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1 Introduction

General relativity is a well-behaved quantum theory at low energies [1, 2]. Treated as

an effective field theory (EFT), quantum predictions can systematically be quantified.

The clear separation of scales provided by the EFT framework enables the extraction

of the leading quantum effects. The latter are precisely due to the low-energy portion

of the theory which is dictated by the symmetries of general relativity. On the other

hand, the unknown high-energy physics is manifested only in the Wilson coefficients of the

most general Lagrangian. All observables are then expressed in terms of the low energy

constants, which are experimentally measured. As an EFT, the theory is renormalizable

order by order in the counting parameter, i.e. E/MP, which makes it fully predictive.

Massless particles can propagate over long distances. The quantum fluctuations of

massless excitations offer a unique feature in field theory; non-locality. For example, the

non-analytic portion of scattering amplitudes is due to the low energy propagation of

massless particles. Using EFT techniques, Donoghue and collaborators determined the

leading long-distance modification to the Newtonian potential [1–3]. More generally, this

class of quantum corrections establish a set of low-energy theorems of quantum gravity [4].

Apart from scattering amplitudes, previous investigations focused primarily on the regime

of weak gravity where gravitons propagate through flat space. For instance, quantum

corrections to various black hole geometries in the asymptotic region were computed in [5].

It is very natural then to pose the following question: what is the full structure of the

loop-induced modifications to general relativity? In order to treat the non-linear regime of

gravity, we clearly need to quantify these infrared corrections in curved spacetimes. Here,

the technical aspect concerns the construction and properties of non-local effective actions.

These are somewhat easy to understand in Minkowski space [6] but become quite compli-

cated when considered in curved space [7–14]. The non-local corrections provide a quantum

memory and could become appreciable even below the Planck scale [7]. For example, the

analysis presented in [7] hints at the possible avoidance of cosmological singularities.1

On a different front, the startling discovery that a black hole is a thermodynamic

system endowed with entropy stands out as a remarkable achievement of twentieth century

physics. A complete understanding of the Bekenstein-Hawking (BH) area law [26, 27] is

believed by many to be our window to learn profound lessons about quantum gravity.

There exist plenty of macroscopic derivations of the BH entropy using different approaches

that we briefly discuss below. Nevertheless, the conundrum we face concerns the statistical

or microscopic description of black hole entropy. There has been partial success to address

this question in string theory [28], holography [29] and quantum geometry [30] but we are

still far from a definitive answer.2

It is well known that the BH area law does not hold in more general theories of

gravity [31, 32]. In this light it is crucial to study quantum corrections to Einstein gravity

and their corresponding effect on the area law. Thus, even on the macroscopic side it is

1See also a host of papers [16–25] that explore the phenomenology of non-local models.
2We only include a restricted list of references since microscopic derivations lie beyond the scope of

this work.
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quite possible to gain new insights about quantum gravity. One might nevertheless be

tempted to think that an exact knowledge of these deviations requires a UV completion of

gravity. This is certainly not the case if the corrections emerge from the infrared limit of

quantum loops of massless particles. As described above, these parameter-free corrections

are genuine predictions of quantum gravity. Once known, they furnish a test laboratory

for any proposed UV completion.

In this paper, we adopt the EFT framework to study quantum gravity3 with free

massless minimally coupled (MMC) matter fields in Kerr-Schild (KS) spacetimes. For KS

spacetimes, there exist coordinates such that the spacetime metric reads4

gKS
µν = ηµν − kµkν (1.1)

with kµ — the KS vector — being a null vector field. It is a remarkable fact that black

holes in vacuum Einstein gravity are of the KS type. In particular, the Kerr solution

was originally found using the KS ansatz, thanks to the extreme reduction in complexity

provided by the formalism [35–37]. Although we do not intend to review the formalism

at length,5 a short version is provided in appendix A, where we show how one can obtain

both the Schwarzschild and Kerr solutions starting from the KS ansatz.

We have two goals in mind for the present paper:

• To address some of the subtleties associated with the construction of non-local ac-

tions in curved spacetimes. Previous studies [6–14] have focused on obtaining results

appropriate for a generic metric. Albeit robust, the results are complicated for an

arbitrary geometry and some questions remain unanswered in regard to the nature

of the so called form factors. It is not clear whether the available results provide the

best pathway to explore the phenomenology.

The special form of the KS metric enables us to exactly resolve the heat kernel for

various operators. Hence, we can probe the structure of non-local actions in a non-

trivial context. In spite of being special, the KS class contains black holes which

are phenomenologically the most relevant. Our results pave the way to interesting

further progress in the quantum physics of black holes.

• To compute the logarithmic correction to the Schwarzschild black hole entropy. The

non-analytic dependence on the horizon area hints that the underlying action is non-

local. The effective action can readily be used to identify the logarithmic correction by

constructing the Euclidean partition function. Moreover, knowledge of the partition

function is a precursor to explore quantum aspects of black hole thermodynamics.

We posit a few interesting questions in section 6.

A quick review of the literature regarding the mentioned goals is in place. First, a

significant amount of work has been undertaken to uncover the structure of non-localities

in gravitational effective actions, see [6–14] and references therein. Results are customarily

3See [33, 34] for detailed reviews.
4Throughout this paper, we assume a vanishing cosmological constant.
5The interested reader could consult [38, 39] for thorough accounts.

– 3 –



J
H
E
P
0
5
(
2
0
1
6
)
0
3
5

displayed as an expansion in gravitational curvatures. Nevertheless, this expansion is quite

different from local Lagrangians familiar in (non)-renormalizable quantum field theories.

For instance, the effective Lagrangian of quantum gravity is arranged according to the

energy or derivative expansion and only local polynomials of curvature invariants appear.

This is the typical story when one integrates out a heavy field from the path integral of

the theory. On the other hand, quantum loops of massless fields yield a non-local effective

theory. The so called form factors are fundamental objects in the non-local expansion and

the covariance properties of the latter were scrutinized in [8].

One great advantage of fixing the background geometry to have the KS form is an

unambiguous definition of the form factors. In this case, the results turns out to be much

simpler than those which exist in the literature [6–14]. In addition, the KS form of the

metric allows for a transparent analysis of the curvature expansion, which we shall review

in section 4. The nature of the non-local expansion becomes manifest, which provides

invaluable clues for future endeavors.

Moving to the second goal where a decent amount of work has been done as well.

Fursaev, to the best we know, provided the first hint about the logarithmic correction

in [40] using the conical singularity method. Recently, Sen and collaborators used Euclidean

methods to uncover the logarithmic correction for both extremal [41–43] as well as non-

extremal [44] black holes. When available, the results remarkably agree with microscopic

results in the extremal case. Carlip employed Cardy’s formula, which counts states in 2d

conformal field theory, to find the logarithmic correction to the BH entropy [45]. The

authors of [46] computed the exact partition function of the BTZ black hole to uncover

the logarithmic correction. Banerjee and collaborators used the tunneling approach to

identify corrections to Hawking temperature which then yield a logarithmic correction

in the entropy of various black holes [47, 48]. Other authors used the anomaly-induced

action, i.e. Riegert action, to compute the same correction this time via Wald’s Noether

charge formalism [49]. The authors of [50] obtained exact black hole solutions to the

semi-classical Einstein equations including the conformal anomaly. A direct computation

revealed a logarithmic correction to the BH entropy. Finally, the logarithmic correction

was also found based on the quantum geometry program [51].

Now we summarize our results. Our starting point is the EFT action

S = SGEFT + Smatter . (1.2)

The gravitational effective action is

SGEFT =

∫
ddx
√
g

(
M2

P

2
R+ c1R

2 + c2RµνR
µν + c3RµναβR

µναβ + c4∇2R

)
(1.3)

where only operators containing up to four derivatives are included. Notice here that

the above is not usually how the action is displayed [1, 2]. The last term is customarily

omitted because it is a total derivative and does not contribute to the Feynman rules while

the Riemann piece is omitted via an implicit use of the Gauss-Bonnet identity. We shall

see below that we need to keep all the terms in order to carry out the renormalization

program. The second portion Smatter describes free MMC matter fields of spin 0, 1/2, 1.
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The constants (c1, c2, c3, c4) are the bare Wilson coefficients6 and the dimensionality of

spacetime is extended in order to employ dimensional regularization, i.e. d = 4 − 2ε. The

one-loop effective action is evaluated fixing the background geometry to be a KS spacetime.

Upon integrating out the matter degrees of freedom and graviton fluctuations at the one-

loop level,7 we obtain

Γ[ḡ] = Γlocal + Γln (1.4)

where the renormalized action now reads

Γlocal[ḡ] =

∫
d4x

(
M2

P

2
R+ cr1(µ)R2 + cr2(µ)RµνR

µν + cr3(µ)RµναβR
µναβ + cr4(µ)∇2R

)
.

(1.5)

Here, ḡ is the background metric that takes the form in eq. (1.1) and µ is the scale of dimen-

sional regularization. Notice in particular that Newton’s constant does not get renormal-

ized because the divergences arising from massless loops are proportional to the quadratic

invariants. Of utmost importance is the finite pieces that exhibit a logarithmic non-locality

Γln[ḡ] = −
∫
d4x

(
αR ln

(
�
µ2

)
R+ β Rµν ln

(
�
µ2

)
Rµν

+ γ Rµναβ ln

(
�
µ2

)
Rµναβ + Θ ln

(
�
µ2

)
�R

)
(1.6)

where � = ηµν∂µ∂ν . The different coefficients depend on the particle species and are listed

in table 1.

Focusing on the Schwarzschild solution, we use the effective action to construct the

partition function. From the latter, the entropy is determined and our main result reads

Sbh = SBH + 64π2
(
cr3(µ) + Ξ ln

(
µ2A

))
. (1.7)

Here SBH = A/4G is the BH entropy and A = 16π(GM)2 is the horizon area. The constant

Ξ sums up the contributions from all the massless particles in the theory and reads

Ξ =
1

11520π2
(2Ns + 7Nf − 26NV + 424) (1.8)

where we allowed for variable number of particles. The logarithmic dependence on the

horizon area and the associated coefficient is in exact agreement with [40, 44, 47, 49] albeit

using different approaches than ours. Furthermore, eq. (1.7) contains a subtle feature: the

entropy is manifestly renormalization-group (RG) invariant. The demonstration of this

property is made clear in section 5. In fact, this feature is mandatory if black hole entropy

6As per usual, the bare constants remain dimensionless in d dimensions.
7The one-loop graviton fluctuations arise solely from the Einstein-Hilbert action. There is indeed a

contribution from the O(∂4) pieces but these are suppressed by the Planck mass. To be consistent with the

power counting of the EFT, these are included only when one considers the two-loop effective action.
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is to be identified as a physical quantity. We can further employ dimensional transmutation

to rewrite eq. (1.7) as

Sbh = SBH + 64π2 Ξ ln

(
A
AQG

)
(1.9)

where AQG corresponds to a length (energy) scale uniquely set by the full theory, i.e. the

UV completion of quantum gravity. As we shall discuss further below, the result uncovers

an intricate connection between the UV and IR properties of quantum gravity. More

comments about the content of the result are reserved to section 5.2.

The plan of the paper is as follows. We commence in section 2 by developing a set

of Feynman-like rules to resolve the heat kernel for the d’Alembertian operator in KS

spacetimes. The Einstein equations are solved with the KS ansatz in appendix A while

the non-local expansion of the heat kernel is described in appendix B. In section 3 the

curvature expansion is introduced and the technique of non-linear completion is used to

express the heat kernel trace in the desired form. We then move in section 4 to find the

effective action by integrating over proper time. There, we uncover what we would like to

call a UV-IR correspondence. Among other things, this correspondence allows us to extend

the results to matter fields of various spins and gravitons. This is acheived knowing only

the divergences of the theory. In section 5 the partition function is determined using the

effective action. The behavior of the partition function under a global scale transformation

provides an elegant pathway to extract the logarithmic correction to the BH entropy. We

discuss possible future directions in section 6. In appendix C we collect useful formulas

used throughout the paper.

2 The heat kernel for the covariant d’Alembertian

In this section, we commence by resolving the heat kernel of the d’Alembertian operator.

Knowing the latter enables a straightforward determination of the effective action which

results from integrating out a massless free scalar. One can otherwise directly compute

the effective action via Feynman graphs [6, 7] but we choose to work with the heat kernel

for reasons that we shall spell out below. The basic definitions and properties of the heat

kernel are given in appendix B.1. Now we restrict our consideration to KS spacetimes of

the form displayed in eq. (1.1). An immediate consequence of the null property of the KS

vector is the set of relations

√
g = 1, gµν = ηµν + λ kµkν , gµνkµkν = ηµνkµkν = 0 (2.1)

where the Minkowski metric is expressed in standard coordinates. Here λ is a trivial

counting parameter which is set to unity at the end of the computation. In order to treat

operators with no associated mass scale, we use the non-local expansion of the heat kernel

developed by Barvinsky, Vilkovisky and collaborators [9–12]. For the convenience of the

reader, we provide an essential review of the formalism in appendix B.2.

– 6 –
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We seek an expansion of the heat kernel in powers of λ. Let us quote the d’Alembertian

operator as it acts on a scalar density of weight 1/2

∇2Ψ =
1
4
√
g
∂µ (
√
ggµν∂ν)

1
4
√
g

Ψ . (2.2)

The KS form of the metric drastically simplifies the structure of the operator

∇2Ψ =

(
∂2 + λ kµkν∂µ∂ν +

λ

2
∂µ(kµkν)∂ν +

λ

2
∂ν(kµkν)∂µ

)
Ψ . (2.3)

It is important to pause at this stage and comment on the above result. Let us imagine that

we aim to study the same operator on a generic background spacetime. The conventional

treatment is to expand the metric around flat space as gµν = ηµν + Hµν and proceed to

evaluate the heat kernel in powers of the external classical field Hµν . Both the inverse metric

and metric determinant are expanded accordingly and the result is an infinite series in Hµν .

Consequently the d’Alembertian operator contains arbitrarily high powers of the external

field. On the contrary, there is an immediate truncation for KS spacetimes as evident from

eq. (2.3). More comments about similar simplifications are made as we go along.

In the notation of appendix B.2, we identify the interaction term

V = λ

(
kµkν∂µ∂ν +

1

2
∂µ(kµkν)∂ν +

1

2
∂ν(kµkν)∂µ

)
. (2.4)

For later convenience, we define the following tensor

Kµν ≡ kµkν . (2.5)

We seek an expansion of the heat kernel trace in powers of λ. Using eqs. (B.17) and (B.19)

one can easily introduce Fourier transforms to derive a set of Feynman-like rules which read:

• The rule for the vertex and propagator are given in the figure 1.

• The internal propagator that carries the loop momentum gets an extra factor of 1 in

the exponent.8

• Add a factor of s in the exponent of all propagators.

• Impose momentum conservation at each vertex.

• Integrate over the loop momentum and proper-time.9

From the Feynman-like rules, we easily develop a diagramatic expansion as shown in

figure 2. Here, a great simplification emerges thanks to the KS form of the metric: there

is a single diagram in the expansion at each order in λ. On the contrary, for a generic

background the number of diagrams proliferate as we go to higher orders in the expansion.

8This is due to the flat space kernel that appears convoluted in eq. (B.17).
9Here, we mean the integration variable in the exponent of eq. (B.19).
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e(t+r)p2

p(µqν) δ(t+ r)

Figure 1. Feynman-like rules for the heat kernel trace. The solid line corresponds to an insertion

of the external tensor field Kµν which carries a power of λ.

Figure 2. The diagramatic expansion of the heat kernel trace.

2.1 Lowest order

Let us compute the first diagram in figure 2. Applying the rules given above, we find

(1)

H(s) = sKµν
0

∫
ddl

(2π)d
lµlν e

sl2 (2.6)

where the subscript on the background field denotes its momentum, i.e. Kµν
0 ≡ Kµν(0).

Using the tensor integrals given in appendix C.2 we find

(1)

H(s) = − i

2(4πs)d/2
Kµν

0 ηµν . (2.7)

By construction the KS vector is null with respect to the Minkowski metric, and thus

(1)

H(s) = 0 . (2.8)

This is the trace of the heat kernel to lowest order in λ and the result is exact. Nevertheless,

we shall see in the next section that we need to compute the heat kernel in the coincidence

limit rather than the trace. This is necessary in order to carry out the non-linear completion

procedure that we explain in the next section.

2.2 Next-to-leading order

At O(λ2) we encounter the second diagram in figure 2. We display the steps in some detail

to elucidate the construction. Straightforward application of the rules yields

(2)

H(s) = s2

∫
ddp

(2π)d
Kµν
p Kαβ

−p

∫ 1

0
dt1

∫ t1

0
dt2

∫
ddp

(2π)d
Vµν(l, p)Vαβ(l, p)

es((1−t1+t2)l2+(t1−t2)(l+p)2) (2.9)
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where

Vµν(l, p) = lµlν + l(µpν) . (2.10)

We first need to put the exponent in eq. (2.9) in quadratic form. In particular, this enables

dropping odd powers of the loop momentum. This is accomplished via shifting the loop

momentum by sending l→ l+(t1− t2)p. If we moreover perform the tensor integrals using

appendix C.2 we find

(2)

H(s) = s2

∫
ddp

(2π)d
Kµν
p Kαβ

−p

∫ 1

0
dt1

∫ t1

0
dt2e

σ(1−σ)sp2[
Jµναβ − σ(1− σ) (Jµνpαpβ + Jαβpµpν) +

1

4
(1− 2σ)2

(
Jµαpνpβ + Jµβpαpν

+Jναpµpβ + Jνβpµpα
)

+ σ2(1− σ)2pµpνpαpβ

]
(2.11)

where σ ≡ t1 − t2. The above expression can be simplified greatly if one notices that any

function f(σ) that is invariant under σ → (1− σ) has the property∫ 1

0
dt1

∫ t1

0
dt2 f(σ) =

1

2

∫ 1

0
dσ f(σ) . (2.12)

The final result then becomes

(2)

H(s) =
is2

2(2πs)d/2

∫
ddp

(2π)d
Kµν
p Kαβ

−p

∫ 1

0
dσ eσ(1−σ)sp2Mµναβ (2.13)

where

Mµναβ =

[
1

4s2
(ηµαηνβ + ηµβηνα)− 1

8s
(1− 2σ)2(ηµαpνpβ + ηµβpαpν

+ ηναpµpβ + ηνβpµpα) + σ2(1− σ)2pµpνpαpβ

]
. (2.14)

All tensor structures that vanish because of the null property of the KS vector have been

dropped, which comprises an extra simplification special to the KS geometry.

2.3 Next-to-next-to-leading order

The third diagram in figure 2 could easily be carried out similar to the previous diagrams.

Nevertheless, it has an extra subtle feature: the triangular topology of the graph with

massless internal lines inevitably leads to an infrared singularity when we pass to the ef-

fective action.10 This is due to the long-time behavior of the heat kernel being singular.

The existence of infrared singularities in gauge theory scattering amplitudes is convention-

ally dealt with by adding real emission graphs which guarantees all observables are IR

finite [52, 53]. Similar story takes place in gravitational scattering, see for example [54, 55].

10As long as the external legs are off-shell the singularity is soft. Yet, these singularities could disappear

for specific external kinematics. For example, see the discussion in [6].
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On the contrary, the treatment of infrared singularities present in the effective action is

a widely unexplored topic. It is not clear how to obtain finite predictions in this case.

Although this issue is crucial for understanding non-local effective actions, its discussion

lies beyond the scope of this paper. We show below that the leading non-locality is cap-

tured by the results already obtained, which suffices for the applications to be considered

in this work.

2.4 A brief comment on the result

It is important to pause at this stage to stress that the heat kernel trace given in eqs. (2.8)

and (2.13) is exact for any KS spacetime. This is indeed true regardless of the underlying

gravity theory. For example, for a Schwarzschild or Kerr black hole one can use the results

to obtain the on-shell one-loop effective action or the Euclidean partition function. One

merely has to determine the Fourier decomposition of the KS vector and plug back in

eqs. (2.8) and (2.13) in order to perform the last momentum integral. Nevertheless, we

choose not to follow this pathway and present an alternative procedure which is very useful

in acheiving the goals of our study.

3 The curvature expansion

In this section we describe in detail how to express the heat kernel trace in an expansion

utilizing the geometric curvatures. Albeit being elegant, this is not the main reason why

we take this direction. First, the non-local expansion is controlled by the form factors.

The non-analytic logarithm in eq. (1.6) is one example of a form factor. As we alluded to

in the introduction, it is of utmost importance to study the covariance properties of the

form factors. The first step in this direction was done in [8]. An exact solution of the heat

kernel over a non-trivial background spacetime supplies us with important clues about the

form factors. After we display the computation, we return back to this point in section 3.4.

Second, having the action expanded in geometric objects facilitates the determination of

the leading correction to the BH entropy. Finally, if one hopes to track the back-reaction of

quantum fluctuations on the spacetime, it is desirable to express the effective action using

geometric objects.

There exist two techniques to construct the curvature expansion. The first is the

covariant perturbation theory extensively developed in [9–12]. The second is non-linear

completion which appeared in [7, 8]. We employ the latter which is relatively simple. The

procedure here is quite similar to matching computations in effective field theories whereby

the Wilson coefficients are determined. One starts by proposing a local operator basis using

the classical fields and their derivatives. This basis is typically arranged as a power series

expansion in generalized curvatures [8]. At each order in the curvature expansion, one

supplements the operators with various non-local form factors. The latter are uniquely

fixed via matching onto the results obtained in the last section. We now move to apply

this procedure.

– 10 –
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3.1 The heat kernel at zeroth order

To zeroth order in the curvature, the only invariant available is

H(s) =
i

(4πs)d/2

∫
ddx [E0 +O(R)] (3.1)

where we stripped off some factors for convenience. Here E0 is the form factor which will

turn out to be trivial in this case. It is also important to notice that for KS spacetimes,

eq. (2.1) holds so no factor of
√
g appears. One immediately finds11

E0 = 1 . (3.2)

3.2 The heat kernel at linear order

To lowest order in the curvature, the Ricci scalar is the only invariant that can show up in

the heat kernel trace

H(s) =
i

(4πs)d/2

∫
ddx

[
E0 + sGR(s�)R+O(R2)

]
(3.3)

where � is the flat space d’Alembertian and the form factor GR(s�) can only depend on

the dimensionless combination s�. The common lore in the literature is to covariantize

the derivative operators but we do not adopt this approach here. More comments appear

in section 3.4. The matching step is most easily done in momentum space and at O(λ) the

Ricci scalar reads

(1)

R = ∂µ∂ν K
µν . (3.4)

Here the situation is subtle because the spacetime integral in eq. (3.3) forces the momentum

variable to vanish. Hence the derivatives in the above equation forces a null result which

matches the result in eq. (2.8). Nevertheless, we still can not determine the form factor.

An alternative route is to compute the heat kernel in the coincidence limit, i.e. without

invoking the spacetime integral, and then perform the matching. This way one finds a

non-trivial result that enables the determination of the form factor. Let us go back to

section 2.1 and compute the coincidence limit of the heat kernel. One finds

(1)

H(x, x; s) = − is

(4πs)d/2

∫
ddp

(2π)d
Kµν
p pµpν

∫ 1

0
dσ σ(1− σ)eσ(1−σ)sp2e−ipx . (3.5)

The matching is immediate and the form factor reads

GR(s�) =

∫ 1

0
dσ σ(1− σ) e−σ(1−σ)s� . (3.6)

In appendix C.1, we derive a nice identity that enables us to reexpress the above result in

a simpler form

GR(s�) =
1

4
f(s�) +

1

2s�
[f(s�)− 1] (3.7)

11This precisely comes from the first term in the expansion of eq. (B.17) where the proper-time evolution

operator is approxiamted by unity.
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where the fundamental form factor is12

f(s�) =

∫ 1

0
dσ e−σ(1−σ)s� . (3.8)

Later on we shall see that only the value of the form factor at zero momentum is important.

In particular we find

GR(0) =
1

6
. (3.9)

3.3 The heat kernel at quadratic order

Along the same lines of the last section, we match the heat kernel trace given in eq. (2.13)

onto a curvature basis. Counting the number of derivatives this must be second order in

curvatures and hence

H(s) =
i

(4πs)d/2

∫
ddx

[
E0 + sGR(s�)R+ s2RFR(s�)R+ s2Rµν FRic(s�)Rµν

+ s2Rµναβ FRiem(s�)Rµναβ +O(R3)
]
. (3.10)

We need to expand the curvature invariants to O(λ2) which are given in appendix C.3.

Here comes an important part of the construction: the form factor GR(0) plays role in the

matching procedure. Although the form factors are defined with the flat d’Alembertian the

curvature tensors must be expanded appropriately. Notice as well that only GR(0) = 1/6

is needed as the rest of this form factor contains total derivatives and thus vanishes by

momentum conservation.

Inspection of the expressions given in appendix C.3 we see that there are three tensor

structures available which appears sufficient to determine the three form factors. But in

fact only two equations turn out to be independent and they read

s

48
+
s2p2

8
FRic(sp

2) +
s2p2

2
FRiem(sp2) =

s

16

∫ 1

0
dσ (1− 2σ)2eσ(1−σ)sp2 (3.11)

s2FR(sp2) +
s2

2
FRic(sp

2) + s2FRiem(sp2) =
s2

2

∫ 1

0
dσ σ2(1− σ)2eσ(1−σ)sp2 . (3.12)

Note the first term on the l.h.s. of eq. (3.11) which comes from GR(0). We show next in

detail how to uniquely fix the form factors. Once again, with the help of identities that are

proven in appendix C.1 we can express the r.h.s. in terms of the fundamental form factor.

Hence

s

48
− s2p2

8
FRic(sp

2)− s2p2

2
FRiem(sp2) =

1

8p2
(f(sp2)− 1) (3.13)

FR(sp2) +
1

2
FRic(sp

2) + FRiem(sp2) =
1

32
f(sp2)− 1

8sp2
f(sp2)

+
1

16sp2
+

3

8s2p4
(f(sp2)− 1) . (3.14)

12We stick to the name given to this special form factor in [15], which we find very illustrative.
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One might suspect that the issue we face here is special to KS spacetimes since some tensor

structures vanish due to the null property of the KS vector. In fact, this is a generic feature

that takes place at second order in the curvature expansion. One could easily check that

the same issue arises even for an arbitrary metric, see for example [15].

3.3.1 Fixing the form factors

We saw above that there are only two available equations for three form factors that appear

at second order. Usually this is circumvented by making use of the following identity [12]∫
d4x
√
g
(
Rµναβ(∇2)nRµναβ − 4Rµν(∇2)nRµν +R(∇2)nR

)
=

∫
d4x
√
gR3 . (3.15)

Here the r.h.s. refers to cubic curvature terms. The proof of the above takes a few lines

and relies on using the Bianchi identities. Hence, to second order in the curvature one can

set one of the form factors in eq. (3.10) to zero since the error would be higher order in

the curvature expansion. The canonical choice made in the literature is [9–12]

FRiem = 0 . (3.16)

Indeed there is nothing special about this choice: it is nothing but one possible solution

to the undetermined system of equations. Here we proceed differently because of two

central reasons. First, the above choice essentially hides some of the physics contained in

the computation. As we shall see below, the choice in eq. (3.16) becomes dangerous when

applications are considered.13 Second, the form factors in eq. (3.10) strictly contain the

flat space d’Alembertian and thus, formally, eq. (3.15) does not hold anymore.

The question remains: how can we make progress given that we have an undetermined

system? This is achieved via an indirect approach, namely we consult the local UV diver-

gences. The one-loop divergences are exactly known and expressed in a covariant manner

from the coincidence limit of the Seeley-DeWitt-Gilkey series,14 see for example [56–59].

Our procedure is discussed in the next section when we consider the effective action. For

now we impose a seemingly ad hoc extra relation between the form factors

FRiem(sp2) + FRic(sp
2) = 0 (3.17)

and the consistency of this choice shall become clear in the next section. We can now solve

for the form factors and find

FRic(sp
2) = −FRiem(sp2) =

1

18sp2
+

1

3s2p4
− 1

3s2p4
f(sp2) (3.18)

FR(sp2) =
13

144sp2
− 5

24s2p4
+

5

24s2p4
f(sp2) +

1

32
f(sp2)− 1

8sp2
f(sp2) . (3.19)

This completes the matching procedure up to this accuracy in the curvature expansion.

The practice is identical if one aims to consider the O(R3) basis. Nevertheless, the last

diagram in figure 2 must be computed for the matching procedure to work properly. From

the vertex rules given in section 2, it is clear this diagram is O(∂6). Hence, the latter must

be included for the non-linear completion procedure to work.

13This point has been noted before in [7].
14The Seeley-DeWitt-Gilkey expansion is local and assumes a massive operator. Nevertheless, the diver-

gences that arise at second order in the curvature are valid in the massless limit.
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3.4 Comments on the form factors

So far we have shown how to re-express the exact results of the previous section employing

the curvature expansion. One of the main concerns of the present paper is to better

understand the properties of the form factors. In particular, should we enforce the following

replacement?

G(s�)→ G(s∇2), F(s�)→ F(s∇2) . (3.20)

This is the conventional approach in the literature. Let us point out some features of

the form factors that were described in [8]. There — in the context of massless QED with

gravitational couplings — it has been shown that the expansion of the covariant form factor

ln(∇2) contributes terms in the action that does not match the diagramatic expansion from

perturbation theory. A proposed cure for this problem was developed in [8] and referred to

as the counterterm method. One has to introduce terms at higher order in the curvature

expansion which are then fixed by requiring that the result matches that from perturbation

theory. Albeit very complicated, it was shown that the procedure is robust and yields a

unique answer for the action [8].

What does the current computation tell us about this issue? The results we presented

are exact for KS spacetimes which shows that the replacement in eq. (3.20) is clearly

superfluous. This is the main advantage of fixing the background geometry: it enables

the heat kernel to be fully determined with an unambiguous definition of the form factors.

Further comments appear in section 6 regarding the fate of the form factors.

4 The effective action

In this section, we compute the effective action up to second order in the curvature expan-

sion. This is easily accomplished by integrating over proper time as in eq. (B.2). Hence,

Γ[g] = − i~
2

∫
ddx

∫ ∞
0

ds

s
H(x, x; s) . (4.1)

The integral over the proper time has two interesting regimes which are known as the

early and late times. The former corresponds to the small s behavior and encodes the short

distance behavior of the theory. The late time on the other hand corresponds to the large

s asymptotics of the heat kernel and controls the long distance behavior of the theory. Let

us describe a simple method to uncover the UV divergences. First, recall that the heat

kernel is expressed solely in terms of the fundamental form factor. We can expand the

exponential in eq. (3.8) and retain the first few terms. One then integrates over a small

neighborhood, say 0 ≤ s ≤ 1. The divergences then appear as a simple pole in ε as per

usual in dimensional regularization.

Instead of studying limits of the proper-time integral, we proceed to perform the inte-

gral all at once using a simple trick. This procedure is very useful as it reveals a close link

between the UV divergences and the IR logarithmic non-locality that emerges at second

order in the curvature expansion. Without any further computation, we will be able to

display the answer for matter fields of various spins as well as gravitons.
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4.1 The action at zeroth order

If one plugs eq. (3.1) back in eq. (4.1) the integral is seen to be scaleless. What should we

do in this case? Let us try regulating the integral as follows∫ ∞
0

ds s−d/2 = lim
δ→0+

∫ ∞
0

ds s−d/2 e−δs

= lim
δ→0+

δd/2−1 Γ(1− d/2) (4.2)

which vanishes for d > 2 upon taking the limit. We conclude that scaleless integrals

similar to the above can be set conveniently to zero. If a mass scale was present in the

operator, the above integral would yield a divergent result proportional to m4, which in

turn renormalizes the cosmological constant.

4.2 The action at linear order

We now move to the piece in eq. (3.3) with the form factor displayed in eq. (3.7). The

trick to evaluate the effective action is to interchange the order of integration, namely to

perform the proper time integral before the σ integral. Once again, all scaleless integrals

are dropped. We present the details of the calculation for the convenience of the reader.

Let us focus on the first piece in eq. (3.7)

Γ[g] ∝
∫
ddx

∫ 1

0
dσ

∫ ∞
0

ds sε−2f(s�)R

=

∫
ddx

∫ 1

0
dσ

∫ ∞
0

ds sε−2 e−σ(1−σ)s�R (4.3)

where we used d = 4 − 2ε. The integral over proper time is easily written in terms of the

Euler gamma function

Γ[g] ∝
∫
ddx

∫ 1

0
dσ [σ(1− σ)]1−ε Γ(ε− 1)�1−εR . (4.4)

We recognize immediately the UV divergence in the gamma function. The above expression

is then expanded in ε and the σ integral is readily evaluated

Γ[g] ∝
∫
d4x− 1

6

(
1

ε̄
− ln�

)
�R,

1

ε̄
=

1

ε
− γE + ln 4π (4.5)

where we dropped a numerical constant which amounts to a finite renormalization. The

rest of the form factor is treated the same way and we end up with the divergent part

Γε[g] = − ~
60ε

∫
d4x�R (4.6)

which is indeed the correct divergence found in the Seeley-DeWitt-Gilkey expansion [56–

59]. In particular, dropping the scaleless integrals is fully consistent as promised. It is

worth mentioning that for a massive operator, the corresponding integrals would yield

divergences proportional to m2 which would then renormalize Newton’s constant.
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More importantly is the finite IR contribution to the action which reads

Γ[g] =
~
60

∫
d4x ln

(
�
µ2

)
�R (4.7)

where µ2 is the scale associated with dimensional regularization. Of utmost important is

that the logarithmic non-locality comes tied to the UV divergence. Thus, it suffices to

know the latter in order to determine the finite part of the action. It is then immediate to

read off the result for any particle species other than minimally coupled scalars.15 As we

show below, this UV-IR correspondence continues to hold for the quadratic action. It is

also crucial to point out that this correspondence is only true for the pieces in the action

with four derivatives, i.e. (�R,R2) terms. This is easily seen by dimensional analysis: the

only non-local structure that can show up is logarithmic which dictates log µ2 to appear as

well. The latter is a UV scale whose coefficient must be tied to the divergences. At O(R3)

and beyond, the one-loop effective action is finite.

4.3 The action at quadratic order

We now transition to the quadratic action which is the main concern of our work. The

form factors are given in eq. (3.18) and the computation proceeds similar to the previous

subsection albeit one subtlty. The scaleless integrals can not be set to zero using the steps

given in eq. (4.2): divergences are logarithmic and can not be regulated as in eq. (4.2).

Nevertheless, let us press on by discarding those integrals as before and examine what the

outcome is. Following the same steps one find the divergent piece

Γε[g] =
~

32π2ε̄

∫
d4x

(
1

72
R2 − 1

180
RµνR

µν +
1

180
RµναβR

µναβ

)
(4.8)

which is the correct set of divergences found in the Seeley-DeWitt-Glikey expansion [56–

59]. As advertised, dropping scaleless integrals is consistent. Here we pause to comment

on the relation imposed in eq. (3.17). This choice was enforced based on knowledge that

the divergent coefficients associated with the Riemann and Ricci pieces in eq. (4.8) are

identical but carry an opposite sign. In other words, eq. (3.17) is an educated guess that

ensured we obtain the correct result for the effective action.

Moving on, the finite non-local portion follows immediately

Γln[g] = − ~
32π2

∫
d4x

(
1

72
R ln

(
�
µ2

)
R− 1

180
Rµν ln

(
�
µ2

)
Rµν

+
1

180
Rµναβ ln

(
�
µ2

)
Rµναβ

)
(4.9)

and once again we see that indeed the logarithmic non-locality is intimately tied to the

divergences. This correspondence allows us to display the O(R2) action given any matter

field as well as gravitons from the knowledge of Γε which is carried out below.

15We are not going to pursue this further simply because eq. (4.7) is not going to contribute in the

applications we wish to consider. The last column in table 1 is left empty except from the scalar result that

we already obtained.
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α β γ Θ

Scalar 5 -2 2 -6

Fermion -5 8 7 —

U(1)boson -50 176 -26 —

Graviton 430 -1444 424 —

Table 1. The coefficients appearing in the effective action due to massless fields of various spins [7].

All numbers are divided by 11520π2.

4.4 The total action and renormalization

We now carry out the renormalization program. The total action is composed of three parts

Γ[ḡ] = SGEFT + Γε + Γln (4.10)

where ḡ denotes the background KS metric. Here the first piece is the gravitational effective

action up to O(∂4)

SGEFT =

∫
d4x

(
M2
P

2
R+ c1R

2 + c2RµνR
µν + c3RµναβR

µναβ + c4∇2R

)
. (4.11)

Notice here that we included the Riemann tensor explicitly in the curvature basis which is

not how the action is usually displayed. The last piece is usually dropped since it is a total

derivative. Inspection of eq. (4.6) shows that we must retain this operator.16 Moreover,

it is conventional to invoke the Gauss-Bonnet identity in order to get rid of the Riemann

piece. This choice has no effect on the equations of motion. As we show in the next section,

it is mandatory not to use Gauss-Bonnet in order to correctly compute the entropy. This

is one crucial advantage of not adopting the naive approach — setting FRiem = 0 — as we

explained in the last section. The second piece in eq. (4.10) is the equivalent of eq. (4.8)

but generalized to any matter field as well as gravitons. It reads

Γε[ḡ] =
~
ε̄

∫
d4x

(
αR2 + βRµνR

µν + γRµναβR
µναβ + Θ�R

)
(4.12)

where the coefficients are listed in table 1. Now from the UV − IR correspondence un-

covered before, we know how to construct the non-local portion of the action for any

particle species

Γln[ḡ] = −~
∫
d4x

(
αR ln

(
�
µ2

)
R+ βRµν ln

(
�
µ2

)
Rµν

+ γRµναβ ln

(
�
µ2

)
Rµναβ + Θ ln

(
�
µ2

)
�R

)
. (4.13)

16Notice that for a KS spacetime we have ∇2R → �R via a simple integration by parts. This is indeed

consistent with the divergence in eq. (4.6).
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The renormalization program is now straightforward to perform by replacing the bare

constants with their renormalized values17

c1 = cr1(µ)− α

ε̄
, c2 = cr2(µ)− β

ε̄
, c3 = cr3(µ)− γ

ε̄
, c4 = cr4(µ)− Θ

ε̄
. (4.14)

The renormalized constants carry an explicit scale dependence such that the renormalized

action is µ independent. A standard RG analysis dictates

cr1(µ) = cr1(µ?)− α ln

(
µ2

µ2
?

)
cr2(µ) = cr2(µ?)− β ln

(
µ2

µ2
?

)
cr3(µ) = cr3(µ?)− γ ln

(
µ2

µ2
?

)
cr4(µ) = cr4(µ?)−Θ ln

(
µ2

µ2
?

)
(4.15)

where µ? is some fixed (matching) scale where the effective theory is matched onto the full

theory. Clearly, the previous statement is academic since we have no knowledge of the full

theory. The EFT treatment of quantum gravity is built in a bottom-up approach much like

chiral perturbation theory. In such theories, the renormalized couplings must be measured

experimentally [2]. When we discuss the correction to the BH entropy, we shall discover

an interesting sensitivity to UV physics.

5 The partition function and entropy

We now turn to the second goal mentioned in the introduction which is to identify the

logarithmic correction to the Schwarzschild black hole entropy. On the macroscopic side,

there exist a handful of methods to compute the entropy associated to a black hole. On

the one hand, Gibbons and Hawking pioneered the Euclidean gravity approach [60]. Sub-

sequently, a host of Euclidean-based methods appeared in the literature as well [61–65].

On the other hand, Wald’s Noether charge approach [66–68] expresses the entropy of a

stationary black hole as an integral of a local geometric quantity — the Noether charge —

over the bifurcation surface of the horizon.

One immediate advantage of knowing the effective action is to enable the use of Wald’s

technique. Nevertheless, the formalism as it is originally presented assumes the action to

be local and a direct application of the results is not possible in our case. One general trick

is to render the action local by introducing auxiliary fields and then move to apply Wald’s

formula. This trick was used by Myers [69] to discuss the contribution of the Polyakov

action to the entropy of 2d black holes. Likewise, the authors of [49] employed the same

method to discuss the logarithmic correction to the BH entropy starting from the Riegert

action [70]. Yet, it remains quite interesting to adapt Wald’s approach to non-local field

theories. We hopefully reserve this endeavor to a future publication.

Here we choose to employ the Euclidean partition function to directly compute the

entropy. Let us recall the definition of the partition function in the canonical ensemble

Z(β) =

∫
DΨ Dg e−SE (5.1)

17We are using the MS scheme.
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where SE is the Euclidean action, Ψ denotes any matter field and g is the spacetime metric.

The functional integral runs over periodic field configurations, i.e. Ψ(0, ~x) = Ψ(β, ~x), for

bosons and anti-periodic for fermions. The metrics that appear in the path-integral are

those with asymptotically flat (AF) boundary conditions [71], i.e. approaching the flat

metric on R3 × S1.

For the theory we are considering the Euclidean action reads

SE = −SGEFT − Sboundary + SEmatter (5.2)

where SGEFT is given in eq. (4.11), Sboundary is the Gibbons-Hawking-York boundary

term [60, 72] and SEm is the matter action evaluated on the class of Euclidean metrics

described above. Indeed one can not compute the functional integral unless some ap-

proximation is made. Note that the matter sector we consider is one-loop exact since self

interactions are ignored, i.e. the path-integral is Gaussian. For metric fluctuations, we need

to expand around a gravitational instanton which leads to a well-defined loop expansion

for the partition function.18 At the one-loop level, the partition function now appears

lnZ(β) = Γ[ḡE ] + Sboundary . (5.3)

Here, ḡE is the Euclidean instanton which obeys the KS form and Γ[ḡE ] denotes the effective

action evaluated on-shell. The only subtlety here is that we have to affect the following

replacement in eqs. (4.12) and (4.13)

�→ −∆ (5.4)

where ∆ is the 4d Laplacian on R3 × S1.

5.1 Schwarzschild black hole

In this section we use the partition function to directly compute the entropy of Schwarzschild

black hole. We have the fundamental relation

S = (1− β∂β) lnZ(β) . (5.5)

The Euclidean section of the Schwarzschild solution reads

ds2 =

(
1− 2GM

r

)
dτ2 +

(
1− 2GM

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
(5.6)

with 0 ≤ τ ≤ β. Customarily, a conical singularity at r = 2GM is avoided by fixing

β = βH ≡ 8πGM which defines the Hawking temperature. In order for us to use the

effective action in eq. (4.10) to evaluate the partition function, we need to affect a coordinate

transformation similar to eq. (A.22) in order to cast the above metric in its KS form. One

then proceeds to carry out the spacetime integrals in eq. (4.10). Although this could readily

18Stationary, but non-static, black hole solutions do not have a Euclidean section [66]. For example,

the analytic continuation of the Kerr solution yields an imaginary metric. Nevertheless, the Euclidean

procedure is well-defined [60].
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be done, the evaluation of the non-local portion in eq. (4.13) is quite cumbersome.19 As

we show next, the logarithmic correction can be extracted in a much simpler fashion by

studying the scaling properties of Γln.

Consider two background metrics ḡ and ḡΛ related as follows20

ḡΛ = Λ2 ḡ (5.7)

where Λ is a spacetime constant. In other words, they are related by a global scale trans-

formation. If the original metric ḡ solves Einstein equations, so would the scaled metric.

In particular, the scaled metric is an instanton. One then inquires about the corresponding

change in the entropy. As evident from eq. (5.3), this requires knowledge of the transforma-

tion properties of the effective action. The various curvature tensors transform as follows

√
ḡΛ = Λ4√ḡ, Rµναβ(ḡΛ) = Rµναβ(ḡ), Rµν(ḡΛ) = Rµν(ḡ), R(ḡΛ) = Λ−2R(ḡ) . (5.8)

On the other hand, the logarithm in eq. (4.13) transforms as

ln

(
−∆

µ2

)
→ ln

(
−∆

µ2

)
− ln Λ2 . (5.9)

Finally, we have

SΛ − S ∝ ln Λ2(1− β∂β) Υ[ḡE ] (5.10)

where

Υ[ḡE ] =

∫
d4x

(
αR2 + βRµνR

µν + γRµναβR
µναβ −Θ ∆R

)
. (5.11)

It is easily verified that under the scale transformation in eq. (5.7) the ADM mass of

Schwarzschild black hole becomes

M → ΛM . (5.12)

Since the mass of the black hole is the only dimensionful parameter in the solution, it is

evident from eq. (5.10) that the correction to the entropy is proportional to the logarithm

of the horizon area. The coefficient is easily computed from eq. (5.11) where only the

Riemann piece contributes non-trivially. This point makes it obvious why we should keep

all independent invariants present in the action.21

Finally, taking the local portion of the action into account we arrive at22

Sbh = SBH + 64π2
(
cr3(µ) + Ξ ln

(
µ2A

))
(5.13)

19The interested reader can consult [6–8] for the position-space representation of ln �.
20One could achieve this scaling by transforming the coordinates as xµ → Λxµ and simultaneously

rescaling M → ΛM .
21Another way to see the same physics is to realize that the Euler number of the Schwarzschild instanton

is non-vanishing. Hence, a naive implementation of the Gauss-Bonnet identity is incorrect.
22Notice that ~ has been set to unity.
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where Ξ is given in eq. (1.8). This is the second result of the paper.23 We observe a rather

important feature in the result: the entropy is invariant under RG evolution

d

d lnµ
Sbh = 0 (5.14)

where use has been made of eq. (4.15). Conversely, we could have deduced the logarithmic

correction by enforcing RG invariance. Notice that ln µ2 in eq. (4.13) contributes a local

piece in the partition function. By dimensional consistency, there must exist a geomet-

ric quantity with the correct mass-dimension to render the logarithm dimensionless as it

must be. For the Schwarzschild instanton, the only quantity available is the area of the

event horizon.

5.2 Dimensional transmutation and final remarks

The physical character of the entropy is elegantly emphasized if we use dimensional trans-

mutation. The constant in eq. (5.13) is dimensionless and could be traded for a dimensionful

scale by writing

cr3(µ) = −Ξ ln
(
µ2AQG

)
. (5.15)

Every UV completion of quantum gravity must predict a unique value for the above con-

stant at same matching scale. This in turn fixes the value of AQG which has dimensions of

area. In other words, the latter scale defines the theory of quantum theory. We can now

rewrite eq. (5.13) with no reference to the unphysical scale µ

Sbh = SBH + 64π2 Ξ ln

(
A
AQG

)
. (5.16)

The result exhibits a manifest correspondence between the UV and IR. This elegant

dichotomy is brought about by the structure of the logarithmic non-locality in the partition

function. Here, one clearly sees the power of the EFT framework. Induced by the non-

analytic portion of the action, the logarithmic dependance on the horizon area and the

associated coefficient furnish a test laboratory for any proposed theory of quantum gravity.

Yet, a short-distance scale, characteristic of the UV completion, shows up hand-in-hand

with the infrared effect.

Some remarks are due in place. It is quite intriguing that the coefficient of the loga-

rithm in eq. (1.8) is not positive definite. The gauge fields in the theory yields a negative

contribution. In fact, dialing up the number of particles could render the quantum cor-

rection large even in a regime where the effective field theory is valid. In other words,

the logarithm might compete with the BH term in the large-N limit. The inevitable ex-

istence of massless gauge fields makes it possible to attain a state of vanishing entropy.

Nevertheless, it is not clear to us if this observation hides any deep physics. One might

also inquire if higher curvature (loop) corrections would alter the result. The uncovered

UV/IR properties of the correction lead us to believe that the logarithmic correction does

not receive any modification.

23It is shown in [44] that the possible contribution of zero modes to the partition function should be

handled carefully. The scalar operator treated in section 2 is positive definite on the Euclidean black hole.

Nevertheless, a thorough analysis of zero modes should be performed when considering higher-spin fields.
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6 Future outlook

There exist a handful of open questions which we reserve for future work. Let us outline

them in some detail:

• The fate of the form factors and their covariance properties remains unclear in an

arbitrary spacetime. In our case, we lost general coordinate invariance by fixing the

background geometry to be a KS spacetime. Yet, we gained the ability to obtain the

exact effective action up to second order in the curvature. In particular, we uncovered

the non-analytic structure of the form factors which turned out to be rather simple.

Only the flat space derivative operators appear in the form factors. The counterterm

method initiated in [8] was unnecessary in our construction. More work is needed to

clarify if there exists a better way to display the answer in a generic spacetime.

• It is also possible to extend the analysis beyond minimally coupled fields. For exam-

ple, introducing the non-minimal coupling (ξR) into the scalar kinetic operator will

change the coefficient α in table 1 by a multiplicative factor (6ξ− 1)2 [7]. This mod-

ification does not affect the correction to the BH entropy. One the other hand, the

effect of including self interactions in the matter sector is worth investigating. In par-

ticular, one would like to check if the logarithmic correction receives any modification

in this case. We thank the anonymous referee for pointing out this issue.

• To realize a successful program of infrared quantum gravity, it is crucial to understand

how to handle infrared singularities in effective actions. Although the result at second

order in the curvature is free of the latter, they become omnipresent at higher orders.

It was found in [8] that the effective action of massless QED — with gravitational

coupling — could be made infrared safe if one chooses the background fields to satisfy

their lowest order equations of motion.24 Nevertheless, this procedure is neither

justified nor is it guaranteed to work. Clearly, we need further insight.

• Wald’s Noether charge approach stands out as the most elegant technique to define

and compute the entropy. In particular, it endows black hole entropy with a geometric

meaning. It is rather important to obtain the logarithmic correction via Wald’s

approach. In 2d, Myers [69] has made a pioneering step to adapt Wald’s technique

to study the non-local Polyakov action. Nevertheless, the non-local structure in the

latter comprises a massless pole, i.e. 1/∇2, and so it is not clear how to generalize

the treatment in our case. A geometric derivation is highly desirable in order to go

beyond specific black holes and generalize our results.

• It is always interesting to derive Hawking radiation using various approaches. As

the effective action encodes the vacuum fluctuations, an elegant pathway to Hawking

radiation should start from the effective action. Progress has been made for 2d black

holes, see for example [73]. In 4d, Mukhanov et al. [77] made an initial step in this

direction by considering the contribution of s-modes to the effective action. In this

24Here, we mean both the gauge and metric fields.
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case, the computation is very similar to the 2d case. Nevertheless, more work needs

to be done in 4d.

• Perhaps the most important future step is to study the back-reaction on the space-

time. This is mandatory in order to track the process of black hole evaporation. Much

work has been devoted to study the physics in 2d, see for example [74–76] which is

surely an incomplete list. There exist little work, if any, regarding realistic 4d black

holes. It is quite unlikely that one would be able to find analytic solutions to the

equations of motion given the non-local structures present. Nevertheless, numerical

solutions will indeed provide invaluable insight.
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A Kerr-Shild spacetimes

For the convenience of the reader we review the derivation of the Schwarzschild solution

starting from the KS ansatz for the metric. The approach presented here is due to Adler

et al. [78]. This approach is purely algebraic which is quite different from the geometric

approach originally employed by Kerr et al. in [35–37].

If we substitute the metric in eq. (2.1) into the Ricci tensor, the vacuum Einstein

equations appear as a power series in λ

4∑
i=1

(i)

Rµν = 0 . (A.1)

The expansion goes to fourth order since the Christoffel symbols truncate at second order.

The Ricci tensor must vanish at each order in λ. Moreover, since
√
g = 1, we have that

Γµµν = 0 and thus

Rµν = −∂αΓαµν + ΓαβµΓβνα . (A.2)

The null property of the KS vector leads to important identities

kµ = gµνkν = ηµνkν , kµ∂νkµ = 0 . (A.3)

It is easy to verify that
(4)

Rµν = 0 is satisfied. Setting
(3)

Rµν = 0, we have another important

equation

ηαβxαxβ = 0, xα ≡ kβ∂βkα = kβ∇βkα . (A.4)
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Hence, xα is null and moreover it is orthogonal to kα as can easily be checked. Indeed two

null vectors which are orthogonal at each point on the manifold must be proportional to

each other

kβ∇βkα = −Akα (A.5)

where A is a scalar function.25 We conclude that kα must be a null geodesic with non-affine

parameterization. It is shown in [78] that the O(λ2) equation is automatically satisfied once

the O(λ) equation is solved. The linear equation is elegantly expressed if we define an extra

scalar function L ≡ −∂µkµ

�(kµkν) = −2∂(µ[(L+A)kν)] . (A.6)

To simplify the equations, we write the KS vector as kα = (κ, κw) = (κ, κw1, κw2, κw3).

For stationary spacetimes, eq. (A.6) leads to three26 coupled second-order equations for κ

and w. The latter could be manipulated into an equation involving only first derivatives

of w which reads

(∂mwi) (∂mwj) = P (∂iwj + ∂jwi), P ≡ L+A

2κ
. (A.7)

This equation is solved analytically by a linear algebraic approach [78]. If we define a

real matrix Mij ≡ ∂iwj then the above equation becomes

M +MT = P−1MMT . (A.8)

Using eq. (A.5), one finds that w lies in the null space of both M and MT . We shall

see next that the analysis is greatly simplified. Let R be an orthogonal matrix defined

such that

w′ = Rw, w′T = (1, 0, 0) . (A.9)

Indeed the matrix M ′ = RTMR satisfies an identical relation as eq. (A.8). Moreover, the

rotated vector w′ lies in the null space of M ′. In particular, we must have

M ′ =

 0 0 0

0 N11 N12

0 N21 N22

 (A.10)

which yields

N +N ′ T = P−1NN ′ T . (A.11)

The above equation is easily solved in terms of an U ∈ SO(2) matrix such that N ′ =

P (1 − U). The SO(2) group is parameterized in terms of a single continuous variable,

say θ. Plugging everything back, we find

Mij = P (1− cos θ)(R2iR2j +R3iR3j) + P sin θ(R2iR3j −R3iR2k) . (A.12)

25We stick to the notation of [78] as much as possible.
26The fourth equation comes from the null constraint which forces wiwi = 1.
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Notice that R is orthogonal and has unit determinant which enables us to write

Mij = P (1− cos θ)(δij −R1iR1j) + P sin θεijkR1k . (A.13)

In particular, the elements of the first row fully determine the matrix M . Recall that w is

in the null space of M which forces wi = R1i. Finally we end up with27

∂iwj = α(δij − wiwj) + βεijkwk, α ≡ P (1− cos θ), β ≡ P sin θ . (A.14)

The above equation is both linear and first order in derivatives. Yet, we still need to

decouple the r.h.s. which turns out to be an exercise in vector calculus. From the above

expression we can form all possible vector and scalar quantities, i.e. ∇2w, ∇ · w and

∇×w. Taking the triple cross product of w and comparing the resulting expression with

∇2w yields an equation for the gradient of α

∇α = ∇β ×w + (β2 − α2)w . (A.15)

From the above equation and using ∇×w we obtain a similar expression for β

∇β = −∇α×w − 2αβw . (A.16)

It is rather remarkable that we can remove w entirely from the above relations. In terms

of the complex function γ = α+ iβ, we compute

∇2γ = 0, (∇γ)2 = γ4 . (A.17)

The KS vector, and hence the specetime metric, is determined in terms of κ and w. This

is easily acheived in terms of ξ ≡ γ−1. A straightforward manipulation of ∇ξ × ∇ξ? and

∇ξ · ∇ξ? yields the desired result

w =
i∇ξ ×∇ξ? +∇ξ +∇ξ?

(1 +∇ξ · ∇ξ?)
. (A.18)

It remains to find κ. We note that eq. (A.6) yields

∇2(κ2w) = ∇[(L+A)κ], ∇2κ2 = 0 . (A.19)

Remarkably, these two equations are simultaneously satsified with the choice κ2 = c α,

where c is an arbitrary constant.

Let us apply the formalism to find the Schwarzschild solution. A real function solving

eq. (A.17) is transparent

γ =
c

r
=

c

(x2 + y2 + z2)1/2
→ kµ =

c√
r

(
1,

x

r

)
(A.20)

which yields

ds2 = dt2? − (dx · dx)− c2

r
(dt? + dr)2 . (A.21)

27Notice that θ is a function of w.
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This is the Schwarzschild solution in Eddington coordinates. A simple coordinate trans-

formation

t? = t+ c2 ln(r/c2 − 1) (A.22)

yields the usual form of the Schwarzschild metric. The free constant is determined as per

usual from the Newtonian limit of the solution, c2 = 2GM .

B Heat kernel

B.1 Definition

At the one-loop level, one is interested in computing a functional trace of the logarithm of

some operator. That is

Γ[g,Φ] ∝ Tr ln

(
D
D0

)
(B.1)

where Φ comprises extra background fields present in the system and Tr denotes a trace

operation over spacetime as well as internal degress of freedom. Using the identity

ln

(
D
D0

)
=

∫ ∞
0

ds

s

(
e−sD0 − e−sD

)
, (B.2)

the heat kernel is defined as follows

H(x, y; s) = e−sDδ(d)(x− y) . (B.3)

The parameter s is conventionally called proper time. Notice that the Dirac-delta distri-

bution is not covariant in the above expression.28 This choice of normalization appeared

in [15] and is convenient for our purposes. The eigenmodes of the operator D are tensor

densities of weight 1/2 normalized as follows

Dϕn = λnϕn,

∫
ddxϕn ϕm = δnm, δ(d)(x− y) =

∑
n

ϕn(x)ϕn(y) . (B.4)

Hence eq. (B.3) becomes

H(x, y; s) =
∑
n

e−sλnϕ(x)ϕ(y) (B.5)

which shows that the heat kernel defined as such is a bi-tensor density of weight 1/2.

The trace of the heat kernel is defined as

H(s) = trI

∫
ddxH(x, x; s) (B.6)

where trI denotes a trace over internal degrees of freedom, i.e. spacetime indices, spin and

so on. Now from eq. (B.3), we see that the heat kernel satisfies the following first order

differential equation

(∂s +Dx)H(x, y; s) = 0, H(x, y; 0) = δ(d)(x− y) . (B.7)

This last equation allows the perturbative expansion of the heat kernel to be developed.

28The delta distribution contains an implicit identity tensor acting in field space.
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B.2 Perturbative expansion

The heat kernel could be determined exactly if one knows the eigenvalues of the operator

under consideration. This might be possible to obtain in few simple cases, for instance,

Schwinger pair creation in constant electromagnetic field [79]. In general one has to content

with some sort of perturbative expansion which enables a systematic study of a certain

problem. Here we describe in some detail the formalism first presented in [9–12] and

reviewed in [15]. Such formalism offers a non-local expansion of the heat kernel and is

highly suitable for operators without a given mass scale and thus naturally lends itself

to our computation. Recall the KS metric reads gµν = ηµν − λKµν . Consequently, the

operator reads29

D = ∂2 + V (B.8)

where V is a function of Kµν and any extra background fields present. Let us take V = 0

and solve for the flat space heat kernel. Now eq. (B.7) becomes

(∂s + ∂2
x)H0(x, y; s) = 0 (B.9)

This is easily solved by going to Fourier space

H0(p, p′; s) = (2π)d δ(d)(p+ p′)esp
2

(B.10)

which then yields

H0(x, y; s) =
i

(4πs)d/2
exp

[
(x− y)2

4s

]
. (B.11)

It is convenient to introduce a matrix notation at this stage if we recognize the heat

kernel as a matrix in position space. For instance, the flat-space heat kernel satisfies the

following property

H0(x, y; s+ t) =

∫
ddz H0(x, z; s)H0(z, y; t) (B.12)

which could be written as

H0(s+ t) = H0(s)×H0(t) . (B.13)

Note in particular the following identity

1 = H0(s)×H0(−s) . (B.14)

To set up the perturbative expansion, we define a proper-time evolution operator as fol-

lows [15]

U(s) = H0(−s)×H(s) (B.15)

29Any operator must start with the full spacetime d’Alembertian that results from the kinetic term in

the action.
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which, using eqs. (B.7) and (B.9), is easily seen to satisfy the following differential equation

∂sU(s) = −H0(−s)× V ×H(s), U(0) = 1 . (B.16)

Now the interaction V is also a matrix in position space. The above equation is not yet in

the desired form, but we can use eq. (B.12) to rewrite eq. (B.15) as follows

H(s) = H0(s)×U(s) . (B.17)

Hence, eq. (B.16) becomes

∂sU(s) = −H0(−s)× V ×H0(s)×U(s) (B.18)

and has the familiar solution

U(s) = T exp

(
−
∫ s

0
dtH0(−t)× V ×H0(t)

)
. (B.19)

Here, T is the proper-time ordering operator. We observe here that the proper time plays

the role of it in real-time perturbation theory. It proves easier to turn the integration

variables into dimensionless quantities by rescaling t→ t/s [15]

U(s) = T exp

(
−
∫ 1

0
dtH0(−st)× V ×H0(st)

)
. (B.20)

This equation is the basis of the non-local expansion of the heat kernel [9–12]. We finally

plug the above formula in eq. (B.15) to obtain the heat kernel.

C Useful identities

C.1 The form factors

There are various ways to relate the form factors to the fundamental one in eq. (3.8). Let

us process the following integral

I(n) =
1

2

∫ 1

0
dσ (1− 2σ)2 (σ(1− σ))n (C.1)

which is easily expressed in terms of the Euler gamma function

I(n) =
1

n+ 1

Γ(2 + n)Γ(2 + n)

Γ(4 + 2n)
.

This can be put back into an integral representation

I(n) =
n!

(n+ 1)!

∫ 1

0
dσ σn+1(1− σ)n+1 (C.2)

which enables us to derive the following identity

x

2

∫ 1

0
dσ (1− 2σ)2 eσ(1−σ)x = f(x)− 1 (C.3)
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where f(x) is the form factor in eq. (3.8). Using the above, we can derive the following

identities as well

∫ 1

0
dσ σ(1− σ)eσ(1−σ)x =

1

4
f(x)− 1

2x
[f(x)− 1] (C.4)∫ 1

0
dσ σ2(1− σ)2eσ(1−σ)x =

1

32
f(x)− 1

8x
f(x) +

1

16x
+

3

8x2
[f(x)− 1] . (C.5)

C.2 Tensor integrals

We here list the tensor integrals needed for the computation of the heat kernel.

∫
ddp

(2π)d
esp

2
=

i

(4πs)d/2
(C.6)∫

ddp

(2π)d
pµpνe

sp2 =
i

(4πs)d/2

−1

2s
ηµν (C.7)∫

ddp

(2π)d
pµpνpαpβe

sp2 =
i

(4πs)d/2

1

4s2
(ηµνηαβ + ηµαηνβ + ηµβηνα) (C.8)

C.3 Curvature invariants in momentum space

Here we provide the momentum space representation of the different curvature invariants

which are needed to determine the heat kernel at second order in the curvature. For KS

spacetimes with a flat background metric in Cartesian coordinates, the quadratic invariants

read at lowest order

∫
ddxRiem2 =

1

2

∫
ddp

(2π)d
Kµν
p Kαβ

−p
(
p4 Tµναβ − p2 Pµναβ + 2pµpνpαpβ

)
(C.9)∫

ddxRic2 =
1

8

∫
ddp

(2π)d
Kµν
p Kαβ

−p
(
p4 Tµναβ − p2 Pµναβ + 4pµpνpαpβ

)
(C.10)∫

ddxR2 =

∫
ddp

(2π)d
Kµν
p Kαβ

−p pµpνpαpβ (C.11)

where we defined

Tµναβ = ηµαηνβ + ηµβηνα, Pµναβ = pµpαηνβ + pµpβηνα + pνpαηµβ + pνpβηµα . (C.12)

We also need the expansion of the Ricci scalar to order λ2 which reads

∫
ddx

(2)

R =
1

8

∫
ddp

(2π)d
Kµν
p Kαβ

−p
(
p2 Tµναβ − Pµναβ

)
. (C.13)
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