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Abstract

We propose a free falling particle in an AdS space as a holographic model of local quench.

Local quenches are triggered by local excitations in a given quantum system. We calculate the

time-evolution of holographic entanglement entropy. We confirm a logarithmic time-evolution,

which is known to be typical in two dimensional local quenches. To study the structure of

quantum entanglement in general quantum systems, we introduce a new quantity which we

call entanglement density and apply this analysis to quantum quenches. We show that this

quantity is directly related to the energy density in a small size limit. Moreover, we find a

simple relationship between the amount of quantum information possessed by a massive object

and its total energy based on the AdS/CFT.
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1 Introduction

Quantum entanglement provides us with a powerful method of investigating various quantum states

and classifying their quantum structures. Moreover, quantum entanglement is a useful tool when

we would like to study excited quantum systems which are far from thermal equilibrium, for ex-

ample, those under thermalization processes. Even though in such systems we cannot define the

thermodynamical entropy and temperature etc, we can always define the entanglement entropy

(refer to e.g. the reviews [1, 2, 3, 4, 5]).

Quantum quenches provide us with ideal setups to study thermalizations of quantum systems,

which can be realized even in real experiments such as cold atoms. They are unitary evolutions

of pure states triggered by sudden change of parameters such as mass gaps or coupling constants

[6, 7, 8]. By using the AdS/CFT [9, 10, 11], we can relate this problem to the dynamics of

gravitational theories [12, 13, 14, 15].

One typical class of quantum quenches is called global quenches and they occur from homo-

geneous changes of parameters [6]. Holographic duals of global quenches are dual to black hole

formations as have been discussed in [12, 14]. A useful quantity to understand how thermalizations

occur is the entanglement entropy [6]. The holographic entanglement entropy (HEE) [16, 17, 5]

has been calculated for various quantum quenches [13, 18, 19]. Refer also to [20] for a computation

of HEE for a stationary system which is described by an excited pure state dual to an AdS plane

wave. In general, non-local probes such as the entanglement entropy are useful to measure the

thermalization time. On the other hand, local quantities such as an expectation value of energy

momentum tensor shows an immediate thermalization and is not suitable to see if a given system is

completely thermalized [18]. In this sense, the entanglement entropy can serve as a non-equilibrium

substitute of thermodynamical entropy.

Another class of quantum quenches is the local quench and this is triggered by a shift of

parameters within a localized region or simply at a point. One of the aims of the present paper

is to provide a simple construction of holographic dual for local quench and is to calculate the

holographic entanglement entropy. A local quench shows how localized excitations in a given

quantum system propagate to other spatial regions. Local quenches have been studied in two

dimensional CFTs [7, 8]. However, local quenches in higher dimensions have not been understood

well. This partially motivates us to study the local quenches in AdS/CFT, which often allows us

higher dimensional calculations.

We will argue that a simple holographic description of a system just after the local quench is

a free falling particle-like object in an AdS space. It is pulled into the horizon of AdS space due

to the gravitational force and this is the reason why we observe the non-trivial time-dependence
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of entanglement entropy. Therefore this problem is deeply connected to a fundamental question:

what is the non-gravitational (or CFT) counterpart of gravitational force via holography ? We will

suggest an intuitive answer to this question in the end.

The time evolution of quantum entanglement under local quenches is more complicated than

the global quenches because it is inhomogeneous. To understand its structure clearly we introduce

a new quantity which we call entanglement density. It is defined by taking the derivatives of the

entanglement entropy SA with respect to the positions of two boundary points of the subsystem A.

This quantity counts the number of entangled pairs at a given position. The strong subadditivity

guarantees that this quantity is always positive. As we will see this analysis reveals the detailed

structure of quantum entanglement under local quenches as well as global quenches.

One more motivation to study local quenches is to estimate the amount of quantum information

possessed by a massive object or radiations. We will employ the entanglement entropy for local

quenches in order to measure the amount of information included in a localized excited lump. We

will evaluate this quantity by using the holographic entanglement entropy (HEE) and obtain the

simple conclusion that it is given by the total energy of the object times its size up to a numerical

factor.

The paper is organized as follows: In section two, we explain our holographic setup of local

quench using a free falling particle in AdSd+1. We calculate the holographic energy stress tensors

in this model. In section three, we compute the holographic entanglement entropy for d = 2, 3, 4

assuming that the back-reaction due to the falling particle is very small. In section four, we perform

an exact analysis of holographic entanglement entropy for d = 2. In section 5, we introduce a

new quantity which we call entanglement density and we investigate the evolution of quantum

entanglement structures under local quenches by using this. In section 6, we study the relation

between the amount of information of an object and its total energy using the results in the

previous sections. We also interpret our results of local quenches using the idea of the entanglement

renormalization and discuss the holographic interpretation of gravitational force. In section 7 we

summarize our conclusions and discuss future problems. In appendix A, we show an explicit

perturbative calculation of back-reactions due to the falling particle.

2 Holographic Local Quenches as Falling Particles

Local quenches in quantum systems are triggered by a sudden local change of the Hamiltonian at

a specific time. One typical class of examples will be joining two separated semi-infinite systems

at each endpoint as studied in [7, 8] (see the upper picture in Fig.1). When this quench process

happens, an interaction between two endpoints is instantaneously introduced. From the viewpoint
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Figure 1: Setups of local quenches. The upper picture describes a process of jointing two systems

which are defined on semi-infinite lines. The lower one describes localized excitations on an infinitely

extended system. We define the parameter α which measures the size of excited region at the

beginning of the local quench.

of the new Hamiltonian, an locally excited state is generated just after this local quench. Therefore

we can generally characterize a local quench by local excitations. These excitations will propagate

to other regions under the time-evolution.

Now we would like to construct gravity duals for local quenches via the AdS/CFT. Even though

we have not found a simple gravity dual of the original model i.e. joining two CFTs, it is not

difficult to find a holographic model for local excitations. It is given by a falling massive particle

in a Poincare AdS space (see Fig.2). At t = 0, the particle is situated near the AdS boundary and

its back-reaction to the metric is highly localized near the particle. Under its time evolution it falls

into the AdS horizon and its back-reaction spreads out. In the dual CFT, at t = 0, the excitations

are concentrated in a small localized region (see the lower picture in Fig.1), whose radius is defined

to be α. Therefore we can regard this state at t = 0 as the one just after the local quench. Later

the excitations expand at the speed of light as we will see e.g. from its holographic energy stress

tensor later. In this way, we can regard this setup as a gravity dual of local quench.

We will employ the beautiful construction of back-reacted solutions found by Horowitz and

Itzhaki in [21]. The basic idea is to start from a black hole in a global AdS space and map it into a

Poincare AdS by the coordinate transformation. This leads to a falling black hole solution. Though

we are thinking of a massive particle with a finite size or equally a star, instead of a black hole, the

asymptotic solution which is outside of the star is the same as that for a black hole as usual.
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Figure 2: A falling massive particle in AdS and the calculation of holographic entanglement entropy

for two different choices of the subsystem A. It is clear from this picture that the back reaction

due to the falling particle gets significant when l = z(t) in the left picture and t = 0 in the right

one because the particle is on top of γA.

2.1 A Falling Massive Particle in AdS

Consider a d+ 1 dimensional AdS space (AdSd+1) in the Poincare coordinate

ds2 = R2

(

dz2 − dt2 +
∑d−1

i=1 dx2i
z2

)

. (2.1)

The radius of AdS is defined to be R and the coordinate of AdS is represented by xµ = (z, t, x1, · ·
·, xd−1).

In this AdS space, we introduce a massive object (mass m) with a very small size which is

larger than the Schwartzschild radius. Its motion in the AdS space is described by the trajectory

xµ = Xµ(τ). In general, the action of a particle with mass m in a spacetime defined by the metric

gµν is given by

Sp = −m

∫

dτ

∫

dxd+1δ(d+1)(xµ −Xµ(τ))
√

−gµν(x) · ∂τXµ(τ) · ∂τXν(τ). (2.2)

We assume that the particle is situated at Xi = 0 and we gauge fix by setting Xt(τ) = τ . Then

the trajectory is specified by the function Xz(τ) = z(τ). In the pure AdS background (2.1), the

action looks like

S = −mR

∫

dt

√

1− ż(t)2

z(t)
. (2.3)

The solution to the equation of motion derived from (2.3) is given by

z(t) =
√

(t− t0)2 + α2, (2.4)
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where t0 and α are integration constants. Below we will set t0 = 0 by using the time translation

invariance. When t < 0 the particle moves from the horizon to the boundary. It reaches z = α at

t = 0. Later (t > 0), it again falls into the horizon as depicted in Fig.2. Thus the energy of the

particle in the AdS space is calculated as

E =
mR

α
. (2.5)

2.2 Einstein Equation

The gravity action coupled to the massive particle reads

Stot =
1

16πGN

∫

dxd+1√−g(R− 2Λ) + Sp , (2.6)

where the cosmological constant is given by Λ = −d(d−1)
2R2 and GN is the Newton constant.

The equation of motion becomes

Rµν − 1

2
gµνR+ Λgµν = T µν , (2.7)

where the bulk energy-stress tensor T µν is given by

T µν =
8πmGN√−g

· ∂tX
µ∂tX

ν

√

−gµν · ∂tXµ(t) · ∂tXν(t)
· δ(z − z(t)) · δd−1(xi). (2.8)

We will show a direct perturbative calculations of this back-reaction in appendix A. However,

below we will take a different step in order to analytically construct the back-reacted solutions. See

the paper [22] for analytical calculations of back-reactions to a scalar field in an AdS space. Refer

also to [23] for a more extensive analysis and a relation to expanding qluon plasmas, where the

back-reacted solutions are called conformal solitons (see [24] for spacetime structures of conformal

solitons).

2.3 Coordinate Transformation from Global AdS to Poincare AdS

Now consider the global AdSd+1 space defined by the metric

ds2 = −(R2 + r2)dτ2 +
R2dr2

R2 + r2
+ r2dΩ2

d−1. (2.9)

We can show this is (locally) equivalent to the Poincare AdSd+1 space (2.1) via the following

coordinate transformation:
√

R2 + r2 cos τ =
R2eβ + e−β(z2 + x2 − t2)

2z
,

√

R2 + r2 sin τ =
Rt

z
,

rΩi =
Rxi
z

(i = 1, 2, · · ·, d− 1),

rΩd =
−R2eβ + e−β(z2 + x2 − t2)

2z
. (2.10)
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Here, the coordinate of Sd−1 is described by (Ω1,Ω2, · · ·,Ωd) such that
∑d

i=1(Ωi)
2 = 1. Also

we defined x2 =
∑d−1

i=1 x2i . The arbitrary constant β is introduced for the later purpose, which

corresponds to the boost transformation of SO(2, d) symmetry. If we set β = 0, (2.10) is reduced

to the standard one which can be found in e.g. [11].

2.4 Back-reacted Metric for a Falling Massive Particle

In the global coordinate, we can consider a static particle situated at r = 0. Following the idea in

[21], we would like to map it into the Poincare AdS. After the coordinate transformation (2.10),

its trajectory is mapped into

xi = 0, z2 − t2 = R2e2β . (2.11)

Thus this corresponds to the previous trajectory (2.4) with the identification

α = Reβ. (2.12)

The back-reacted geometry outside of the massive object is obtained from the AdS black hole

solution [25]:

ds2 = −
(

r2 +R2 − M

rd−2

)

dτ2 +
R2dr2

R2 + r2 −M/rd−2
+ r2dΩ2

d−1. (2.13)

Note that in the AdS3 case (d = 2), the solution (2.13) for M < R2 is not a black hole solution but

a solution with a deficit angle.1 The mass parameter M in (2.13) is related to the mass m of the

particle via

m =
(d− 1)πd/2−1

8Γ(d/2)
· M

GNR2
. (2.14)

Therefore, we can find the back-reacted metric by performing the coordinate transformation

(2.10) to the metric (2.13). This can be done in a straightforward manner by noting

r =
1

2z

√

R4e2β + e−2β(z2 + x2i − t2)2 − 2R2(z2 − x2 − t2),

dτ2 = d(cos τ)2 + d(sin τ)2, dΩ2
d−1 =

d
∑

i=1

(dΩi)
2. (2.15)

2.5 Holographic Energy Stress Tensor

One way to understand the time evolution of the CFTd state dual to the falling particle in AdSd+1,

is to calculate the holographic energy stress tensor. For this purpose, it is useful to employ the

Fefferman-Graham gauge of the coordinates given by the expression

ds2 = R2 · dz
2 + gab(x, z)dx

adxb

z2
. (2.16)

1We do not have to worry about the singularity because we replace the region near it with a star solution.
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where xa = (t, xi). We are considering the case where the boundary metric gab(x, 0) coincides with

the flat Minkowski metric ηab as in the Poincare AdS. Then near the AdS boundary z = 0, gab(x, z)

behaves like

gab(x, z) = ηab + tabz
d +O(zd+1). (2.17)

In this setup, the holographic energy stress tensor [26] is calculated from the formula:

Tab =
d · Rd−1

16πGN
· tab. (2.18)

Note that the metric we find from the coordinate transformation (2.10) of (2.13) is not in the

form of the Fefferman-Graham gauge (2.16). Thus we need to perform a coordinate transformation

further to achieve this gauge so that we can employ (2.18). It is also useful to define the light-cone

coordinate u = t− ρ and v = t+ ρ, where ρ = x1 for d = 2 and ρ =
√

∑d−1
i=1 x2i for d > 2. Finally

we obtain the following energy stress tensor Tab for d = 2, 3, 4:

d = 2 (AdS3) :

Tuu =
Mα2

8πGNR(u2 + α2)2
, Tvv =

Mα2

8πGNR(v2 + α2)2
, Tuv = 0. (2.19)

d = 3 (AdS4) :

Tuu =
3Mα3

8πGNR(u2 + α2)
5
2

√
v2 + α2

, Tuv =
Mα3

8πGNR(u2 + α2)
3
2 (v2 + α2)

3
2

,

Tvv =
3Mα3

8πGNR(v2 + α2)
5
2

√
u2 + α2

, Tθθ =
3Mα3(u− v)2

8πGNR(u2 + α2)
3
2 (v2 + α2)

3
2

, (2.20)

d = 4 (AdS5) :

Tuu =
Mα4

πGNR (α2 + u2)3 (α2 + v2)
, Tuv =

Mα4

2πGNR (α2 + u2)2 (α2 + v2)2
,

Tvv =
Mα4

πGNR (α2 + u2) (α2 + v2)3
,

Tθθ =
Mα4(u− v)2

4πGNR (α2 + u2)2 (α2 + v2)2
, Tφφ =

Mα4 sin2 θ(u− v)2

4πGNR (α2 + u2)2 (α2 + v2)2
. (2.21)

The angular coordinates θ for d = 3 and (θ, φ) for d = 4 are those of the polar coordinates of

R2 : dρ2 + ρ2dθ2 and R3 : dρ2 + ρ2(dθ2 + sin2 θdφ2), respectively. For d = 4, the above expression

agrees with the one in [21].

Note that we can easily confirm the traceless condition

Tabη
ab = 0, (2.22)
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and the conservation law

∂aT
ab = 0. (2.23)

In particular, the energy density Ttt in each dimension is given by

d = 2 : Ttt =
Mα2

4πGNR
· (t2 + x2 + α2)2 + 4t2x2

((x2 − t2 − α2)2 + 4x2α2)2
,

d = 3 : Ttt =
Mα3

πGNR
· (ρ2 + t2 + α2)2 + 2ρ2t2

((ρ2 − t2 − α2)2 + 4α2ρ2)
5
2

,

d = 4 : Ttt =
Mα4

πGNR
· 3(ρ2 + t2 + α2)2 + 4ρ2t2

((ρ2 − t2 − α2)2 + 4α2ρ2)3
. (2.24)

By using these expressions we can confirm

∫

dd−1xTtt =
mR

α
= E, (2.25)

for any d, by using the relation (2.14). Therefore the total energy agrees with that of the particle

(2.5) as expected.

To understand how the excitations propagate, it is useful to look at the time evolution of Ttt.

This is plotted in Fig.3. We can observe a peak on the light-cone t2 = ρ2 as can be understood as

the light-like propagation (or shock waves as in [21]) of the initial excitations at t = ρ = 0.

The parameter α parameterizes the width of this peak and therefore it measures the size of

the localized excitations. Notice that for d = 2, the heights of the two peaks are equal and stay

constant due to the total energy conservation. We sketched the essence of this behavior in Fig.4

for d = 2. In the zero width limit α → 0 we find Ttt gets delta-functionally localized:

d = 2 : Ttt →
E

2
(δ(t+ ρ) + δ(t− ρ)) ,

d = 3 : Ttt →
E

2πρ
(δ(t + ρ) + δ(t− ρ)) ,

d = 4 : Ttt →
E

4πρ2
(δ(t+ ρ) + δ(t − ρ)) . (2.26)

3 Perturbative Analysis of Holographic Entanglement Entropy

under Local Quenches

The entanglement entropy SA is defined as the von-Neumann entropy when we trace out the

subsystem B, which is the complement of A. The subsystem A is an arbitrary chosen space-

like region on a time slice. Therefore, in a time-dependent background, SA depends on the time

even if we fix the shape of the region A. This is expected to be an important quantity which
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Figure 3: The profiles of the energy density Ttt for d = 2 (left), d = 3 (middle) and d = 4 (right)

as a function of ρ and t within the range −5 < t < 5. We set α = R = M = GN = 1.

Figure 4: A sketch of time evolution of energy density and entangled pairs for d = 2. The under-

standing of detailed structure of quantum entanglement and entangled pairs is the main subject of

this paper as will be studied in later sections.

characterizes various non-equilibrium processes in quantum many-body systems such as quantum

quenches [6, 8, 7].

In holographic setups, we can calculate SA by using the holographic entanglement entropy

(HEE). In d+ 1 dimensional static gravity backgrounds, we can calculate SA by the formula [16]

SA =
Area(γA)

4GN
, (3.1)

where γA is the d−1 dimensional minimal area surface on a time slice which ends on the boundary

of A i.e. ∂A. For spherically symmetric subsystems, we can manifestly prove (3.1) in pure AdS

spaces via the bulk to boundary relation [10] as shown in [27]. In time-dependent backgrounds,

there is no natural time-slice in the bulk AdS and we need to employ the covariant version of HEE

[17]. This is given by redefining γA to be an extremal surface in the Lorentzian spacetime.

Below we would like to compute the holographic entanglement entropy in the gravity dual of
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the local quench obtained from the coordinate transformation of the back hole solution (2.13) as

explained in the previous section. In this section we perform a perturbative calculation assuming

that the back-reaction from the particle is very small, keeping only the leading term proportional

to M . This allows us a relatively simple calculation which is applicable to any dimension d.

3.1 Perturbative Calculations of HEE under Local Quenches

Consider the first order perturbation of the metric

gµν = g(0)µν + g(1)µν +O(M2), (3.2)

where g
(0)
µν represents the metric of pure AdSd+1 (2.1); g

(1)
µν is the leading perturbation due to

the back-reaction, which is of order M in our case. We obtained g
(1)
µν from the direct calculation

explained in the previous section, though we will not write its complicated expression explicitly.

If we know the extremal surface γA in the pure AdSd+1, then the perturbed area of an extremal

surface can be found as

∆Area =
1

2

∫

dd−1ξ
√

G(0)Tr[G(1)(G(0))−1]. (3.3)

Here G is the induced metric on the surface γA:

G
(0)
αβ =

∂Xµ

∂ξα
∂Xν

∂ξβ
g(0)µν , G

(1)
αβ =

∂Xµ

∂ξα
∂Xν

∂ξβ
g(1)µν , (3.4)

where ξα (α = 1, 2, · · ·, d− 1) is the coordinate of the codimension two surface γA. The embedding

function Xµ(ξ) is that of γA in the pure AdSd+1. Notice the useful fact that we do not need to

know the precise shape of γA in the perturbed metric to calculate (3.3).

3.2 Explicit Calculations of HEE under Local Quenches

Consider the d = 3 case (AdS4) first. We take the subsystem A to be a round disk with the radius

l, defined by x21+x22 ≤ l2. The corresponding extremal surface (or equally minimal surface) is given

by the half sphere [16]

z =
√

l2 − x21 − x22. (3.5)

We can take (ξ1, ξ2) = (x1, x2) and then we find that the area density is given by

1

2

√

G̃(0)Tr[G̃(1)(G̃(0))−1] =
4MR2ρ2

l (e2βR4 + e−2β(l2 − t2)2 + 2R2(2ρ2 + t2 − l2))
3/2

, (3.6)

where ρ =
√

∑d−1
i=1 x2i .
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The area perturbation is found by integrating (3.6) over x and y. By plugging this into (3.1)

we obtain the increased amount of HEE, denoted by ∆SA, compared with SA for the ground state

dual to the pure AdS:

∆SA =
πM

4GNRαl

(

l4 − 2l2t2 + (α2 + t2)2
√

l4 + 2l2(α2 − t2) + (α2 + t2)2
− |t2 + α2 − l2|

)

, (3.7)

where we used the relation (2.12). Note that the area law divergence [28] is canceled in ∆SA

because ∆SA is defined from SA by subtracting the entanglement entropy for the ground state. For

example, at t = 0 we find

∆SA|t=0 =
πMl3

2GNRα(l2 + α2)
(l ≤ α), ∆SA|t=0 =

πMα3

2GNRl(l2 + α2)
(l > α), (3.8)

The time-evolution of (3.7) is plotted in Fig.5. Notice that ∆SA respects the time-reversal

symmetry. When l > α, the entanglement entropy initially grows with the time for t > 0 and

reaches the maximum at t =
√
l2 − α2 as in the left graph in Fig.5. Later, it decreases as

∆SA ≃ πMα3l3

2GNRt6
. (3.9)

When l < α, the entanglement entropy always decreases for t > 0. At late time we have the

behavior (3.9). Notice also that the width ∆t of the peak around t ≃
√
l2 − α2 is estimated as

∆t ∼ α when α << l. These results can be intuitively understood because at t =
√
l2 − α2 the

particle in AdS passes through the minimal surface (3.5). Refer to the Fig.2 again. In the dual

CFT, they can be naturally understood if we remember the excitations propagate at the speed of

light as we will discuss later.

Notice also an interesting property that the height of the peak at t =
√
l2 − α2 stays constant,

given by SA = πM
4GNR , and thus does not decrease under the time-evolution. This can also be seen

from the right graph in Fig.5. This is rather different from the behavior of energy stress tensor

studied in the previous section (see Fig.3).

It is also intriguing to shift the center of the subsystem A relative to the trajectory of the falling

particle in the (x1, y2) plane. We take the minimal surface in the pure AdS to be

z =
√

l2 − (x1 − ξ)2 − x22, (3.10)

where ξ is the distance between the center of A and the falling particle.

We plotted the results of ∆SA in Fig.6 for different values of ξ. In general one may notice

that the peak is broadened so that it is spread over l − ξ < t < l + ξ. In the gravity dual, this

is easily explained from the propagation of gravitational waves from the falling particle. This also

qualitatively agrees with the results of local quenches in two dimensional CFTs [8].
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Figure 5: The plots of ∆SA at ξ = 0 for d = 3. The left and middle one describe SA as a function

of t. We choose (α, l) = (1, 5) (left) and (α, l) = (1, 0.5) (middle), respectively. The right 3d graph

expresses SA as a function of t and l for α = 1. The horizontal coordinate corresponds to l. We

took the range −10 < t < 10 and 0 < l < 10. We set R = 4GN = M = 1.
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Figure 6: The plots of ∆SA for d = 3 as a function of time t. The left, middle and right graph

correspond to (α, l, ξ) = (1, 5, 0), (1, 5, 2) and (1, 5, 4), respectively. We set R = 4GN = M = 1.

It is straightforward to generalize the above results to other dimensions. In d = 2 and d = 4,

the expression of ∆SA (3.7) for d = 3 is replaced with2

d = 2 : ∆SA =
2Mlα+M(l2 − α2 − t2) arctan

(

2αl
t2+α2−l2

)

8GN lRα
, (3.11)

d = 4 : ∆SA =
πM

8GN lRα





1
2αl

(α2−l2+t2)2
+ 1

2αl

− 3
(

α2 − l2 + t2
)

arctan

(

2αl

α2 − l2 + t2

)

+ 4αl



 .

We can confirm that the behaviors of ∆SA in d = 2 and d = 4 are very similar to that in d = 3

and thus we will not show them the explicitly.

At late time t >> l, they are approximated by

d = 2 : ∆SA ≃ Mα2l2

3GNRt4
,

d = 4 : ∆SA ≃ 8πα4l4M

5GNRt8
. (3.12)

This shows that ∆SA decays like ∼ ld · t−2d at late time. Notice that the perturbative calculation

is always justified at late time as the back-reaction to γA for a finite l clearly gets suppressed.

2In d = 2 the subsystem is chosen to be an interval −l ≤ x ≤ l.
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3.3 Small Subsystem Limit: An Analogue of the first law of thermodynamics

In the small limit of the subsystem size l, we can trust the perturbative results of ∆SA (3.7) and

(3.11). This is because the surface γA is situated near the AdS boundary and therefore the deviation

of the metric from the pure AdS is very small [29]. In asymptotically AdS backgrounds which are

static and translation invariant, a relation which looks like the first law of thermodynamics has

been found in the small size limit of A [29]:

Teff ·∆SA = ∆EA, (3.13)

where EA is the energy in the subsystem A given by EA =
∫

A dxd−1Ttt. The effective temperature

is defined by Teff = cA
l , where the constant cA only depends on the shape of the subsystem A and

is independent from the details of the CFT we consider. When A is a d− 1 dimensional ball with

the radius l as we choose in this paper, we have

Teff =
d+ 1

2πl
. (3.14)

Thus it is intriguing to see if this relation (3.13) holds in our time-dependent and inhomogeneous

setup of local quenches. We can calculate the energy density from (2.24), and ∆SA from (3.7) and

(3.11) in the limit l <<
√
α2 + t2 as follows:

d = 2 : Ttt =
Mα2

4πGNR(t2 + α2)2
, ∆SA =

Mα2l2

3GNR(t2 + α2)2
,

d = 3 : Ttt =
Mα3

πGNR(t2 + α2)3
, ∆SA =

πα3l3

2GNR(t2 + α2)3
,

d = 4 : Ttt =
3Mα4

πGNR(t2 + α2)4
, ∆SA =

8πMα4l4

5GNR(t2 + α2)4
. (3.15)

By using these expressions we can explicitly confirm the relation (3.13) for any d.

3.4 Large Subsystem Limit

Before we go on, we would like to write down the result in the large subsystem limit l >>
√
t2 + α2.

In this limit, we find from (3.7) and (3.11):

d = 2 : ∆SA =
8α2

3l2
mR,

d = 3 : ∆SA =
πα3

l3
mR,

d = 4 : ∆SA =
64α4

5l4
mR. (3.16)

Note that these are time-independent.
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4 Exact Holographic Entanglement Entropy for 2d Local Quenches

We can actually find exact extremal surfaces (i.e. geodesics) in the AdS3 case (d = 2). We take the

subsystem A to be an interval at a constant time in the dual CFT2. In the holographic calculation,

first we obtain a geodesic in the metric (2.13), which is asymptotically global AdS3. Then we map

it into an asymptotically Poincare AdS metric by the coordinate transformation (2.10).

Initially, we will assume M−R2 < 0 and thus the geometry (2.13) has the deficit angle at r = 0.

If we were allowed to take θ to be 2π R√
R2−M

instead of 2π, the geometry gets smooth. Later we

will come back to the case M −R2 > 0 i.e. the BTZ black hole.

In the near AdS boundary limit, the map between the point (τ∞, θ∞, r∞) in (2.13) and the

point (t, z∞, x∞) in the Poincare AdS is given by3

tan τ∞ =
2Rt

R2eβ + e−β(x2∞ − t2))
,

tan θ∞ = − 2Rx∞
e−β(x2∞ − t2)−R2eβ

,

r∞ =
1

z∞

√

R2x2∞ +
1

4
(e−β(x2∞ − t2)−R2eβ)

2
. (4.1)

Notice that z∞ is interpreted as the UV cut off (or lattice spacing) in the dual CFT. In the above

expressions, we chose the range of τ∞ and θ∞ to be [−π, π].

We can specify the geodesic γA in (2.13) by

τ = τ(θ), r = r(θ). (4.2)

Its length |γA| reads

|γA| =
∫

dθ

√

r2 +
R2

r2 +R2 −M
r′2 − (r2 +R2 −M)τ ′2. (4.3)

The minimal length condition is summarized as

dτ

dθ
=

Ar2

r2 +R2 −M
,

dr

dθ
=

r

R

√

A2r2 + (B2r2 − 1)(r2 +R2 −M), (4.4)

where A and B are integration constants.

4.1 Symmetric Intervals

Consider the case where the subsystem A is given by an interval −l ≤ x ≤ l at time t. The

excitations of the local quench occur at x = 0 because the falling particle is situated at x = 0. In

3To fix the signs of τ∞ and θ∞, we need to go back to the original coordinate transformation (2.10).
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the global AdS, this is mapped into an interval −θ∞ ≤ θ ≤ θ∞ at a constant time slice τ = τ∞,

where we can assume 0 < θ∞ < π without losing generality (see Fig.7). Since we can assume τ is

constant on γA, the extremal surface condition (4.4) gets simplified to

dr

dθ
=

r

Rr∗

√

(r2 +R2 −M)(r2 − r2∗), (4.5)

where r = r∗ is an integration constant and r∗ is the minimum value of r on γA, i.e. the turning

point.

4.1.1 Case 1: M ≤ R2

Let us first assume 0 < θ∞ < π
2 . The curve γA with the minimum length is given by the geodesic

which takes the angle range −θ∞ ≤ θ < θ∞ (see the left picture of Fig.7). The point θ = 0

corresponds to the turning point r = r∗. Thus we find4

θ∞ =

∫ ∞

r∗

dr
Rr∗

r
√

(r2 +R2 −M)(r2 − r2∗)

=
R

2
√
R2 −M

[

π

2
+ arcsin

(

R2 −M − r2∗
R2 −M + r2∗

)]

. (4.6)

It is useful to rewrite this into

cos

(

2
√
R2 −M

R
θ∞

)

=
r2∗ −R2 +M

r2∗ +R2 −M
. (4.7)

Finally, the HEE is given by

SA =
R

2GN

∫ r∞

r∗

dr
r

√

(r2 +R2 −M)(r2 − r2∗)

=
R

2GN
log

2r∞
√

R2 −M + r2∗
. (4.8)

In the case θ∞ > π
2 , on the other hand, the curve γA is given by the geodesic which takes the

angular range θ∞ < |θ| < π (see the right picture of Fig.7). Thus its turning point is at θ = π. This

guarantees the basic property of entanglement entropy written as SA = SB for pure states, where

B is the complement of A. Thus for θ∞ > π
2 , we find the correct HEE from (4.8) by replacing θ∞

with π − θ∞ in (4.7).

4.1.2 Case 2: M > R2

For M > R2, the geometry (2.13) becomes the BTZ black hole. In this case, the basic result can be

obtained from the previous one by the analytic continuation
√
R2 −M → i

√
M −R2: the relation

4In this paper, the function arcsin(x) takes values between −π
2
and π

2
.
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Figure 7: The sketch of γA in the asymptotically global AdS background (2.13). The left and right

picture corresponds to 0 ≤ θ∞ ≤ π/2 and θ∞ ≥ π/2, respectively.

(4.7) is replaced with

cosh

(

2
√
M −R2

R
θ∞

)

=
r2∗ −R2 +M

r2∗ +R2 −M
. (4.9)

For 0 < θ∞ < π
2 , the holographic entanglement entropy SA can be found from the same expression

(4.8), which is denoted by SA(θ∞). For θ∞ > π
2 , SA is given by SA(π− θ∞) as in the M < R2 case.

In this calculation we implicitly assume that we are considering a star solution and that outside

of the star is described by the BTZ black hole solution (2.13). Thus this is dual to a pure state in

the CFT and indeed our construction satisfies SA = SB.

4.1.3 Final Results

The final result is plotted in Fig.8. For a small M the exact result nicely agrees with the one from

the perturbation theory (3.11). Even for a large M , the agreement is very good except the peak

at t ∼
√
l2 − α2. Indeed, we can analytically show that in both the limit t → 0 and t = ∞, SA

approaches to

SA(0) = SA(t = ∞) =
c

3
log

2l

z∞
, (4.10)

where we employed the well-known relation c = 3R
2GN

[30]. This reproduces the well-known result

of the entanglement entropy for ground states in CFTs [31, 32, 2]. Remember that z∞ corresponds

to the UV cut off (lattice spacing) in the dual CFTs.
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Figure 8: The exact plots of ∆SA as a function of time t(> 0). The left, middle and right graph

correspond to M = 0.1, 0.95, 5, respectively. The blue and red curve correspond to the result

from the exact analysis and perturbation theory, respectively. They coincide almost completely for

M = 0.1. The dotted black one for M = 5 corresponds to the thermal local quench given by (4.11).

We set R = α = 4GN = 1 and l = 5.

4.1.4 Thermal Local Quenches

In the previous analysis for M > R2, we obtained SA by replacing a black hole with a star in order

to have a gravity dual of a pure state, which is usually assumed in the study of quantum quenches.

If we deal with a falling black hole instead of a massive star, we will obtain SA as follows

SA = min

{

SA(θ∞), SA(π − θ∞) +
π
√
M −R2

2GN

}

, (4.11)

where min{a, b} denotes the smaller one among a and b. The term π
√
M−R2

2GN
corresponds to a half

of black hole entropy and arises because γA wraps a half of horizon. The topological condition of

γA of HEE requires that the subsystem A should be homologous to γA. Therefore in the presence

of the black hole horizon, we cannot simply change the geodesic from the one passing through θ = 0

to the one passing through θ = π. If we want to deform γA in this way, we need also to wrap γA

on the horizon as its disconnected part. We plotted SA for this thermal local quench in the third

graph of Fig.8.

4.2 General Formulation

Now let us extend the previous analysis to more general setups where the subsystem A is given

by an arbitrary interval l(1) ≤ x ≤ l(2) at the time t. The surface γA is defined by the geodesic

curve whose two end points are given by (x, t, z) = (l(i), t, z∞) (i = 1, 2) in the Poincare AdS3 and
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equally by (τ, θ, r) = (τ
(i)
∞ , θ

(i)
∞ , r

(i)
∞ ) in the global AdS. Note that their relations are given by:

tan τ (i)∞ =
2Rt

R2eβ + e−β((l(i))2 − t2)
,

tan θ(i)∞ = − 2Rl(i)

e−β((l(i))2 − t2)−R2eβ
,

r(i)∞ =
1

z∞

√

R2(l(i))2 +
1

4

(

e−β((l(i))2 − t2)−R2eβ
)2
. (4.12)

Then the HEE reads

SA =
R

4GN

2
∑

i=1

[

∫ r
(i)
∞

r∗

dr
Br

√

A2r2 + (B2r2 − 1)(r2 +R2 −M)

]

. (4.13)

By integrating (4.4) we find

|τ (2)∞ − τ (1)∞ | = R√
R2 −M





π

2
+ arcsin





B2(M −R2) +A2 − 1
√

(B2(R2 −M) +A2 − 1)2 + 4B2(R2 −M)







 ,

|θ(2)∞ − θ(1)∞ | = R√
R2 −M





π

2
+ arcsin





B2(R2 −M) +A2 − 1
√

(B2(R2 −M) +A2 − 1)2 + 4B2(R2 −M)







 .

(4.14)

If we assume 0 < |θ(2)∞ − θ
(1)
∞ | < π, the HEE is computed as follows:

SA =
R

4GN



log(r(1)∞ · r(2)∞ ) + log





4B2

√

(B2(R2 −M) +A2 − 1)2 + 4B2(R2 −M)







 ,

=
R

4GN









log(r(1)∞ · r(2)∞ ) + log

2 cos

[√
R2−M |τ (2)∞ −τ

(1)
∞ |

R

]

− 2 cos

[√
R2−M |θ(2)∞ −θ

(1)
∞ |

R

]

R2 −M









.(4.15)

In the case ∆θ∞ = |θ(2)∞ − θ
(1)
∞ | > π, we need to replace ∆θ∞ → 2π−∆θ∞ as we did in the previous

subsection.

So far we assumed M < R2. If M > R2, then the solution (2.13) is a BTZ black hole without

any deficit angle. However, our analytical calculation done before still holds via the analytical

continuation as in the previous case.

4.3 An Interval with An Excited End Point

Especially, let us focus on the case (l(1), l(2)) = (0, l). In this case, one of the end points of A i.e.

x = 0 is excited by the local quench. The result is plotted in Fig.9. It is easy to see that ∆SA is
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Figure 9: The exact plot of ∆SA as a function of t for (l(1), l(2)) = (0, 5). The left, middle and right

graph correspond to M = 0.01, 5, 500, respectively. We set R = α = 4GN = 1.

non-trivial during −l . t . l, as expected from the causality argument. This qualitatively agrees

with the CFT result in [8]. As M gets larger, the HEE looks like a step function.

In the late time limit t → ∞, SA approaches to the result of the ground state

SA(t = ∞) =
c

3
log

l

z∞
. (4.16)

On the other hand, at the time t = 0, we find the following result for l >> α

SA(t = 0) = SA(t = ∞) +
c

6
log

(

R2

R2 −M
· sin2

(

π
√
R2 −M

2R

))

. (4.17)

Notice that we always have SA(t = 0) ≥ SA(t = ∞).

4.3.1 Semi Infinite Limit l → ∞

It is useful to consider the limit l >> t >> α for (l(1), l(2)) = (0, l). We find

τ (1)∞ ≃ π − 2α

t
, τ (2)∞ ≃ 2tα

l2
,

θ(1)∞ = 0, θ(2)∞ ≃ π − 2α

l
,

r(1)∞ ≃ Rt2

2αz∞
, r(2)∞ ≃ Rl2

2αz∞
. (4.18)

Finally the HEE is found to be

SA ≃ c

3
log

Rtl

2αz∞
+

c

6
log

[

4

R2 −M
· sin

(√
R2 −M

R
(π − α/t)

)

· sin
(

α
√
R2 −M

Rt

)]

≃ c

3
log

l

z∞
+

c

6
log

t

α
+

c

6
log

(

R√
R2 −M

sin

(

π
√
R2 −M

R

))

. (4.19)

In this way, we obtain the behavior

SAdS
A ∼ c

6
log

t

α
+

c

3
log

l

z∞
, (4.20)
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Figure 10: The approximation of ∆SA by the function log t+const. for (l(1), l(2)) = (0, 1000). The

thick black curve is the plot of the exact result, while the dashed one is its approximation by

log t + 0.1. We choose M = 0.5 and set R = α = 4GN = 1. They nicely agree with each other

when α << t << l.

for the time evolution. Refer to Fig.10 for the numerical confirmation.

On the other hand, the local quench induced by joining two half lines leads to the following

behavior [8]

Sjoint
A ∼ c

3
log

t

z∞
+

c

6
log

l

ǫ
, (4.21)

where ǫ is the cutoff for the process of local quench introduced in [8] and is analogous to α in our

model.

Note that both have the common important property that SA increases logarithmically after

local quenches. This is a characteristic feature of local quenches in two dimension. To be more

precise, the coefficient of log t is different between (4.20) and (4.21). Indeed, it is known that this

coefficient depends on how we locally excite the system as found in the example analyzed in [7].

The difference of the coefficient in front of log l is easy to understands because in the case (4.20)

the system was already joined before the quench, while in the other case (4.21), the system was

originally disconnected. We will give a more detailed explanation of the two difference behaviors

(4.20) and (4.21) in section 6.2 using the tensor network description.

4.4 HEE for General Intervals

Now we would like to turn to the HEE SA for a subsystem A defined by a general interval (l(1), l(2)).

Equally we can think that A is parameterized by its width l and the position of its center ξ via

l(1) = ξ − l/2, l(2) = ξ + l/2. (4.22)

We can explicitly calculate SA(l, ξ, t) by using the formula (4.15). We plotted ∆SA as a function

of ξ for fixed values of l and t in Fig.11.

First, we notice that for a small l (the left graph of Fig.11), the initial peak at ξ = 0 divides

into two peaks under time evolution, keeping total sum of the heights conserved. This result looks
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Figure 11: The plot of ∆SA as a function of ξ. We set l = 0.1 (left), l = 3 (middle) and l = 10

(right). In each graph, the blue, red and black curve describes ∆SA(l, ξ, t) for t = 0, t = 5 and

t = 10, respectively. We choose M = 0.9 and set R = α = 4GN = 1.

very similar to the energy density Ttt in two dimensional CFTs (see the left graph in Fig.3), where

the energy conservation holds. Indeed, we can easily understand this coincidence from the first law

relation (3.13) in the small l limit, which can be rewritten as

∆SA(l, ξ, t) ≃
πl2

3
Ttt(ξ, t). (4.23)

Therefore we can conclude that in the small l limit, the integral

∫ ∞

−∞
dξ ∆SA(l, ξ, t), (4.24)

does not depend on the time t.

Moreover, for l > α, we find that ∆SA at t = 0 has a peak at |ξ| = l/2. In the gravity dual,

this is easy to understand because the geodesic γA comes very close to the massive particle as

explained in Fig.2. At a later time t > l/2, the hump propagates at the speed of light, conserving

its form. This occurs because γA is now far from the falling particle and its shock waves propagates

without changing its form. Therefore we expect that the integral (4.24) will approach to a constant

value at late time t > l/2. Indeed, we can confirm this numerically as shown in the Fig.12. This

behavior roughly tells us that the long range entanglement will be generated at late time, while the

short range one will be not. We will study more carefully such a dynamical structure of quantum

entanglement in the next section, which will provide clear explanations for all of the results in this

section.

5 Entanglement Density

In this section, we will introduce a new quantity which we call entanglement density. It can extract

an essential structure of quantum entanglement from SA in two dimensional quantum field theories.

We will apply this to our holographic local quenches in AdS3/CFT2.
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Figure 12: The numerical plot of 1
l2

∫

dξ∆SA(l, ξ, t) as a function of time t > 0. The blue, red

and black graph correspond to l = 1, 5, 10, respectively. In the small l limit, this quantity should

approach π
12 ≃ 0.262 as follows from (4.23). We choose M = 0.5 and set R = α = 4GN = 1.

5.1 Definition of Entanglement Density

Consider a general two dimensional field theory in a certain pure state and suppose that we can

calculate its entanglement entropy SA. The subsystem A is defined by the interval l(1) ≤ x ≤ l(2) (or

more simply [l(1), l(2)]), where x is the space coordinate of the field theory. Just for convenience,

we will treat l(1) and l(2) to be independent parameters for a while. We would like to ask how

to extract a structure of quantum entanglement explicitly from the entanglement entropy SA for

arbitrary intervals.

For this purpose, we take into account only the two body entanglement and define the entan-

glement density n(l, ξ, t) such that this counts the number of entangling pairs (or bits) between the

two points x = ξ − l/2(= l(1)) and x = ξ + l/2(= l(2)). Imagine that we discretize the field theory

into a lattice theory such as spin chains. In each point, we assume that there are several spins.

Then n(l, ξ, t) counts the number of entangled pairs of spins which are located at x = ξ − l/2 and

x = ξ + l/2. Therefore the parameter l describes the range of the entanglement and ξ does the

position of the center of the entangled pair.

Now we approximate SA by summing all entangling pair as follows (see Fig.13):

SA =

∫ l(2)

l(1)
dx

[∫ ∞

x−l(1)
dw n(w, x− w/2, t) +

∫ ∞

l(2)−x
dw n(w, x+ w/2, t)

]

. (5.1)

By taking a derivative with respect to l(2) with l(1) fixed, we obtain

∂SA

∂l(2)
=

∫ ∞

l(2)−l(1)
dw n

(

w, l(2) − w

2
, t
)

+

∫ ∞

0
dw n

(

w, l(2) +
w

2
, t
)

−
∫ l(2)

l(1)
dx n

(

l(2) − x,
x

2
+

l(2)

2
, t

)

. (5.2)

Finally by taking the derivative by l(1), we find

∂2SA

∂l(1)∂l(2)
=

1

4

∂2SA

∂ξ2
− ∂2SA

∂l2
= 2n

(

l(2) − l(1),
l(1) + l(2)

2
, t

)

= 2n(l, ξ, t). (5.3)
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Figure 13: A sketch of expression of SA as a sum of entanglement density. Hooks with the arrows

on both end points describe the entangling pairs between two points.

In this way, we can extract n(l, ξ, t) if we know SA as a function of l(1), l(2) and t.

For a ground state of a CFT2 with the central charge c, SA is given by (4.16) and thus the

entanglement density is found to be

nCFT (l, ξ, t) =
c

6l2
. (5.4)

Notice that the entanglement density is free from the UV divergences. Thus, when we talk about

a deformation of a CFT2 as in the present example, it is sometimes useful to normalize the entan-

glement density by multiplying l2.

5.2 Strong Subadditivity and Positivity of Entanglement Density

Consider a two dimensional field theory in a generically excited state. We introduce three subsys-

tems A1, A2 and A3 so that they are defined by the intervals [l1, l2], [l2, l3] and [l3, l4], respectively,

such that l1 < l2 < l3 < l4.

The strong subadditivity [33] (refer to [34] for its application to field theories and to [35] for its

holographic proof) is given by the inequality

SA1∪A2 + SA2∪A3 ≥ SA1∪A2∪A3 + SA2 . (5.5)

In our setup, this is equivalent to

S(l1, l3) + S(l2, l4) ≥ S(l2, l3) + S(l1, l4), (5.6)

where S(p, q) is the entanglement entropy SA for the interval [p, q].
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In particular, we can take the limit δ1,2 → +0 with l2 = l1 + δ1 and l4 = l3 + δ2. Then, the

strong subadditivity (5.5) is rewritten into

∂2S(p, q)

∂p∂q
≥ 0. (5.7)

This proves that the entanglement entropy n(l, ξ, t) in (5.3) is positive.

5.3 Conservation Law

It is useful to study how the total integration of the entanglement density behaves. To make the

analysis simple, we assume that the x coordinate can be compactified on a circle with the length L.

The infinitely extended system we are mainly studying in this paper can be obtained in the limit

L → ∞. Since we have the obvious relation n(l, ξ, t) = n(L − l, L − ξ, t) due to the periodicity,

we can restrict the integration of l to 0 ≤ l ≤ L/2. We will focus on the increased amount of

entanglement entropy and entanglement density compared with the ground state, denoted by ∆SA

and ∆n, respectively.

Thus we find

∫ L

0
dξ

∫ L/2

0
dl ∆n(l, ξ, t) =

∫ L

0
dl(1)

∫ l(1)+L/2

l(1)
dl(2) ∆n(l, ξ, t)

=
1

2

∫ L

0
dl(1)

∫ l(1)+L/2

l(1)
dl(2)

∂2∆SA

∂l(1)∂l(2)

=
1

2

∫ L

0
dl(1)

[

∂

∂x
∆SA(x, l

(1) + L/2)
∣

∣

∣

x=l(1)
− ∂

∂x
∆SA(x, l

(1))
∣

∣

∣

x=l(1)

]

. (5.8)

We can show that the first term in the third line of (5.8) vanishes. This is because by employing

the identity SA = SB for pure states and the periodicity of the circle, we can easily show

∫ L

0
dy [∆SA(y + δ/2, y + L/2)−∆SA(y − δ/2, y + L/2)] = 0, (5.9)

for any δ. Moreover, the other term in the third line of (5.8) vanishes because the first law (4.23)

tells us

∆SA(y + δ/2, y) −∆SA(y − δ/2, y) ≃ π

3
Ttt · δ2, (5.10)

in the δ → 0 limit. Remember that our first law assumes that there is a UV fixed point in the field

theory we consider.

In this way, we proved that the total integration of entanglement density is constant. In other

words, the total number of entangled pairs is conserved:

∫ L

0
dξ

∫ L/2

0
dl ∆n(l, ξ, t) = 0. (5.11)
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In general, the negative contribution comes from the UV region where l is very small. Indeed,

by using the first law (4.23), we can generally show the following result in the limit l → 0:

lim
l→0

∆n(l, ξ, t) = −π

3
Ttt(ξ, t). (5.12)

5.4 Entanglement Density for Global Quenches

To understand better the meaning of entanglement density, we would like to consider the global

quenches in two dimensional CFTs with central charge c before we examine the local quenches. As

shown in [6], the increased amount of entanglement entropy for the subsystem with the width l

behaves like

∆SA = c ·∆m · t (ǫ < t ≤ l/2), ∆SA =
c

2
·∆m · l (t ≥ l/2), (5.13)

where ∆m is the energy gap which creates the global quench times a numerical constant and is

proportional to the effective temperature at late time; ǫ is cut off scale5 of the quench process,

which is of order δm−1.

In this case, the entanglement density (5.3) reads

∆n(l, ξ, t) =
c ·∆m

4
· δ(t − l/2) + ∆n(l, ξ, t)UV , (5.14)

where the last term denotes the UV contribution which is non-trivial only for l of order ǫ ∼ ∆m−1

or smaller. This UV term is negative such that the conservation law (5.11) holds. The delta

functional term in (5.14) shows that the entangled pairs have the range 2t at time t. We sketched

this behavior in Fig.14. This behavior can be understood that the entangled pair moves in the

opposite way at the speed of light, being consistent with the interpretation in [6].

In this way, for the excited states produced by quantum quenches, ∆n(l, ξ, t) tends to positive

for large l, while it becomes negative for small l due to the conservation law and the first law as in

(5.12). Therefore we learn that an excitation of a quantum system corresponds to breaking shorter

range entanglement and creating longer range entanglement.

5.5 Entanglement Density for Holographic Local Quenches

Now let us come back to the analysis of holographic local quenches. We consider the difference from

the ground state and would like to calculate ∆n(l, ξ, t) from ∆SA(l, ξ, t) by using the formula (5.3).

The results are plotted in Fig.15. We can confirm that the total (properly normalized) density

l2n(l, ξ, t) = 1 + l2∆n(l, ξ, t) is always positive as expected (we set c = 6 in the plot).

5 More precisely this is the length scale beyond which we can approximate the excited state by the boundary

state, which preserves the boundary conformal invariance. See [14] for more details.
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Figure 14: A sketch of the entanglement density as a function of l under a global quench.

First notice that the positive peaks in Fig.15 are all delta-functional. This is because our

gravity backgrounds, where we calculated the HEE, are singular due the presence of the deficit

angle, corresponding to the point particle limit. This delta-functional peak appears at

ξ = ±
√

l2/4− t2 − α2, (5.15)

which is when the massive particle is on top of γA (see Fig.2). However, it is easy to imagine a

regularization by replacing the point particle with a finite size object, which will replace a delta-

functional peak with a smooth peaks with a finite width (called η).

Employing this regularization,6 the entanglement density n(l, ξ, t) = n(l(2)−l(1), (l(2)+l(1))/2, t)

is plotted as a function of l(1) and l(2) in Fig.16 for t = 0 and t = 2. It is clear from this graph

that the peaks exist along the curve (5.15) or equally l(1) · l(2) = −α2 − t2 as expected from the

condition that the massive particle passes through γA. Moreover, ∆n takes the largest value when

l(2) = −l(1) =
√
α2 + t2.

These behaviors can be systematically understood by considering the time-evolution of each

entangled pair7. At time t, the pair of the points x = ξ−
√

ξ2 + α2 + t2 and x = ξ+
√

ξ2 + α2 + t2

are entangled for any values of ξ. Especially the pair at ξ = 0 (i.e. the one between x = −
√
α2 + t2

and x =
√
α2 + t2) possesses the strongest entanglement, which we call the dominant entangled

pair. More generally the entanglement is enough strong for the entangled pairs with |ξ| . α.

Therefore they follow the time evolutions in an obvious way, as sketched in Fig.17. At earlier time

6More explicitly, we replaced the derivative ∂2SA

∂l(1)∂l(2)
with the second order difference SA(l

(1) + η/2, l(2) + η) −

SA(l
(1) − η/2, l(2) + η)− SA(l

(1) + η/2, l(2) − η) + SA(l
(1) − η/2, l(2) − η).

7Another holographic realization of entangled pairs refer to [36] based on the AdS/BCFT proposal [37].
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t << ξ the pair moves slowly. At late time t >> ξ, they move at the speed of light in the opposite

direction. This time evolution is also sketched with the energy density in Fig.4.

We can explain the qualitative behaviors of HEE calculated in the previous section by referring

to this structure of quantum entanglement in our holographic local quenches, based on the entangled

pairs. For example, let us explain the result described in Fig.12. First assume t < l/2. Then if

we sweep a length l interval A by shifting its center ξ, SA cannot detect the entanglement pairs

generated by the local quench when t− l/2 ≤ ξ ≤ −t+ l/2 because the dominant entangled pair is

completely included in A for these values of ξ. This missing contribution is proportional to l/2− t

and therefore SA increases linearly until t = l/2. At late time t > l/2, for any ξ, the interval

A always include only one of the pair and therefore it fully contributes to SA. Thus the integral
∫

dξ∆SA no longer depends on the time t. These explain the behavior found in Fig.12.

One may think that any long range entanglement should not exist at t = 0 because the massive

particle is situated at deep UV region z = α. However, this speculation is based on a too naive

UV/IR relation of AdS/CFT. Indeed, if we consider a two point function 〈O(x)O(y)〉 for a certain

operator with a large conformal dimension, then we can evaluate this from the geodesic distance

in AdS. The same geodesic distance appears in the calculation of HEE and therefore we find that

a non-trivial result for two point functions can obtained when x = 0, where the geodesic γA passes

very close to the massive particle as in right picture of Fig.2. Thus this consideration of two point

functions also support the long range entanglement even at t = 0. Another way to see this is to

note that the energy density Ttt computed in (2.24) decays only slowly as x−4 in the long distance

limit x → ∞ for any non-zero α.

In this way, we learned that the long range entanglement is non-trivial even at t = 0 in our holo-

graphic model. In ideal models of local quenches we may not expect any long range entanglement

just after the quench. However this is not a major problem because as we mentioned the dominant

entangled pair is the one between x = −
√
α2 + t2 and x =

√
α2 + t2, which is short range (∼ α) at

t = 0.

In summary, we can understand the time evolutions of entanglement entropy SA in terms

of those of entanglement density n. In our holographic local quench, the dynamical behavior

of n is described by the evolution of the entangled pairs as in Fig.17. At late time, the range

of entanglement increases at the speed of light. As the time evolves, short range entanglement

disappears and long range one is generated so that the total number of entangled pairs is conserved

as in (5.11). This process looks a sort of the decoherence phenomena.
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Figure 15: The numerical plots of l2∆n(l, ξ, t) as a function of the center position ξ at t = 0

(left graph) and t = 2 (right graph). The blue, red and black graph correspond to l = 1, 2, 10,

respectively. We choose M = 0.5 and set R = α = 4GN = 1. Notice the relation l2n(l, ξ, t) =

1 + l2∆n(l, ξ, t)

Figure 16: The numerical plots of ∆n(l, ξ, t) as a function of l(1) = ξ− l/2 < 0 (horizontal axis) and

l(2) = ξ + l/2 > 0 (inward axis). We choose the regularization parameter as η = 0.4. The left and

right plot corresponds to t = 0 and t = 2, respectively. We only plot those points where ∆n(l, ξ, t)

is positive. We choose M = 0.5 and set R = α = 4GN = 1.

6 Quantum Information, Thermodynamics and Gravity

In this section we employ the results found in the previous sections to develop some insights on

connections between the quantum information and gravity via the AdS/CFT correspondence.

6.1 Total Amount of Quantum Information

In the CFT side, the entanglement entropy SA is interpreted as the entropy for an observer in A,

assuming that the observer is not accessible to the region B. In order words this measures the

amount of quantum information inside B for such an observer. Therefore ∆SA can be regarded as

the amount of quantum information in B which is induced by the local quench, such as the data

of excited particles etc.

Notice that the standard thermal entropy for a mixed state, which is dual to a black hole entropy

via AdS/CFT, corresponds to the information which is not accessible to the observer by any means
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Figure 17: A sketch of time evolution of entangling pairs. The blue thick curve describes the

dominant entangled pair ξ = 0. Around this, other entangled pairs are gathered with the width of

order α.

(except for making microscopic observations of its heat bath). On the other hand, the entanglement

entropy SA measures the amount of information which is possessed by B and is accessible to the

observe in A after all possible experiments are done.

Therefore, the holographic entanglement entropy allows us to calculate such a novel quantity,

i.e. the amount of information ∆SA, for any massive object in AdS, which is dual to a certain

excited state in the CFT. Apply this idea to our falling particle in AdS. The standard principle in

AdS/CFT tells us that the size l of the localized excitations induced by the local quench is estimated

as l ∼
√
t2 + α2, which is the value of the coordinate z of the falling particle. Therefore it is natural

that we choose the subsystem A (or equally8 B) to be the ball with the radius
√
t2 + α2. Indeed,

we can see from our perturbative results (3.7) and (3.11) that ∆SA takes the maximal value when

l =
√
t2 + α2 as a function of l and takes a time-independent constant value. Therefore we call it

∆Smax. This is evaluated as the following simple form for any dimension d:

∆Smax = Cs ·mR = Cs ·∆, (6.1)

where Cs is an order one constant. Explicitly, in each dimension d, we find Cs = 2 (d = 2),

Cs = π/2 (d = 3) and CS = 4 (d = 4). We used the well-known relation between the mass m of a

particle and the conformal dimension ∆ of its dual operator [10] assuming ∆ >> 1. For example,

8Notice that since we are considering a pure state we always have SA = SB and therefore the distinction between

A and B is not important.
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in the AdS3 case the exact calculation (4.8) leads to at l =
√
t2 + α2:

∆Smax =
c

3
log

(

R√
R2 −M

sin

(

π
√
R2 −M

2R

))

. (6.2)

This shows that ∆Smax is a constant which is independent from l. Assuming the range 1 << ∆ <<

c we find9

∆Smax ≃ 2∆. (6.3)

In this way we find the number of miscrostates of the massive particle is estimated as follows

in any d:

# Microstates ∼ e∆Smax

= eCs·∆. (6.4)

This is qualitatively consistent with the well-known Hagedron growth of degeneracy of the states

with a large conformal dimension ∆ >> 1 [25, 38]. Remember that this relation (6.4) holds only

when the backreaction of the massive particle is small. For example, this requires ∆ << c in d = 2

as can be seen from (6.2).

If we remember that the energy E of localized excitations made of radiations in the CFT is

given by (2.5), then we find the simple relation between the amount of information of this excited

lump and its the total energy:

∆Smax ∼ E · α. (6.5)

Remember that α denotes the size of the lump at the initial time t = 0. This provides us a

prediction that in the large N strong coupled gauge theories, the amount of information possessed

by such a radiation ‘fire ball’ is given by its energy E times its linear size α. It would be very

intriguing future problem to extend this estimation to other objects like the fundamental strings

or D-branes in AdS/CFT in order to see how much the relation (6.5) is universal.

Finally, we would also like to comment on a possible interpretation of ∆Smax from the gravity

side. Since the Unruh temperature of the falling massive particle reads TU = 1
2πα at t = 0, we can

rewrite this relation (6.5) into

TU ·∆Smax ∼ E, (6.6)

which looks like the thermodynamical first law. We can speculate that this is the thermodynam-

ical relation which is understood as that for a Rindler observer, whose acceleration is α−1. This

interpretation makes sense near t = 0 where the energy from the viewpoint of the Rindler observer

coincides with E.

9If we assume a very large dim. operator ∆ >> c in the local thermal quench, then it is dual to a BTZ black

hole. In this case we find from (6.2) ∆Smax ≃ π
√

M
4GN

= π
3

√
3c∆. This is a half of the black hole entropy and agrees

with the Cardy formula.
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6.2 Entanglement Renormalization and Origin of Gravitational Force

A helpful framework to study the connection between quantum entanglement of a given quantum

many-body system and its holographic geometry is the entanglement renormalization (or called

multi-scale entanglement renormalization ansatz, MERA) [39]. Indeed, it has been conjectured

in [40] that the geometry described by a tensor network of a quantum critical system in MERA

describes the AdS spacetime dual to this critical point. In [41], this correspondence has been

studied in the continuum limit (i.e. field theory limit), called cMERA [42] and a candidate of

holographic metric in terms of purely field theoretic data has been proposed. Refer also to [43] for

recent developments in this subject.

Motivated by this it is intriguing to see how we can describe the time evolution of local quenches

from the viewpoint of the entanglement renormalization. A general framework to describe a quan-

tum state graphically is called tensor networks (see e.g. reviews [44]) and has been recently used

to prepare a candidate of approximate ground states based on the variational principle, optimized

by a number of parameters.

The tensor network for a CFT is called MERA and the network for its ground state is described

in Fig.18. It describes the coarse-graining procedure of a given quantum system such as spin chains

as we goes from the bottom (UV) to the top (IR), by combining two sites (or spins) into one, which

looks like a tree in Fig.18. To realize the entanglement structure of CFTs, we need to add so called

disentanglers which are unitary transformations between two spins and which are written as the

horizontal ladders in Fig.18.

Let us define the number of disentanglers such that each of them carries the entanglement

entropy log 2. Then we find that the number of disentanglers in each bond of the MERA network

is given by c
6 . Indeed, this reproduces the correct entanglement entropy for ground states in CFTs

given by the well-known formula (4.10) as explained in Fig.18. Notice that we can estimate the

entanglement entropy from the MERA diagram by encircling the subsystem A and counting the

number of intersecting bonds (disentanglers). Though there are many choices of encircling curve,

we can optimize the result by choosing the one with minimal number of intersecting bonds. This

minimizing procedure nicely matches with the HEE formula (3.1) as pointed out in [40].

By comparing this estimation of the entanglement entropy in CFTs with (5.4), we can speculate

that the number of disentanglers in a bond is roughly approximated by l2 ·n(l, ξ, t) in more general

tensor networks which do not correspond to ground states of CFTs. Here the averaging symbol

means an average like ∼ 1
l2

∫ l
0 dl

∫ ξ+l/2
ξ−l/2 dξ. The conservation law (5.11) tells us that the total number

of disentangles is also conserved. Moreover, we can roughly speculate the relation between the

entanglement density and the holographic metric in the extra direction z:
√

gzz(z, x, t) ∝ l ·n(l, ξ, t)
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Figure 18: The tensor network of MERA for a ground state of a CFT. The coarse-graining procedure

is done from the bottom (UV) to the top (IR). The horizontal ladders represent the disentanglers,

while the tree structure does the coarse-graining procedure, combining two sites into one. We also

show the estimation of entanglement entropy when the subsystem A is an interval with length l by

counting the number of bonds.

with the identification l = z and ξ = x. It will be an interesting future problem to work out these

relations more precisely.

Now we would like to consider how to describe local quenches by using tensor networks. We

consider both our holographic local quench and the original local quench in [8]. We argue that

they are described by the left and right pictures of Fig.19, respectively. In our model, there are

disentanglers even in IR regions because we start with the ground state of a CFT on an infinite line.

On the other hand, in the local quench induced by the joining two semi-infinite lines, there should

be no entanglement between the two in the IR region. As in (4.10) and (4.16), we can confirm

that the behavior of SA when t >> l is the same as that for the ground state. Thus the MERA

structures in the UV region are also the same as that for the ground state in both cases. Finally,

the massive falling particle corresponds to the insertion of many disentanglers. This description is

consistent with the behaviors (4.20) and (4.21) at late time.

Finally we would like to ask what is the holographic origin of gravitational force. As we have

seen, the propagation of entangled pairs is dual to the falling particle in AdS. This tells us that the

evolution of the range of entanglement is dual to the gravitational force in AdS space. Therefore

we can argue that the gravitational force is dual to a kind of decoherence which breaks the short

range entanglement and tries to expand the range of entanglement. In MERA, this is described by

the motion of the dense lump of disentanglers toward upper direction as depicted in Fig.19.
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Figure 19: The tensor networks of MERA after local quenches in a CFT. The left picture corre-

sponds to the local quench triggered by joining two CFTs on semi-infinite lines. The right one

describes our holographic local quench induced by local excitations in the CFT.

7 Conclusions and Discussions

In the first half of this paper, we proposed a holographic model of local quench and study its property

especially focusing on the time evolution of entanglement entropy. In our model, the local quench

is simply described by a free falling massive particle in an AdS space. We performed a perturbative

analysis of its back-reacted geometry and computed the holographic entanglement entropy (HEE)

in any dimension as well as the holographic energy stress tensor. Moreover, we presented exact

calculations of HEE for local quenches in two dimensions. We leave exact calculations in higher

dimensional cases for a future problem. Since in our model we considered a massive particle without

any charge, it will be another interesting future problem to extend our results to charged massive

particles.

In most of earlier works on local quenches, local excitations are generated by joining two semi-

infinite lines (or spin chains). On the other hands, our holographic model corresponds to the setup

where local excitations are induced in a CFT on an infinite line and does not involve any joining

procedure. Therefore we found that details of the time-evolution of entanglement entropy are

quantitatively different between them, while we find that the qualitative behavior agrees with each

other. For example, the logarithmic time evolution ∼ log t is common to both of them for a large

subsystem. However, its coefficients differ by the factor two between them and we give an simple

explanation from the viewpoint of entanglement renormalization. This is because there exists long

range entanglement even just after the quench. Even though we were able to reproduce the basic

properties of local quenches in our model, it is an intriguing future problem to construct a clean

gravity dual without any long range entanglement.

34



In order to study the time evolution of quantum entanglement more clearly, we introduced a

new quantity called the entanglement density for two dimensional field theories. This measures

the density of entangled pairs between given two points. We showed that the strong subadditivity

guarantees that this quantity is positive as should be so if we want to understand it as a physical

density. Moreover, we found a simple relation between the entanglement density and the energy

density in the small subsystem limit.

It will be interesting to generalize this quantity so that we can incorporate the effect of three-

body or higher entanglement. At least it is already clear that N -body entanglement is related to a

N -th derivative of the entanglement entropy for a suitable subsystem. At the same time, it will be

an important problem to extend the entanglement density into higher dimensional counterparts and

study various holographic models. A special example of higher dimensional entanglement density

is obtained by replacing the interval subsystems with strip ones.

In the final part of this paper, we calculated the amount of quantum information carried by

a massive object (localized excitations) in the dual CFT. We find a rather simple rule that this

amount of information is given by the energy E of the object times it linear size α. This is expected

to be a prediction which is true for large N strongly coupled gauge theories. It will very intriguing

to see how this behavior is universal in more general cases.
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A Perturbative Construction of Gravity Duals

In this appendix, we will show a calculation of the back-reaction for a falling massive particle in

AdS4 by solving (2.7) and (2.8) directly.
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A.1 Perturbation Theory

We focus on d = 3 i.e. the AdS4 case and define x = x1 and y = x2. We will set R = 1 just for

simplicity. We perform the Fourier transformation with respect to x, y and t. Using the symmetry

x → −x and y → −y, we can write down the following ansatz of the perturbed metric:

δgtt = h(z)ei(kx ·x+ky·y−ωt), δgtx =
kx
ω

· w(z)ei(kx ·x+ky·y−ωt), δgty =
ky
ω

· w(z)ei(kx ·x+ky·y−ωt),

δgxx =
(

k2xf(z) + g(z)
)

ei(kx·x+ky·y−ωt), δgxy = kxkyf(z)e
i(kx·x+ky·y−ωt),

δgyy =
(

k2yf(z) + g(z)
)

ei(kx·x+ky·y−ωt). (A.1)

The energy stress tensor for the falling particle described by z(t) =
√
t2 + α2 after the Fourier

transformation

T µν(kx, ky, ω, z) =
1

(2π)3

∫

dxdydt e−i(kx·x+ky·y−ωt) · T µν(x, y, t, z). (A.2)

is given by

T zz = 2m̂ · z
5
√
z2 − α2

α
· cos(ω

√

z2 − α2),

T zt = 2im̂ · z
6

α
· sin(ω

√

z2 − α2),

T tt = 2m̂ · z7

α
√
z2 − α2

· cos(ω
√

z2 − α2),

(A.3)

and other components are vanishing. We employed the identity

δ(z −
√

t2 + α2) =
z√

z2 − α2

(

δ(t−
√

z2 − α2) + δ(t+
√

z2 − α2)
)

, (A.4)

where we assumed z ≥ 0. We also defined ‘normalized mass’

m̂ ≡ 8πGNm

(2π)3
. (A.5)

It is straightforward to check that they satisfy the conservation law ∇µT
µν = 0.

A.2 General Solutions to Einstein Equation

By evaluating the left-hand side of (2.7), in the end we find that all the solutions can be constructed

as follows: First we define u(z) such that

w(z) = A(1− ω) +
ω2

2
u(z)− u′(z)

z
+

u′′(z)
2

,

f(z) = −A

ω
− u(z)

2
− u′(z)

zω2
+

u′′(z)
2ω2

,

g(z) =
u′(z)
z

+
4u′(z)
z3ω2

− u′′(z)
2

− 4u′′(z)
z2ω2

+
2u(3)(z)

zω2
− u(4)(z)

2ω2
,

h(z) = Aω − ω2

2
u(z) +

2u′(z)
z

+
4u′(z)
ω2z3

− u′′(z) − 4u′′(z)
ω2z2

+
2u(3)

zω2
− u(4)

2ω2
. (A.6)
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Moreover, we define y(z) by

y(z) =
u′(z)
z

. (A.7)

Then we can show that (A.6) is a solution to (2.7) if the following equation is satisfied

y(3)(z)− (k2x + k2y − ω2)y′(z)− 4m̂

ω

[

sin
(

ω
√

z2 − α2
)

− ω
√

z2 − α2 cos
(

ω
√

z2 − α2
)]

= 0. (A.8)

It is clear that there are five integration constants. They are dual to the background metric

perturbation (four parameters) and the boundary energy stress tensor (one parameter).

A.3 Special Solutions: α → 0

We can solve (A.8) in the particular case α → 0 where z(t) ≃ |t|. We impose the boundary

conditions such that there are no non-normalize deformations (i.e. the background metric is not

perturbed) and that the metric perturbation does not blow up in the IR limit z → ∞. This uniquely

fixed the form of u(z) as follows

u(z) = − 4m̂

αω4(k2x + k2y − ω2)2

(

4k2x + 4k2y − 6ω2 + z2ω2(k2x + k2y − ω2)

+
(k2x + k2y − ω2)2

(k2x + k2y)
2

((

−4k2x − 4k2y − 2ω2 + (k2x + k2y)z
2ω2
)

cos(zω)− 2zω(2k2x + 2k2y + ω2) sin(zω)
)

+
1

(k2x + k2y)
2
· 2e−z

√
k2x+k2y−ω2

ω6
(

1 + z
√

k2x + k2y − ω2
)

)

. (A.9)

We also have the condition A = 0. These completely fix f(z), g(z), h(z) and w(z).

Near the AdS boundary z → 0 they behave

w(z) ≃ − 4m̂ω2

3α(k2x + k2y)
√

k2x + k2y − ω2
· z3,

f(z) ≃ −
4m̂(k2x + k2y − 2ω2)

3α(k2x + k2y)
2
√

k2x + k2y − ω2
· z3,

g(z) ≃
4m̂(k2x + k2y − ω2)

3α(k2x + k2y)
√

k2x + k2y − ω2
· z3,

h(z) ≃ 4m̂

3
√

k2x + k2y − ω2
· z3. (A.10)
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We can read off the tensor tab defined by (2.17) as follows:

ttt =
4m̂

3α
√

k2x + k2y − ω2
,

ttx = − 4m̂kxω

3α(k2x + k2y)
√

k2x + k2y − ω2
,

tty = − 4m̂kyω

3α(k2x + k2y)
√

k2x + k2y − ω2
,

txx =
4m̂(k4y + k2xk

2
y − k2yω

2 + ω2k2x)

3α(k2x + k2y)
2
√

k2x + k2y − ω2
,

txy = −
4m̂kxky(k

2
x + k2y − 2ω2)

3α(k2x + k2y)
2
√

k2x + k2y − ω2
,

tyy =
4m̂(k4x + k2xk

2
y − k2xω

2 + ω2k2y)

3α(k2x + k2y)
2
√

k2x + k2y − ω2
. (A.11)

The physical holographic stress tensor Tab is calculated from (2.17) via the formula (2.18). In

the end we will find that (A.11) reproduces the result (2.20) at α = 0. For example, if we take the

α → 0 limit of (2.20), we can show

Ttt(t, ρ) →
M

2πGNRα
δ(ρ2 − t2), (A.12)

by using

lim
α→0

α4

(x2 + α2r2)
5
2

=
4

3r4
δ(x). (A.13)

By performing the Fourier transformation, we find

Ttt(ω, kx, ky) →
M

8π3GNRα
(k2x + k2y − ω2)−1/2. (A.14)

This precisely agrees with (A.11).
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