The function u(x)

characterizes the ηc resonance and is described by the convolution of a Breit-Wigner (b)

function and a Gaussian detector resolution function with σres = 6.2 MeV/c2 obtained from

ref. [31]. The parameter Nnon-res represents the number of events that do not contain an

intermediate ηc meson, but have the same final state. According to the fit, most of the

events in the ∆E peak are of that origin. The M(KSKπ) and ∆E distributions for (π+π−)

and (π0) modes are shown in figures 2 and 3, respectively.

To improve the ∆E resolution in the (η) mode, we modify the energy of the η candidate

decaying into photons: E′η = c
√
m2
ηc

2 + p2
η, where mη = 547.853 MeV/c2 [33] is the mass

and pη is the reconstructed momentum. Since the η candidate is reconstructed in two

decay modes, we perform a combined fit of the ∆E distribution corresponding to η → γγ

and η → π+π−π0, using the following function:

fi(x) = NeffεiBi [αiG(x1,i, σ1,i) + (1− αi)G(x2,i, σ2,i)] + c0,i + c1,ix, (3.5)

where i refers to either η → γγ or η → π+π−π0 decay. In particular, B2γ = B(η → γγ) and

B3π = B(η → π+π−π0)×B(π0 → γγ). Here, the parameter Neff is the effective number of

signal events. To obtain the total yield for each decay channel, it should be multiplied by

the corresponding efficiency ε2γ/3π and η decay branching fraction Bi. The combined fit

projections of the ∆E distributions for the (η) mode are shown in figure 4.

The fit results are summarized in table 1.

– 5 –
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Figure 3. Projections of the two-dimensional fit in KSKπ invariant mass (left) and ∆E (right)

for the decay B± → K±ηcπ
0. Each projection is plotted for events in the whole fitting range of the

other projection.
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Figure 4. The combined fit projections of the ∆E distributions in case of the η → γγ (left) and

η → π+π−π0 (right) modes for the decay B± → K±ηcη.

3.2 X1(3872), X(3730) and X(4014)

For the (π+π−) mode, we perform a maximum-likelihood fit of the ηcπ
+π− invariant mass

distribution that is, again, modeled by a peaking signal and a smooth background; the fit

function is

f(x) = Ns [αG(M,σ1) + (1− α)G(M,σ2)] + c0 + c1x. (3.6)

For each intermediate resonance, we generate signal MC that incorporates the correspond-

ing “X(3872)-like” particle quantum numbers. From the signal-MC fit, we fix the mean

value M , the standard deviations σ1 and σ2, and the Gaussian fraction α; in addition,

we obtain the detection efficiency for the mode. From the fit, we obtain the signal yield

– 6 –
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Decay mode Fitting function Efficiency, % Yield

B± → K±ηcω (3.1) 0.53± 0.01 −41± 27

B± → K±ηcπ
+π− (3.2) + (3.3) + (3.4) 2.84± 0.02 155± 72

B± → K±ηcπ
0 3.69± 0.01 −1.9± 12.1

B± → K±ηcη,

η → γγ (3.5) 3.05± 0.01 −14± 26

η → π+π−π0 0.69± 0.01 −1.8± 3.4

Table 1. Fit results for B decays independent of intermediate resonances.

Ns, which is shown in table 2. The ηcπ
+π− invariant mass distribution is shown in fig-

ure 5 (left).

We validate our procedure by applying it to the decay B± → K±ψ(2S), ψ(2S) →
J/ψπ+π−. This decay is similar to the (π+π−) decay except that we reconstruct the

ψ(2S) meson in place of the X1(3872) and the J/ψ in place of the ηc. The J/ψ meson,

like the ηc, is reconstructed via the K0
SK
±π∓ final state. The selection criteria for this

decay are the same as for the (π+π−) decay except for the invariant mass of the K0
SK
±π∓

combination: 3.077 GeV/c2 < M(K0
SK
±π∓) < 3.117 GeV/c2. The mean number of B

candidates per event is 1.7. In case of multiple B candidates, the one with the minimum

differences for |mK0
S
−M(π+π−)| and |mJ/ψ−M(K0

SK
±π∓)| and the best vertex coordinate

is chosen. We fit the J/ψπ+π− invariant mass distribution and obtain the number of signal

events Ns = 20.2± 6.5, which corresponds to a significance of 3.5 standard deviations (σ).

The significance is estimated using the value of −2
√

ln L0
Lmax

, where Lmax (L0) denotes the

likelihood value when the yield is allowed to vary (is set to zero). The expected number of

events estimated using the world averages of the known branching fractions [33] is 22± 4,

which is consistent with Ns.

In the analysis of the (ω) mode, we use the sum of two Gaussians to describe the signal

and a threshold square-root function to describe the background:

f(x) = Ns [αG(M,σ1) + (1− α)G(M,σ2)] + c0

√
x− c1. (3.7)

The ηcω invariant mass distribution is shown in figure 5 (right).

In the X(3730) mass region of the (η) mode, the fitting function is

fi(x) = NeffεiBi [αiG(Mi, σ1,i) + (1− αi)G(Mi, σ2,i)] + c0,i + c1,ix, (3.8)

where Neff is the effective number of signal events and i refers to either η → γγ or η →
π+π−π0 decay. The ηcη invariant mass distributions in the X(3730) mass region are shown

in figure 6 (top).

In the X(4014) mass region of the (η) mode, the fitting function is

f(x) =

{
Neffε2γB2γGLG(M2γ , σ2γ , P ) + c0,1 + c1,1x,

Neffε3πB3π[αG(M3π, σ1,3π) + (1− α)G(M3π, σ2,3π)] + c0,2 + c1,2x.
(3.9)
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Figure 5. The distributions of ηcπ
+π− (left) and ηcω (right) invariant masses in the search for the

X1(3872). The threshold of the ηcω invariant mass is slightly shifted relative to the sum of the ω

and ηc nominal masses due to the mass windows of these two mesons, as confirmed by MC studies.

Decay mode Fitting function Efficiency, % Yield

X1(3872)→ ηcπ
+π− (3.6) 7.95± 0.02 17.9± 16.5

X1(3872)→ ηcω (3.7) 1.92± 0.02 6.0± 12.5

X(3730)→ ηcη,

η → γγ (3.8) 6.57± 0.02 13.8± 9.9

η → π+π−π0 1.18± 0.01 1.4± 1.0

X(3730)→ ηcπ
0 (3.10) 6.52± 0.02 −25.6± 10.4

X(4014)→ ηcη,

η → γγ (3.9) 7.09± 0.02 8.9± 11.0

η → π+π−π0 1.78± 0.01 1.3± 1.6

X(4014)→ ηcπ
0 (3.10) 7.55± 0.02 −8.1± 13.2

Table 2. Fit results for the X1(3872), X(3730) and X(4014) resonances.

The ηcη invariant mass distributions in the X(4014) mass region are shown in figure 6

(bottom).

For the (π0) mode, we use

f(x) = NsGLG(M,σ, P ) + c0 + c1x. (3.10)

The ηcπ
0 invariant mass distributions are shown in figure 7.

The fit results are summarized in table 2.
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Figure 6. The combined fit projections of the ηcη invariant mass distributions in case of the

η → γγ (left) and η → π+π−π0 (right) modes corresponding to the search for the X(3730) (top)

and X(4014) (bottom) resonances.

3.3 Z(3900)0 and Z(4020)0

We perform a sequence of binned maximum likelihood fits of the ηcπ
+π− invariant mass us-

ing the convolution of a Breit-Wigner and a Gaussian for the signal and a linear polynomial

for the background:

f(x) = b(M,Γ)⊗G(0, σres) + c0 + c1x. (3.11)

The Gaussian models the detector resolution, which is assumed to be similar to that

obtained in ref. [31] and equal to 9.8 MeV/c2. The Breit-Wigner mass is confined to a

20 MeV/c2 window (the so-called mass bin) that is scanned in 20 MeV/c2 steps across the

range (3.79–4.01) GeV/c2 for the Z(3900)0 and (3.93–4.07) GeV/c2 for the Z(4020)0. The

width is fixed to the weighted mean of the previously measured values (35 MeV/c2 for

the Z(3900)0 and 12 MeV/c2 for the Z(4020)0). The background is described by a linear

polynomial. The detection efficiency is obtained from signal MC: (9.64 ± 0.03)% for the

Z(3900)0 and (10.42 ± 0.03)% for the Z(4020)0. The obtained signal yield is shown in
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Figure 7. The ηcπ
0 invariant mass distributions corresponding to the search for the X(3730) (left)

and X(4014) (right) resonances.
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Figure 8. Dependence of the signal yield of the Z(3900)0 (left) and Z(4020)0 (right) on the mass

bin. The mass bin is a 20 MeV/c2 window to which the mass is confined and scanned in 20 MeV/c2

steps across the fit range.

figure 8. The examples of the fit within the mass bin containing 3.9 GeV/c2 for Z(3900)0

and 4.02 GeV/c2 for Z(4020)0 are shown in figure 9.

3.4 X(3915)

For the ηcη invariant mass distribution, we perform a combined fit of two decay modes of

the η meson:

fi(x) = NeffεiBi [b(Mi,Γi)⊗G(0, σi)] + c0,i + c1,ix, (3.12)

where Neff is the effective number of signal events and i refers to either η → γγ or η →
π+π−π0 decay. The detector resolution σi is obtained from signal MC, taking into account
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Figure 9. Examples of the fit within the mass bin containing 3.9 GeV/c2 for Z(3900)0 (left) and

4.02 GeV/c2 for Z(4020)0 (right).

the resolution degradation and is equal to 13.6 MeV/c2 for η → γγ and 12.3 MeV/c2 for

η → π+π−π0. The corresponding ηcη invariant mass distribution is shown in figure 10.

We fit the ηcπ
0 invariant mass distribution with the function in eq. (3.11). The detector

resolution is obtained from signal MC, taking into account the resolution degradation, and

is equal to 15.7 MeV/c2. The corresponding ηcπ
0 invariant mass distribution is shown in

figure 11.

The fit results are summarized in table 3.

4 Systematic uncertainties

Systematic uncertainties are categorized as follows:

1. Additive systematic uncertainties affect the number of signal events and are estimated

by the variation of the fit conditions. They are displayed as the numbers of events in

tables 4 and 5 and arise from the sources listed below. (i) To obtain the error related

to the resolution degradation, we vary the corrected variance of the fitting function

within its statistical uncertainty. (ii) We assume that the combinatorial background

can be parameterized with a first-order polynomial. To obtain the background shape

uncertainty, we describe the background by a second-order polynomial and compare

the results. For the (ω) mode, we change the square root to the fourth root. (iii)

To estimate the systematic error associated with the selection criteria, we relax the

criteria on ∆E, Mbc, and the invariant masses of ηc, ω and η by 50%. (iv) We vary

the bin size between 2.5 to 7.5 MeV/c2 and determine the corresponding systematic

error.

2. Multiplicative systematic uncertainties affect the product branching fractions. They

are displayed in percent in table 6 and arise from the sources listed below. (i) The

number of BB̄ pairs is calculated from the difference between the number of hadronic
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Figure 10. The combined fit projections of the ηcη invariant mass distributions in case of the η →
γγ (left) and η → π+π−π0 (right) modes corresponding to the search for the X(3915) resonance.

events on resonance and the scaled number of those off resonance. The systematic

error is dominated by the uncertainty in the scale factor and is equal to ∼1.4% [32].

(ii) The uncertainties on the ω, π0, η, ηc and K0
S decay branching fractions are taken

from ref. [33]. (iii) The statistical error of the efficiency determined by the signal

MC is also taken as a systematic uncertainty. For Z(3900)0 and Z(4020)0 decays, we

take into account the efficiency variation in the ηcρ and ηcf0 decay modes. For the

decays B± → K±ηcπ
+π− and B± → K±ηcπ

0, we assume alternative decay modes

containing intermediate K∗0, K∗(1410)± and ρ mesons, and take into account the

difference of the MC detection efficiency as the corresponding systematic uncertainty.

(iv) An analysis of the charged track reconstruction uncertainty as a function of

particle momentum gives an estimate of 0.34% per charged track. (v) To determine

the errors due to K and π meson identification, data from the analysis of the process

D∗+ → D0π+ followed by the decay D0 → K−π+ are used. The uncertainty in K±

identification is 0.8% per K meson and the corresponding value for π± identification is

0.5% per π meson. (vi) Estimation of the contribution of the η and π0 reconstruction

uncertainty is carried out using the comparison of the number of reconstructed η →
3π0 and η → γγ events. Such an estimate gives 2% per η and π0 meson. (vii) The

contribution of the K0
S reconstruction uncertainty is estimated to be 4.4% [34]. (viii)

We also take into account the deviation of MC from the data by applying a correction

to the efficiency: εData/εMC is 0.9996 for each kaon and 0.9756 for each pion.

For the (η) mode, the η meson is reconstructed in two decay modes: η → γγ and η →
π+π−π0. To estimate the systematic uncertainty, we compare the systematic errors given

by each η decay mode and take the maximum as the uncertainty for the reconstruction.

For the Z(3900)0 and Z(4020)0 decays to ηcπ
+π−, the additive systematic uncertainty

is assumed to be the same as in X1(3872)→ ηcπ
+π−. In addition, we vary the resonance

width in the (15–65) MeV/c2 interval for the Z(3900)0 and (2.5–27.5) MeV/c2 interval
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Figure 11. The ηcπ
0 invariant mass distribution corresponding to the search for the X(3915)

resonance.

Decay mode Fitting function Efficiency, % Yield

X(3915)→ ηcη,

η → γγ (3.12) 6.60± 0.02 −7.4± 14.5

η → π+π−π0 1.64± 0.01 −1.1± 2.1

X(3915)→ ηcπ
0 (3.11) 6.88± 0.02 −4.3± 18.1

Table 3. Fit results for the X(3915) resonance.

Source ηcπ
+π− ηcω ηcη ηcπ

0

Background parameterization 1 44 2687 2

Selection criteria < 1 < 1 1695 33

Bin size 18 2 430 9

Total (events) 18 44 3206 34

Table 4. Additive systematic uncertainties (in events) for B decays without intermediate reso-

nances. For the ηcη mode, the uncertainty corresponds to the effective number of events Neff .

for the Z(4020)0. The intervals are chosen according to the variation of the previously

measured Z(3900)± and Z(4020)± width values. The total additive systematic uncertainty

is 28.5 events for the Z(3900)0 and 25.9 events for the Z(4020)0.

For the X(3915) decays, the systematic uncertainty is taken from the similar X(4014)

decays (see tables 5 and 6).

5 Results

Our data sample does not permit us to measure the branching products of production and

decay of the states listed above nor the B decay branching fractions so we set upper limits
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Source ηcπ
+π− ηcω ηcη ηcπ

0

Mass, MeV/c2 3872 3872 3730 4014 3730 4014

Resolution degradation 1.2 < 1 68 28 1.4 0.2

Background parameterization 5.8 3.6 18 8 0.8 0.3

Selection criteria 23.9 5.4 293 280 5.2 9.3

Bin size 1.2 7.7 30 71 2.4 4.4

Total (events) 24.7 10.1 303 290 5.9 10.3

Table 5. Additive systematic uncertainties (in events) for B decays containing the X(3872)-like

particles. For the ηcη mode, the uncertainty corresponds to the effective number of events Neff .

Source ηcπ
+π− ηcω ηcη ηcπ

0

Number of BB̄ pairs 1.4 1.4 1.4 1.4

B(ω → π+π−π0) — 0.8 — —

B(π0 → γγ) — < 0.1 < 0.1 < 0.1

B(η → γγ) — — 0.5 —

B(η → π+π−π0) — — 1.2 —

B(ηc → K0
SK
±π∓) 6.8 6.8 6.8 6.8

B(K0
S → π+π−) 0.1 0.1 0.1 0.1

MC detection efficiency

no resonance 35.8 2.4 1.3 19.5

X(3872)-like 0.3 0.5 0.7 0.3

Z(3900)0/Z(4020)0 13.3/4.4 — — —

Track reconstruction 1.7 1.7 1.7 1.0

K± identification 1.6 1.6 1.6 1.6

π± identification 1.5 1.5 1.5 0.5

η reconstruction — — 2.0 —

π0 reconstruction — 2.0 2.0 2.0

K0
S reconstruction 4.4 4.4 4.4 4.4

Total (%)

no resonance 36.8 9.3 9.3 21.3

X(3872)-like 8.7 9.0 9.2 8.7

Z(3900)0/Z(4020)0 15.9/9.7 — — —

Table 6. Multiplicative systematic uncertainties (in %).

instead, taking into account the statistical and systematic uncertainties. The expression for

the required branching value is z = Ns/(NBεBi), where Ns is the yield, NB is the number
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Decay mode Upper limit (90% C.L.)

B± → K±ηcπ
+π− 3.9× 10−4

B± → K±ηcω 5.3× 10−4

B± → K±ηcη, 2.2× 10−4

B± → K±ηcπ
0 6.2× 10−5

Table 7. Results of branching fraction measurements for the B decays without an intermediate

resonance.

Resonance Decay mode Upper limit (90% C.L.)

X1(3872) ηcπ
+π− 3.0× 10−5

ηcω 6.9× 10−5

X(3730) ηcη 4.6× 10−5

ηcπ
0 5.7× 10−6

X(4014) ηcη 3.9× 10−5

ηcπ
0 1.2× 10−5

Z(3900)0 ηcπ
+π− 4.7× 10−5

Z(4020)0 1.6× 10−5

X(3915) ηcη 3.3× 10−5

ηcπ
0 1.8× 10−5

Table 8. Results of branching fraction measurements for the B decays containing an intermediate

exotic resonance. For Z(3900)0 and Z(4020)0 resonances the results are shown under the assumption

that the masses are close to those of their charged partners.

of BB̄ pairs, ε is the detection efficiency, and Bi is the product of the branching fractions

of the intermediate resonances. This expression can be written as z = xy, where x = Ns

and y = 1
NBB̄εBi

. The distribution of the numerator Ns is assumed to be Gaussian with

mean µ and standard deviation σx =
√
σ2

stat + σ2
add. syst. The distribution of the inverse of

the denominator is also assumed to be Gaussian with mean ν = 1/(NBεBi) and standard

deviation σy = σmult. systν. Thus, the distribution of z can be written in the following way:

F (z) =

∫ +∞

−∞
G(x, µ, σx)G

( z
x
, ν, σyν

) 1

|x|
dx. (5.1)

The 90% confidence level (C.L.) upper limit U on z is defined by∫ U
0 F (z)dz∫∞
0 F (z)dz

= 0.9. (5.2)

Upper limits on the branching fractions and products for all the studied decay modes

are shown in tables 7 and 8.
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Figure 12. Dependence on the mass bin of the upper limit for the Z(3900)0 (left) and Z(4020)0

(right) branching product.

Figure 12 shows the dependence on the mass bin of the upper limit for the branching

product of the Z(3900)0 and Z(4020)0 production and decay: no significant signal is seen

in any of the invariant mass bins. For the Z(3900)0 resonance, we set upper limits in the

range (1.8–4.7)×10−5 for the mass region (3.79–4.01) GeV/c2. For the Z(4020)0 resonance,

we set upper limits in the range (1.6–3.7) × 10−5 for the mass region (3.93–4.07) GeV/c2.

If we assume that the Z(3900)0 and Z(4020)0 masses are close to those of their charged

partners, we obtain the upper limits on the product branching fractions shown in table 8.

Similarly, for the study of X(3872)-like particles, we performed a mass scan inside

the fitting region, i.e., a sequence of fits similar to the ones described above but with a

mass floating in 20 MeV/c2-wide mass bins. No significant signal is found in any of the

studied bins.

A similar analysis was performed by BaBar [35], where the upper limit on the product

σ(γγ → X(3872))× B(X(3872)→ ηcπ
+π−) was set.

In conclusion, we report a study of the following B decays to final states with ηc:

B± → K±ηcπ
+π−, B± → K±ηcω, B± → K±ηcη and B± → K±ηcπ

0.

We first study these B decays without intermediate resonances and set 90% C.L. upper

limits on their branching fractions: B(B± → K±ηcπ
+π−) < 3.9×10−4, B(B± → K±ηcω) <

5.3× 10−4, B(B± → K±ηcη) < 2.2× 10−4 and B(B± → K±ηcπ
0) < 6.2× 10−5.

We then assume that the decays proceed through intermediate molecular states similar

to the exotic X(3872) particle, such as X1(3872) = D0D̄∗0 − D̄0D∗0, X(3730) = D0D̄0 +

D̄0D0 and X(4014) = D∗0D̄∗0 + D̄∗0D∗0 and search for these states, setting 90% C.L.

upper limits on the following product branching fractions: B(B± → K±X) × B(X →
ηcπ

+π−) < 3.0× 10−5 and B(B± → K±X)×B(X → ηcω) < 6.9× 10−5 for X = X1(3872),

B(B± → K±X) × B(X → ηcη) < 4.6 × 10−5 for X = X(3730) and < 3.9 × 10−5 for

X = X(4014), B(B± → K±X) × B(X → ηcπ
0) < 5.7 × 10−6 for X = X(3730) and

< 1.2× 10−5 for X = X(4014).
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We search for the neutral partners of the recently observed exotic states Z(3900)±

and Z(4020)± and set 90% C.L. upper limits on the product branching fractions B(B± →
K±Z)×B(Z → ηcπ

+π−) of 4.7×10−5 for Z = Z(3900)0 and 1.6×10−5 for Z = Z(4020)0.

We set 90% C.L. upper limits on the following B decays involving the state X(3915),

whose origin is still unknown: B(B± → K±X(3915)) × B(X(3915) → ηcη) < 3.3 × 10−5

and B(B± → K±X(3915))× B(X(3915)→ ηcπ
0) < 1.8× 10−6.

There are no theoretical predictions for the decay branching fractions of D0D̄∗0 molec-

ular states similar to X(3872). In this paper, we obtain an upper limit on the product

branching fraction B(B± → K±X1(3872))×B(X1(3872)→ ηcπ
+π−), which is of the same

order as the product branching fraction B(B± → K±X(3872))×B(X(3872)→ J/ψπ+π−)

measured in ref. [36]. A similar situation is observed with the upper limit on the B(B± →
K±X(3915))×B(X(3915)→ ηcω) and the value of B(B± → K±X(3915))×B(X(3915)→
J/ψω) obtained in ref. [19]. A more copious data set expected from the upcoming Belle II

experiment [37] can provide an opportunity to determine the ratios of the decay branching

fractions of the exotic states described above.
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