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1 Introduction

Of late, studies on quantum information theoretic properties of a strongly coupled QFT
using tools from AdS/CFT correspondence [1–3] have received widespread attention. A
pioneering work in this course was the holographic formula for computing entanglement
entropy [4, 5] and its covariant generalization [6]. The holographic entanglement entropy
(HEE) formula inspired the idea that emergence of space-time in the gravity picture is
somehow related to the quantum entanglement degrees of freedom in the dual field the-
ory [7]. An important observation coming out from the holographic calculations is that
there exists a relationship between entanglement entropy of an excited state and the cor-
responding changes in energy and other macroscopic variables that is reminiscent of the
first law of thermodynamics

TE∆SE = ∆E − d− 1
d+ 1V∆P , (1.1)

where the entanglement temperature, TE is known to obey a universal behaviour inversely
proportional to the size of the entangling region. The first law of entanglement ther-
modynamics was initially established by considering very small excitation over the dual
space-time geometry (e.g. pure AdS) [8–10] and also from a CFT point of view [11]. In
fact, in the later work it was argued that any conserved charge associated with the ex-
citation could appear in the law with its conjugate entanglement chemical potential, µE .
Over the years, extensive studies have been made on multiple aspects of the first law of
entanglement thermodynamics [12–20]. The first law like relationship also plays a cen-
tral role in reconstructing Einstein’s equations for the dual geometry from boundary CFT
data [21–24].

– 1 –



J
H
E
P
0
4
(
2
0
2
1
)
0
6
5

In most of the works on the first law of entanglement so far, the bulk excitation is
considered only at leading order and there is no general consensus on its validity beyond
the leading order. We extend upon the work of [15], where second order corrections to
holographic entanglement entropy for a strip sub-system on the boundary of a boosted
AdS black hole were studied. This gravity solution is dual to a finite temperature CFT
with uniform boost in one of the spatial directions. It was shown in [15] that the first
law of entanglement could incorporate the second order contributions, provided certain
constituents of the law were appropriately modified. In this article we go one step further
and find explicit expressions for third order perturbative corrections to the HEE in the
same setup. We then try to include these new contributions to the first law by making
required redefinition of our entanglement temperature (TE) and chemical potential (µE).
While doing so, we consider first order variation of all variables instead of their relative
change over the ground state, as is common in bulk of the literature. Our work is motivated
by the idea that the first law of entanglement is in fact, an exact relationship not limited
to first order fluctuations. Indeed, in the large subsystem limit, the EE is proportional
to the thermal entropy [5] and the entanglement temperature should also, then, have a
flow towards the Hawking temperature of the black hole. This is not, however, eminent
if we restrict the law (1.1) at leading order. Similar line of thought was also advocated
in [25, 26]. In addition, a system with boost allows us to explicitly check the influence of
the Kaluza-Klein momentum on the first law of entanglement and draw a parallel with the
law of thermodynamics where it is known to contribute [27].

The rest of the paper is organized as follows: in section 2 we introduce the bulk
geometry and write down the area functional for HEE, in section 3 we consider the narrow
strip limit to compute the integrals perturbatively up to third order. A modified first law
involving third order corrections is put forward in section 4. In section 5 we discuss the
HEE of AdS plane wave geometry by taking a special double limit of the results obtained.
In section 6 we extend our calculations to any generic non-conformal Dp-brane geometry
using some simple substitution and argue for a first law in this case as well. Finally, we
conclude in section 7 with a brief discussion.

2 Minimal area functional for boosted AdS black hole

For static space-time the HEE can be calculated using the Ryu-Takayanagi formula [4, 5],
which asserts that the entanglement entropy associated with a region A with boundary ∂A
on the asymptotic boundary of the (d+ 1)-dimensional space-time is dual to the area of a
minimal co-dimension 2 surface γA in the bulk such that ∂γA = ∂A

SA = Area(γA)
4GN

, (2.1)

where GN is the Newton’s constant in (d+ 1)-dimensions. The space-time of our interest
is a boosted AdS black hole described by the line element

ds2 = R2

z2

(
−f (z) dt2

K (z) +K (z) (dy − ω)2 + dx2
1 + · · ·+ dx2

d−2 + dz2

f (z)

)
, (2.2)
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with
f (z) = 1− zd

zdh
, K (z) = 1 + β2γ2 z

d

zdh
, (2.3)

where zh denotes the event horizon of the black hole and 0 ≤ β ≤ 1 is the boost parameter,
while γ = 1√

1−β2
. R sets the overall curvature of the space-time. The boost is taken in

y-direction and the same is compactified on a circle of radius ry. The Kaluza-Klein form

ω = β−1
(

1 + 1
K

)
dt . (2.4)

We are interested in the entanglement entropy of a subsystem A : x1 ∈
[
− `

2 ,
`
2

]
and

xj ∈ [0, L] (j = 2, 3, . . . , d− 2) such that L� `. We will always consider a constant time
slice of the metric (2.2). Then the RT surface is conveniently described by the function
x1 (z) and its area is given by the integral

Aγ = 2Rd−1Vd−2

∫ z∗

ε

dz

zd−1

√
K

√
1
f

+ x′1(z)2 , (2.5)

where Vd−2 = 2πryLd−3 is the overall volume of the extended directions and the y-circle on
the boundary and ε is a UV cut-off put to protect the integral from divergence as z → 0.
For ease of calculation we will often assume R = 1. Upon extremization this area functional
gives a first integral of motion

x′1(z)
√
K

zd−1
√

1
f + x′1(z)2

= b , (2.6)

the constant b may be related to the turning point z∗ by

K (z∗)− b2z2d−2
∗ = 0

which leads to an integral relation between z∗ and the strip-width `

`

2 = z∗

∫ 1

0

dy yd−1

√
f
√

K
K∗
− y2d−2

, (2.7)

where K∗ = K(z∗) and y ≡ z
z∗
. We obtain by substitution in equation (2.5) that

Aγ = 2Vd−2

zd−2
∗

∫ 1

ε
z∗

dy

yd−1

√√√√ K

f
(
1− K∗

K y2d−2
) (2.8)

3 Perturbative calculation of entanglement entropy

Equation (2.8) is unusually hard to solve analytically. In fact, the only known exact solution
except pure AdS was found for the (2 + 1)-dimensional BTZ black hole [6]. However in
certain regime of the solution space the problem can be addressed.
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Let us assume z∗ � zh, in this limit the integrals (2.7) and (2.8) may be expressed as
a power series in zd∗

zd
h

. If one considers O

(
zd∗
zd
h

)
deviations only then the equation (2.7) can

be recast as

`

2 = z∗

∫ 1

0

dy yd−1√
1− y2d−2

(
1 + zd∗

zdh

(
yd

2 + k

2
1− yd

1− y2d−2

)
+ O

(
z2d
∗
z2d
h

))
, (3.1)

where we chose to denote β2γ2 by k, the integral can be solved in terms of beta functions,
let us define ∫ 1

0

dy ynd−1√
1− y2d−2

=
B
(

nd
2d−2 ,

1
2

)
2d− 2 ≡ bn−1 .

We may then express (3.1) as

`

2 = z∗

[
b0 + zd∗

zdh
(z10 + k z11)

]
, (3.2)

where the coefficients are

z10 = b1
2 ,

z11 =
(
d+ 1
d− 1

)
b1
2 −

1
d− 1

b0
2 . (3.3)

To write the area of the RT surface in terms of the subsystem length (`), we need to
invert (3.2). If we denote the turning point for pure AdS by z̄∗ ≡ `

2b0
then an approximate

relationship at leading order is

z∗ = z̄∗

1 + z̄2
∗
zd
h

(
z10+k z11

b0

)
+ O

(
z̄2d

∗
z2d
h

) . (3.4)

In a similar vein we can perform a series expansion of the area integral (2.8)

Aγ = 2Vd−2

zd−2
∗

∫ 1

ε
z∗

dy

yd−1
√

1− y2d−2

1 + zd∗
zdh

1 + k

2 yd + k

2
y2d−2

(
1− yd

)
1− y2d−2

+ O

(
z2d
∗
z2d
h

) ,
(3.5)

again all integrations here finally boil down to some beta functions. The ground state (no
black hole) result can be very easily read off

A0 = 2Vd−2

z̄d−2
∗

∫ 1

ε
z∗

dy

yd−1
√

1− y2d−2
,

= 2Vd−2
d− 2

( 1
εd−2 −

b0

z̄d−2
∗

)
, (3.6)

which exhibits the characteristic UV divergence, contributions at higher orders are all finite.
Making use of the relationship (3.4) they can be expressed as

Aγ
Vd−2

= A0
Vd−2

+ z̄2
∗
zdh

(d− 1) + (d+ 1)k
2 b1 + O

(
z̄d∗
zdh

)
. (3.7)
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The calculation can be continued at higher orders in z̄d∗
zd
h

, albeit with increasing level
of difficulty. The second order results were calculated in [15]. In this work, we go one
step further and seek to evaluate the area up to O

(
z̄3d

∗
z3d
h

)
, at this order the approximate

relationship between the subsystem length (`) and the turning point (z∗) is

z∗ = z̄∗

1 + z̄d∗
zd
h

Z1
b0

+ z̄2d
∗
z2d
h

(
Z2
b0
− d Z2

1
b2

0

)
+ z̄3d

∗
z3d
h

(
d(3d+1)

2
Z3

1
b3

0
− 3d Z1Z2

b2
0

+ Z3
b0

)
+ O

(
z̄4d

∗
z4d
h

) , (3.8)

where Z1 = z10 + k z11 and the new coefficient Z2 and Z3 are

Z2 = z20 + k z21 + k2 z22 ,

Z3 = z30 + k z31 + k2 z32 + k3 z33 ,

such that

z20 = 3
8b2, (3.9)

z21 = 1
4

(
−d+ 1
d− 1 b1 + 2d+ 1

d− 1 b2

)
, (3.10)

z22 = 1
8

2d− 1
(d− 1)2 b0 −

1
4

(
d+ 1
d− 1

)2
b1 + 3

8
2d+ 1

(d− 1)2 b2, (3.11)

z30 = 5
16b3, (3.12)

z31 = 3
16

(
−2d+ 1
d− 1 b2 + 3d+ 1

d− 1 b3

)
, (3.13)

z32 = 1
16

(3d− 1)(d+ 1)
(d− 1)2 b1 −

1
8

(2d+ 1
d− 1

)2
b2 + 1

16
(d+ 3)(3d+ 1)

(d− 1)2 b3, (3.14)

z33 = 1
48

(
−3− 2d(4d− 5)

(d− 1)3 b0 + 3(3d− 1)(d+ 1)2

(d− 1)3 b1 − 91 + 4d(d+ 1)
(d− 1)3 b2

+ 15 + d(47− d(3d− 5))
(d− 1)3 b3

)
. (3.15)

The explicit integrals that produce these coefficients are listed in appendix A. The minimal
area at this order takes the following form

A(3)
γ

Vd−2
= A0
Vd−2

+ z̄2
∗
zdh

I1b1
2 − z̄d+2

∗
z2d
h

(d+ 2) I2
1b

2
1 − I2b0b2

4 (d− 1) (d+ 2) b0

+ z̄2d+2
∗
z3d
h

2(d+ 1)(2d+ 3)I3
1b

3
1 − 6(d+ 1)I1I2b0b1b2 + I3b

2
0b3

48(d− 1)2(d+ 1)b20
,

(3.16)

where,

I1 = (d− 1) + (d+ 1)k , (3.17)
I2 = 3(d− 1)2 + 2(d− 1)(2d+ 1)k + 3(2d+ 1)k2 , (3.18)
I3 = 15(d− 1)3 + 9(d− 1)2(3d+ 1)k + 3(d− 1)(3d+ 1)(d+ 3)k2

− (d− 5)(d+ 3)(3d+ 1)k3 , (3.19)
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all of which are positive quantities. The expressions correctly reproduce the first and
second order results of [15], while the third order result is new. Let us point out that
the absolute sign of the change in area of the RT surface alternates at each order; being
positive at leading order, negative at second order and so on. This is consistent with earlier
observations and hints towards the existence of a complete, non-perturbative expression.

From equation (3.16) The change in HEE over pure AdS could be written as

S(3) = A
(3)
γ −A0

4G(d+1)
N

(3.20)

Numerical evaluation of HEE. The perturbation method illustrated above should
work well if z̄d∗

zd
h

� 1 or in other words ` � zh (very narrow strip width). It is instructive
to do a numerical evaluation of the minimal area and compare how close our perturbation
series analysis can mimic the behaviour.

To perform the numerics we restrict ourselves to (4 + 1) dimensions. We first regularize
the area integral (2.8) by separating out the divergent piece and write the finite part as

Aγ = 2
zd−2
∗

∫ 1

0

dy

yd−1

 K(y)√
f(y)

√
K(y)−K∗y2d−2

− 1

− 1
d− 2

 . (3.21)

Similarly we also write down the area integral for ordinary AdS space-time

A0 = 2
z̄d−2
∗

[∫ 1

0

dy

yd−1

(
1√

1− y2d−2
− 1

)
− 1
d− 2

]
. (3.22)

We choose a few values for the turning point z∗ and obtain the corresponding subsys-
tem lengths ` from equation (2.7), for the same values we also integrate equations (3.21)
and (3.22) to obtain the area difference ∆A = Aγ − A0. We then plot ∆A on the y-axis
and ` on the x-axis.

The results are succinctly expressed in figure 1, we observe that perturbative results
agree to a good extent with numerical values in the region ` < zh and the accuracy increases
with inclusion of higher order terms.

4 First law of entanglement thermodynamics

The HEE is found to depend on two parameters, viz. the horizon distance zh and the boost
parameter β (or equivalently k); hence, any infinitesimal change in these two parameters
is bound to affect the HEE. Our next task is to express first order variation of S(3) with
respect to these parameters as a ‘first law’ like relationship.

To this end, we first require the components of the boundary stress-energy tensor
which can be found from a Fefferman-Graham expansion [28–30] of the metric (2.2), the
expansion leads us to [15]

〈Tµν〉 ∼
d

zdh


d−1
d + k βγ2 0 · · ·
βγ2 1

d + k 0 · · ·
0 0 1

d · · ·
...

...
... . . .

 (4.1)
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Figure 1. Area difference of the minimal surface from ground state at different orders for AdS5
and their comparison with numerical result, plot drawn by choosing β = 0.25 and zh = 10.

The T01 component quantifies the charge due to momentum in the y-direction, we choose
an appropriate normalization factor and write the following conserved quantities

E = Vd−2

16πGd+1
N

(
d− 1
d

+ k

)
d `

zdh
, (4.2)

P = ry

8Gd+1
N

1
zdh
, (4.3)

N = ryVd−2

16πGd+1
N

βγ2d `

zdh
. (4.4)

In the above expressions, E,P and N stand for the changes in energy, pressure transverse
to the boost and the momentum charge due to boost in y-direction, respectively. We also
define an entanglement chemical potential µE as the value of the Kaluza-Klein gauge field
at the turning point [15]

µE ≡
1
ryβ

(
1 + 1

K∗

)
, (4.5)

it can be expressed order by order using the perturbative expression (3.8)

µ
(1)
E = βγ2

ry

z̄d∗
zdh
,

µ
(2)
E = βγ2

ry

(
z̄∗
zh

)d(
1−

(
z̄∗
zh

)d (
k + d

Z1
b0

))
. (4.6)

It is straightforward to write the first law at leading order, the entanglement entropy is

S(1) = Vd−2

8Gd+1
N

z̄2
∗
zdh

((d− 1) + (d+ 1)k) b1

– 7 –
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from the expressions of µE we make out that any contribution from a µEδN like term
should not occur before second order. One can easily check that at first order [8, 9, 15]

δS(1) = β
(1)
E

(
δE − d− 1

d+ 1V δP
)
, (4.7)

where V = `Vd−2 is the total volume of the subsystem on the boundary. The inverse
entanglement temperature (at first order) β(1)

E is given by

β
(1)
E =

(
d+ 1
d

)
πb1
2b20

` . (4.8)

Non-triviality enters at sub-leading orders as it is not transparent how one should take
care of subsequent corrections. The authors of [15] argued that higher order corrections
could be incorporated in the law through appropriate re-definition of the entanglement
temperature, chemical potential and subsystem volume. We take a related but slightly
different approach. Let us illustrate with the change in HEE up-to second order; we claim

δS(2) = α

(
δE − d− 1

d+ 1V δP
)
− ζ µ

(1)
E δN , (4.9)

which, after performing the variation, leads to

Vd−2

8G(d+1)
N

[
δz−dh

∂S(2)

∂zdh
+ δk

∂S(2)

∂k

]
= δz−dh

(
α

(
∂E

∂zdh
− d− 1
d+ 1V

∂P

∂zdh

)
− ζµ

(1)
E

∂N

∂zdh

)

+ δk

(
α
∂E

∂k
− ζµ

(1)
E

∂N

∂k

)
.

We refrain from writing full expressions to avoid clutter. To determine the coefficients
α and ζ we may equate the coefficients of δz−2

h and δk from both sides, this yields the
unique solution

α ' β(1)
E

(
1 +

(
z̄∗
zh

)d α1

β
(1)
E

+ O

(
z̄2d
∗
z2d
h

))
, (4.10)

ζ ' πb2
b20

d2 + d− 2− k
(
2 + 3d− 2d2)

d(d+ 2)(d− 1 + k(d− 3)) `+ O

(
z̄d∗
zdh

)
, (4.11)

where,

α1 = −(d+ 1)
(
(d+ 2)b21 − 3b0b2

)
d(d+ 2)b0

+ k
(d+ 1)

(
(2d− 5)(2d+ 1)b0b2 −

(
d3 − 7d− 6

)
b21
)

d(d− 1)(d+ 2)((d− 3)k + d− 1)b0
.

(4.12)
It is sufficient to determine ζ at leading order since µ(1)

E δN is itself a second order quantity,
we also note that at leading order α = β

(1)
E . It is then appropriate to define α as the

inverse entanglement temperature at second order and redefine our entanglement chemical
potential as

β
(2)
E ≡ α , (4.13)

µ̄
(1)
E ≡

ζ

α
µ

(1)
E '

2
(
d2 + d− 2− k

(
2 + 3d− 2d2)) b2

(d+ 1)(d+ 2)(d− 1 + k(d− 3))b1
µ

(1)
E . (4.14)
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The above redefinition allows us to express the variation of HEE in the desired form

δS
(2)
E = β

(2)
E

(
δE − d− 1

d+ 1V δP − µ̄
(1)
E δN

)
. (4.15)

In a similar way we can extend the first law up-to third order, the modified entanglement
temperature and chemical potential would be

β
(3)
E = β

(1)
E

(
1 +

(
z̄∗
zh

)d α1

β
(1)
E

+
(
z̄∗
zh

)2d α2

β
(1)
E

+ O

(
z̄3d
∗
z3d
h

))
, (4.16)

µ̄
(2)
E = ζ

α
µ

(2)
E , (4.17)

the new coefficient α2 is given by

α2 = α20 + k α21 + k2 α22
8d(d− 1)2 ((d− 3)k + d− 1) b20

(4.18)

where,

α20 =
(
15b20b3 − 18(d+ 1)b0b1b2 + 2(d+ 1)(2d+ 3)b31

) (
(d− 1)2 ((d− 3)k + d− 1)

)
,

α21 = (3d+ 1)(11d− 15)b20b3 + 2(d(45− 4d(6d+ 1)) + 25)b0b1b2
+ 2(d+ 1)2(2d+ 3)(3d− 5)b31 ,

α22 = (d+ 3)(3d− 7)(3d+ 1)b20b3 − 2(2d+ 1)(d+ 1)((4d− 3)d− 19)b0b1b2
+ 2(2d+ 3)(d− 3)(d+ 1)3b31 .

The correct dressing factor for the chemical potential at this order involves first order terms
in both ζ and α; it is expressed as

ζ

α
≈ 2

(
d2 +d−2−k

(
2+3d−2d2))b2

(d+1)(d+2)(d−1+k(d−3))b1

−
(
z̄d∗
zdh

)[
2(d−2)(d+1)(d+2)k((d−3)k+d−1)

(
d2 +(d−2)(2d+1)k+d−2

)
b1b2

+(d+2)2((d−3)k+d−1)
(
3d
(
d2−3

)
+(d−2)(d+3)(3d+1)k2

+2d(d−1)(3d+1)k+6) b1b3−4(d+1)
(
d2 +(d−2)(2d+1)k+d−2

)
(
(2d−5)(2d+1)k2 +6(d−1)2k+3(d−1)2

)
b22

]
(
2b21(d−1)(d+1)2(d+2)2((d−3)k+d−1)2

)−1
. (4.19)

The first law of entanglement including third order corrections is, therefore,

δS(3) = β
(3)
E

(
δE − d− 1

d+ 1V δP − µ̄
(2)
E δN

)
. (4.20)

In figure 2 we have shown the dependence of entanglement temperature on subsystem width
(`) with and without higher order corrections. At the leading order TE ∼ `−1 and it simply
decays to zero as ` → ∞. We note that the decay is somewhat dampened by corrections,

– 9 –



J
H
E
P
0
4
(
2
0
2
1
)
0
6
5

TE
(1)

TE
(2)

TE
(3)

40 50 60 70 80 90
ℓ0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
TE

(a) AdS4

TE
(1)

TE
(2)

TE
(3)

20 30 40 50 60 70
ℓ0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
TE

(b) AdS5

Figure 2. The entanglement temperature with and without higher order corrections for d =
3 and 4, plot drawn for zh = 100 and β = 0.25.

the leading order of which is positive. We also note an alternating property of signs as we
go on including higher order terms to TE , with the first order being positive, the second
order negative and so on. This strongly suggests that the entanglement temperature finally
converges to a unique value once all possible corrections are taken care for and matches
with the black hole temperature in the large system size limit. However, it is not clear if
such a conclusion can be drawn from a simple perturbation series analysis as ours.

5 Large boost limit and AdS plane wave

It is possible to consider a simultaneous limit where the black hole horizon is allowed to
shrink while the boost parameter is taken to be very large, we let

zh →∞, β → 1, β2γ2

zdh
= 1
zdI

= fixed. (5.1)

Such a double limit has been explored before in [31, 32] in the context of non-relativistic
holography. In this limit the background geometry (2.2) reduces to an AdS plane wave

ds2 = R2

z2

(
−dt

2

K
+K

(
dy −

(
1 +K−1

)
dt
)2

+ dx2
1 + · · ·+ dx2

d−2 + dz2
)
, (5.2)

where K = 1 + zd

zdI
. zI is representative of the energy or momentum of the wave travelling

in y-direction. The entanglement entropy of AdS plane wave has been studied previously
in [33–35]. We can use our results (3.16) and (3.17)–(3.19) and apply the above double
limit to obtain the HEE for a strip system in the plane wave background, given that we
maintain z̄d∗

zdI
� 1. Up to third order, then, the change in HEE over ground state can be
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expressed as

S
(3)
plane = Vd−2

8G(d+1)
N

z̄2
∗
zdI

(
I1b1 −

z̄d∗
zdI

(d+ 2) I2
1b

2
1 − I2b0b2

2 (d− 1) (d+ 2) b0

+ z̄2d
∗
z2d
I

2(d+ 1)(2d+ 3)I3
1b

3
1 − 6(d+ 1)I1I2b0b1b2 + I3b

2
0b3

24(d− 1)2(d+ 1)b20

)
,

(5.3)

which is similar in appearance to that for a black hole, except that

I1 = (d+ 1) ,
I2 = 3(2d+ 1) ,
I3 = −(d− 5)(d+ 3)(3d+ 1) ,

are the new coefficients obtained by taking the limit (5.1) in eqs. (3.17)–(3.19).
Let us try to figure out the form of the entanglement first law for AdS plane wave.

The energy and momentum charge of the CFT excitation dual to this geometry become

Eplane = Vd−2

16πGd+1
N

d `

zdI
, (5.4)

Nplane = ryVd−2

16πGd+1
N

d `

zdI
, (5.5)

while the pressure along all xi directions vanish identically. Similarly, the entanglement
chemical potential for the plane wave geometry at different orders can be written by ap-
plying the limit (5.1) in eqs. (4.6)

µ
(1)
E = 1

ry

z̄d∗
zdI
,

µ
(2)
E = 1

ry

(
z̄∗
zI

)d(
1−

(
z̄∗
zI

)d (
1 + d

z11
b0

))
, (5.6)

with z11 being the same as in eq. (3.3). Again we see that any contribution to the law from
a µEδNplane like term cannot occur at first order where the HEE simplifies to

S
(1)
plane = Vd−2

8G(d+1)
N

z̄2
∗
zdI

(d+ 1)b1.

If we consider first order variation of this expression w.r.t. the new scale zI we can easily
establish that

δS
(1)
plane =

(
d+ 1
d

)
πb1
2b20

` δEplane. (5.7)

Thus the entanglement temperature for AdS plane wave is the same as that for AdS black
hole at first order: β(1)

E = πb1
2b2

0

(
d+1
d

)
`.

We should, nevertheless, include the chemical potential when we consider second order
or higher corrections because µE is significant from second order onwards. Hence, at third
order we are led to adding the following contribution to the first law

µ
(2)
E δNplane = Vd−2

16πGd+1
N

d `

(
z̄∗
zI

)d(
1−

(
z̄∗
zI

)d (
1 + d

z11
b0

))
δz−dI .
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(a) AdS5 (b) AdS7

Figure 3. The entanglement temperature with and without higher order corrections of AdS plane
wave for d = 4 and 6, plot drawn for zI = 100.

So that the law at third order takes the canonical form

δS
(3)
plane = β

(3)
E

(
δEplane − µ

(2)
E δNplane

)
, (5.8)

with the inverse entanglement temperature at third order, β(3)
E being given by

β
(3)
E

β
(1)
E

= δEplane−µ
(2)
E δNplane

β
(1)
E δS

(3)
plane

≈ 1−
(
z̄∗
zI

)d(
1+ b21(d+1)2(d+2)−3b0b2(2d+1)

b0b1(d−1)(d+1)(d+2)

)

+
(
z̄∗
zI

)2d
(
b0d−2b0 +b1d

2 +b1d

2b0(d−1) +
(
b21(d+1)2(d+2)−3b0b2(2d+1)

)2
b20b

2
1(d−1)2(d+1)2(d+2)2

+ b21(d+1)2(d+2)−3b0b2(2d+1)
b0b1(d−1)(d+1)(d+2)

− b
2
0b3(5−d)(d+3)(3d+1)−18b0b1b2(2d+1)(d+1)2 +2b31(2d+3)(d+1)4

8b20b1(d−1)2(d+1)2

)

(5.9)

The entanglement temperatures for AdS plane wave in 5 and 7 dimensions is shown in
figure 3, we note that in contrast with the AdS black hole, the first order correction to
the temperature is negative and second order is positive. The entanglement temperature
flows towards zero with increase in system size, which is expected since the background is
dual to zero temperature CFT excitation. We learn that the higher order corrections are
significant for any finite value of the system size `; for ` → 0, TE → ∞ and that is trivial
indication of having no subsystem at all.
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6 Extension to non-conformal Dp branes

The gauge/gravity duality dictionary can also be extended to non-conformal field theories
on the boundary. The supergravity description is obtained from type II solution describing
N coincident Dp-branes in the field theory limit [36]. A non-conformal black p-brane
background in the Einstein frame dual to a boosted field theory at finite temperature can
be written as

ds2 = (2π)
p−2

2

gYM

z
θ
4

r
(7−p)2

8
p

[
− f (z)
K (z)

dt2

z2 +K (z) (dy − ω)2

z2 +
dx2

2 + · · ·+ dx2
p

z2

+ 4
(5− p)2 r

7−p
p

dz2

f (z) z2 + r7−p
p dΩ2

8−p

]
, (6.1)

with the dilaton being given by eφ = (2π)2−p g2
YM

(
r7−p
p z

2(7−p)
(5−p)

) 3−p
4

and the functions

f(z) = 1− zp̃

zp̃h
, K(z) = 1 + β2γ2 z

p̃

zp̃h
, ω(z) = β−1

(
1 + 1

K

)
dt, (6.2)

where p̃ = 14−2p
5−p and θ = − (3−p)2

5−p , the parameter rp is related to the gauge coupling by
rp = g2

YMdpN .

The space-time (6.1) is only conformally AdSp+2 × S8−p, for p = 3 the conformal
factor vanishes and one obtains the well known AdS5× S5 geometry which corresponds to
a stack of N D3-branes in the decoupling limit and is dual to an N = 4 SYM on the AdS
boundary [1].

We can use the Ryu-Takayanagi formula and find the HEE for non-conformal geome-
tries using the Einstein frame metric (6.1), see [5, 12, 35, 37]. For a strip of width ` as
considered before: {− `

2 ≤ x2 ≤ `
2 ; x3 = x4 = · · · = xp = L}, we obtain the following

area integral

Aγ = (2π)2p−4Vp−1Ω8−p

g4
YMr

(7−p)
p

∫ z∗

ε

dz

zp−θ

√
K(z)

√
x′22 + 4

(5− p)2 r
7−p
p f−1(z) ,

= 2(2π)2p−4

(5− p)g4
YMr

7−p
2

p

Vp−1Ω8−p

∫ z∗

ε

dz

zp̃−1

√
K(z)

√
x̄′22 + f−1(z) , (6.3)

where we did a rescaling x̄2(z) = (5−p)
2 r

−(7−p)
p x2(z) to reach the last line. Here, Vp−1 =

2πryLp−2 is the volume of the unconstrained space directions on the brane (x3, x4, . . . , xp)
and the y-circle, and Ω8−p denotes the volume of the (8− p)-sphere.

The area integral is identical to (2.5) for the conformal case, except for the replace-
ment d → p̃. Consequently, we can use all results from previous sections by making the
replacement in d. Instead of repeating them, we go straight into writing a first law for
non-conformal cases; the components of the conserved boundary stress-energy tensor for
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Figure 4. The entanglement temperature with and without higher order corrections of D2 and D4
branes, plot drawn for zh = 100 and β = 0.25.

this geometry are [35]

E = QpVp−1Ω8−p
16πG10

N

(
p̃− 1
p̃

+ k

) (7− p) `
zp̃h

, (6.4)

P = ryQpΩ8−p
8G10

N

(7− p)
zp̃h

, (6.5)

N = ryQpVp−1Ω8−p
16πG10

N

βγ2 (7− p) `
zp̃h

, (6.6)

where Qp stands for the numerical pre-factor in (6.3), Qp = 2(2π)2p−4

(5−p)g4
YM r

7−p
2

p

. We shall

denote total volume of the boundary subsystem by V = `Vp−1. The entanglement chemical
potential (µE) can again be derived perturbatively from equation (4.5), with d replaced by
p̃ in all expressions.

One can write down a first law of entanglement involving third order corrections by
following the procedure of section 4. The entanglement temperature at first order is

T
(1)
E =

(7− p
p̃+ 1

) 2b20
πb1

` , (6.7)

which for p = 3 matches with the result (4.8) of AdS5; we note, however, that ` in this
expression is associated with the rescaled dimension x̄2 from equation (6.3). The higher
order modifications can be determined but we do not write them explicitly, instead we refer
to figure 4 for their effect on TE .

7 Conclusion

In this work, we studied the holographic entanglement entropy between a strip sub-region
and its complement on the boundary of a boosted AdS black hole. We assumed the strip-
width (`) to be very narrow compared with the black hole parameter (zh) and performed
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a perturbation series analysis of the HEE up to third order in the dimensionless parame-
ter `

zh
. Further, we tried to establish a first law of entanglement thermodynamics including

corrections at this order. Due to boost in the direction (y) being compact, the momentum
in y-direction is quantized and appears as a conserved U(1) charge in a lower dimensional
theory. We find that it lends important contribution to the first law of entanglement. We
have shown that changes in the HEE beyond leading order can be absorbed in a redefined
entanglement temperature (TE) and chemical potential (µE), thus allowing the canonical
first law relationship

δS
(3)
E = β

(3)
E

(
δE − d− 1

d+ 1V δP − µ̄
(2)
E δN

)
, (7.1)

to remain true irrespective of the order of perturbation series. The same trick is shown
to work for other holographic gravity duals e.g. AdS plane wave and non-conformal black
Dp-branes as well. While we have only considered strip entangling region and third order
corrections, the algorithm should work for all entangling regions and can incorporate cor-
rections at any arbitrary order. At the same time, this way of rewriting the first law of
entanglement avoids inclusion of any foreign quantity other than the conserved charges of
the theory in the law.

The entanglement entropy in a general state is also known to obey a first law of
entanglement with respect to the modular Hamiltonian [10]

∆S ≤ 〈∆H〉. (7.2)

In general, H is a non-local operator; so it is curious that H can somehow be expressed
in terms of the subregion thermodynamic variables so that the more conventional looking
eq. (7.1) is satisfied. The resolution could be that for the special case of interest as ours,
the modular Hamiltonian is local; unfortunately this suspicion cannot be confirmed unless
a closed form expression for H is found for a strip entangling surface in a CFT.1 Another
possibility is that the modular Hamiltonian effectively looks local in the small subsystem
size limit

(
`
zh
� 1

)
that we assume in this work and can be expressed in terms of subregion

thermodynamic variables. In fact, it was shown in [38] that the reduced density matrix
always thermalizes as long as the subsystem size is much less than the total system size;
this could as well be the reason that H becomes proportional to subregion energy, pressure
etc. and a local first law (7.1) is satisfied.2

While certainly not conclusive, we hope our work helps in deciding whether a first law
like relationship is a generic feature of entanglement in holographic field theories.
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A List of integrals

In the following, we list the integrals encountered while solving the equations (2.7) and (2.8)
and write their simplified form in terms of Beta functions, first let us recall the definition

∫ 1

0

dy ynd−1
√
R

=
B
(

nd
2d−2 ,

1
2

)
2d− 2 ≡ bn−1 , (A.1)

where R ≡ 1− y2d−2.
We start with the integrals occurring while solving for the turning point (z∗) from equa-
tion (2.7)

∫ 1

0

yd−1
(
1− yd

)
dy

√
R

= d+ 1
d− 1b1 −

1
d− 1b0 , (A.2)

∫ 1

0

y2d−1
(
1− yd

)
dy

R3/2 = −2d+ 1
d− 1 b2 −

d+ 1
d− 1b1 , (A.3)

∫ 1

0

yd−1
(
1− yd

)2
dy

R5/2 = 2d+ 1
(d− 1)2 b2 + 8

3
(d+ 1)(d− 3)

(2d− 2)2 b1 −
4
3

2d− 3
(2d− 2)2 b0 , (A.4)

∫ 1

0

y3d−1
(
1− yd

)
dy

R3/2 = 3d+ 1
d− 1 b3 −

2d+ 1
d− 1 b2 , (A.5)

∫ 1

0

y2d−1
(
1− yd

)2
dy

R5/2 = 4
3

(3d+ 1)(d+ 3)
(2d− 2)2 b3 −

2(2d+ 1)
(d− 1)2 b2 −

4
3

(d+ 1)(d− 3)
(2d− 2)2 b1 , (A.6)

∫ 1

0

yd−1
(
1− yd

)3
dy

R7/2 = − 8
15

(d− 5)(d+ 3)(3d+ 1)
(2d− 2)3 b3 + 24

5
(2d− 5)(2d+ 1)

(2d− 2)3 b2

+ 8
5

(3d− 5)(d− 3)(d+ 1)
(2d− 2)3 b1 −

8
15

(4d− 5)(2d− 3)
(2d− 2)3 b0 .

(A.7)

Next, The integrals that arise when solving for the extremized area are∫ 1

0

dy

yd−1
√
R

= − b0
d− 2 , (A.8)∫ 1

0

yddy

yd−1
√
R

= d+ 1
2 b1 , (A.9)∫ 1

0

y2d−2(1− yd)dy
yd−1R3/2 = d+ 1

d− 1b1 −
1

d− 1b0 , (A.10)∫ 1

0

y2ddy

yd−1
√
R

= 2d+ 1
d+ 2 b2 , (A.11)∫ 1

0

y3d−2(1− yd)dy
yd−1R3/2 = 2d+ 1

d− 1 b2 −
d+ 1
d− 1b1 , (A.12)∫ 1

0

y4d−4(1− yd)2dy

yd−1R5/2 = 4
3

3d(2d+ 1)
(2d− 2)2 b2 −

8
3

2d(d+ 1)
(2d− 2)2 b1 + 4

3
d

(2d− 2)2 b0 , (A.13)∫ 1

0

dyy3d

yd−1
√
R

= 3d+ 1
2d+ 2b3 , (A.14)
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∫ 1

0

y4d−2(1− yd)dy
yd−1R3/2 = 3d+ 1

d− 1 b3 −
2d+ 1
d− 1 b2 , (A.15)∫ 1

0

y5d−4(1− yd)2dy

yd−1R5/2 = 4
3

4d(3d+ 1)
(2d− 2)2 b3 −

8
3

3d(2d+ 1)
(2d− 2)2 b2 + 4

3
2d(d+ 1)
(2d− 2)2 b1 , (A.16)∫ 1

0

y6d−6(1− yd)3dy

yd−1R7/2 = − 8
15

4d(6d− 2)(3d+ 1)
(2d− 2)3 b3 −

8
5

3d(5d− 2)(2d+ 1)
(2d− 2)3 b2

+ 8
5

2d(4d− 2)(d+ 1)
(2d− 2)3 b1 −

8
15
d(3d− 2)
(2d− 2)3 b0 .

(A.17)
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