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1 Introduction

In this paper we revisit the theory of null shells in general relativity [1]–[4], with a particular

emphasis on null shells placed at horizons of black holes.

It seems to be a somewhat underappreciated fact that (in contrast to what happens for

spacelike or timelike shells) there can be considerable freedom in “soldering” two geometries

along a given null hypersurface while maintaining the Israel junction condition that the in-

duced metric is continuous across the surface. Even though this was pointed out in [1], and

isolated examples were already known in the literature before (e.g. the Dray ’t Hooft shell

separating (or joining) two equal mass Schwarzschild black holes along their horizon [5]),

there seems to have been no systematic subsequent analysis of this phenomenon.

We therefore begin with a systematic analysis of the conditions under which non-trivial

soldering transformations can exist, and we also place these results into the general setting

of Carrollian manifolds and associated notions of symmetry groups, as recently formulated

in [6, 7].

It follows from this analysis that the resulting soldering group is infinite-dimensional

when the induced metric on the null hypersurface is invariant under translations along the

null generators of the null hypersurface. This condition is of course satisfied by Killing

horizons of stationary black holes, but also by Rindler horizons, and more generally by

other quasi-local notions of horizons such as non-expanding horizons and isolated horizons

(see e.g. [8, 9] for reviews).
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In all these cases, we can generate an infinite number of physically distinct shells on

this hypersurface, and we will refer to these generically as Horizon Shells. These shells

are parametrised by one (essentially) arbitrary function on the horizon, which arises as

an arbitrary coordinate transformation of the null coordinate v on the hypersurface (with

coordinates (v, xA)),

v → F
(
v, xA

)
(1.1)

(extended to a suitable coordinate transformation off the shell on one side of the shell).1

The resulting shells will in general carry a (null) matter energy momentum tensor (com-

posed of energy density, energy currents and pressure), as well as impulsive gravitational

waves travelling along the shell, and we determine and analyse these in some detail.

In particular, these horizon shells give rise to a rich classical structure at the horizon

of a Schwarzschild black hole, and can be considered as significant generalisations of the

Dray ’t Hooft null shell [5]. As all of them are non-singular on the shell (i.e. do not have

any point particle singularities), they also provide one with a wide array of smoothed out

versions of Dray ’t Hooft impulsive gravitational waves [11]. Given the recent interest in

these configurations in the context of holography and scattering from black hole horizons

(see e.g. [12, 13]), it is perhaps of some interest to have these new shell solutions at one’s

disposal.

A class of soldering transformations that may be of particular interest, especially in

light of the observation in [14] that black holes must carry supertranslation hair, and the

subsequent Hawking-Perry-Strominger proposal [15, 16], are the horizon analogues of BMS

supertranslations at I+, of the form

v → v + T (xA) . (1.2)

In particular, we find that for shells generated by supertranslations of the Kruskal coordi-

nate V , the conserved energy E[T ] of the resulting shell is of the form (6.31)

E[T ] =
1

8π

∫
S2

T (1.3)

(there is also a simple, but slightly different, expression (7.10) for the conserved energy

of shells generated by supertranslations of the advanced coordinate v). This expression

bears a tantalising similarity to the standard expression for BMS supertranslation charges

at I+ (see e.g. [17–19]) and to an analogous expression for a near-horizon BMS super-

charge proposed recently in [20], and therefore suggests a direct relation between BMS

supertranslation hair of a black hole and properties of the horizon shell.

Since (modulo isometries) there is a one-to-one correspondence between soldering

transformations and null shells, we can think of the shell as a faithful bookkeeping de-

vice for BMS-like and more general soldering transformations. We therefore propose to

interpret the abstract BMS charges in the context of horizon BMS transformations con-

cretely as conserved physical charges (the energy, say) of the horizon shell that is (or could

be) generated by the corresponding soldering transformation.

1Transformations of the form (1.1) have arisen previously in the discussion of asymptotic symmetries of

Killing horizons in [10]. We thank Andy Strominger for bringing this reference to our attention.
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Since we were led to discover these structures from a systematic analysis of soldering

transformations, and not from attempting to transfer structures from I+ to the horizon,

there are some differences in perspective. For instance, we extend the soldering transfor-

mation from the horizon to a coordinate transformation inside the horizon rather than to

the exterior (as would have been more natural in terms of the BMS perspective). The two

procedures are of course completely equivalent.

Moreover, we require no notion of asymptotic symmetry but consider the most general

transformation maintaining only the continuity of the induced metric. It is straightforward,

however, to specialise our construction to whatever notion of asymptotic symmetry at the

horizon is the relevant one in the case at hand. In particular, it is possible that not all the

soldering transformations (1.1) allowed by the general construction are actually relevant in

a specific context (like that of horizon hairs created by physical perturbations of the black

hole metric, say), but only a specific subset of them, like the above supertranslations (1.2).

Finally, although there are many discussions of the role of conformal invariance in the

physics of event horizons, we see no place for conformal transformations that are non-trivial

on the horizon from our shell perspective.

In section 2 we analyse the soldering freedom in the Israel junction condition, and in

section 3 we phrase these results in the language of Carrollian manifolds. Since we use the

framework of continuous coordinates (coordinates in which all of the components of the

metric are continuous across the shell, not only those of the induced metric) to derive the

physical properties of the shell, in section 4 we explain how to lift soldering transformations

off the shell in such a way that this continuity condition is satisfied. In section 5, we then

obtain the general expressions for the energy-momentum tensor and impulsive gravitational

wave components on the shell and discuss the corresponding conservation laws. In section 6,

we present in an elementary fashion our main example, namely the general horizon shell

on the horizon U = 0 of the Kruskal geometry, determine and analyse in detail its physical

properties and study various special cases. Section 7 concludes with a brief discussion of

the same example in Eddington-Finkelstein coordinates.

2 Soldering freedom and horizon shells

The general construction of null shells in general relativity [1–4] involves a matching of two

manifolds with boundary, V+ to the future of a null hypersurface N+ and V− to the past

of N− to each other across a common null boundary N . Each of the manifolds V± and N
respectively have independent coordinate charts xµ± for µ = 0, 1, 2, 3, and ya for a = 0, 1, 2

and V± carry metrics g±µν .

The basic requirement for the matching of the future and past geometries across the

null hypersurface N is the (Israel) junction condition that the induced metrics

g±ab = g±µν |N±
∂xµ±
∂ya

∂xν±
∂yb

(2.1)

on the future and past boundaries are isometric. It is common to write this condition as

[gab] ≡ g+ab − g
−
ab = 0 , (2.2)

– 3 –
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expressing the statement that there is no jump in the induced metric across the shell.

This condition ensures on the one hand that the two boundaries can be identified with the

hypersurface N with a unique metric, and on the other hand this construction leads to

solutions of the Einstein equations that can be interpreted as describing a shell of matter

and/or gravitational radiation separating (or joining) the two regions.

The general formalism of [1]–[4] then shows how to derive the intrinsic properties of

the shell, independently of any coordinate choices. We will return to this issue later on.

First of all, however, we want to ask and address the question whether there is any freedom

in this procedure to “solder” the two geometries together or if it is completely specified by

specifying the two geometries (satisfying the junction conditions) on the two sides.

For a generic hypersurface, the metric induced on the hypersurface will be a function

of the way the hypersurface is embedded in the surrounding space-time. Thus, for generic

hypersurfaces the interior and exterior space-times are soldered together in an essentially

unique way dictated by the embedding (we will see this explicitly below, also for non-null

shells). However, it was already pointed out in [1] by way of example that for certain null

shells like the Killing horizons of static black holes, there is considerable freedom in how

the two geometries are attached, allowing one to slide one of the manifolds independently

along the null (isometry) direction on N before soldering. We will now investigate this

question more sytematically.

In order to (significantly) simplify the analysis, as well as the calculations for specific

examples later on in this paper, we will now introduce a preferred class of coordinate

systems ya on the shell N , and also a corresponding class of space-time coordinates xα

in a neighbourhood of N (details of this rather standard construction can be found e.g.

in [1]–[4]).

1. We introduce a coordinate system ya = (v, yA) on N adapted to the fact that any null

hypersurface is generated by null geodesics (the integral curves of any null normal

n of N ), i.e. v is a parameter along the null geodesics related to the choice of null

normal n by n = ∂v, and the remaining spatial coordinates yA are used to label the

individual null geodesics. In these coordinates the induced degenerate metric on N
has the form

gabn
b = gav = 0 ⇒ gab(y)dyadyb = gAB(v, yC)dyAdyB , (2.3)

the conditions gvv = gvA = 0 expressing the fact that ∂v is null and normal to N .

2. We introduce a coordinate system xα in a 2-sided neighbourhood of the shell N
(e.g. via a null analogue of the construction of Gaussian normal coordinates) such

that in this coordinate system all the components g±αβ of the metric, not just those

contributing to the induced metric, are continuous across N ,

[gαβ ] = 0 . (2.4)

We should add here that typically such a coordinate system is only used as an intermediate

auxiliary device in the literature, and is generally considered to be somewhat (or grossly [3])

– 4 –
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impractical for actual calculations. However, for the applications of the formalism that we

are interested in, the construction of such a coordinate system in a small neighbourhood

of the shell turns out to be completely straightforward, since we start with a space-time

metric with no shell (or, equivalently, philosophical questions aside, with an empty shell),

which obviously already comes with its continuous coordinate system.

Anyway, given such a coordinate system the null boundary hypersurface N can then

be described by an equation Φ(x) = 0 where Φ(x) is a smooth function such that Φ > 0 to

the future V+ of N , and Φ < 0 on V−. It is then natural and convenient to choose one of

the coordinates xα to be proportional to Φ(x), so we set xα = (u, xa), with

Φ(x) = λu (2.5)

(for some conveniently chosen constant λ), and thus N is simply given by u = 0. Finally,

the two coordinate systems are linked by the choice that on N one has

xa|N = ya . (2.6)

(and this is the only slightly non-standard but very natural and convenient choice that we

make). Therefore our coordinates are

(xα) = (u, xa) =
(
u, v, yA

)
. (2.7)

More on the choice of defining function Φ(x) and our conventions regarding its relation

with the normal vector n can be found in section 5.

Equipped with this, we can now return to the question raised above regarding the

uniqueness of the soldering procedure. Since a geometry is determined by a metric up

to coordinate transformations, one way to approach this question is to enquire if there is

the freedom to perform coordinate transformations on one side, say on V+, while main-

taining the fundamental junction condition [gab] = 0.2 Since on N we have identified the

coordinates xa with the intrinsic coordinates ya = (v, yA), this amounts to asking un-

der which coordinate transformations of the ya the induced metric gab remains invariant.

Infinitesimally

LZgab = Zc∂cgab + (∂aZ
c)gcb + (∂bZ

c)gac = 0 . (2.8)

For a timelike (or spacelike) shell, to which these considerations up to this point would

also apply, this is just the Killing equation, and therefore this argument shows that (as is

well known from other perspectives) in this case the soldering is unique up to isometries

of the induced metric (and these leave all physical quantities invariant).

For a null shell, with its degenerate metric, with gav = 0 and gAB non-degenerate, the

situation is potentially more interesting. In this case, the above equation becomes

LZgab = Zc∂cgab +
(
∂aZ

C
)
gCb +

(
∂bZ

C
)
gaC = 0 (2.9)

2One could of course obtain the same results by performing a coordinate transformation only on V−.

These two different perspectives can then clearly be related via a smooth global coordinate transformation

without altering the intrinsic properties of the shell.

– 5 –
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for a vector field Z = Zc∂c = Zv∂v + ZC∂C on N . For a = v or b = v one finds the

condition

LZgav = 0 ⇒ ∂vZ
A = 0 , (2.10)

which rules out any v-dependent transformations of the spatial coordinates yA. From the

spatial components of (2.9) one finds

LZgAB = 0 ⇒ Zv∂vgAB + ZC∂CgAB +
(
∂AZ

C
)
gCB +

(
∂BZ

C
)
gAC = 0 . (2.11)

The corresponding group of allowed transformations does not depend on a particular choice

of normalisation of the null generators, and is thus an object intrinsically associated to the

null hypersurface and its metric. It is just the isometry group Isom(gab) of the degenerate

metric on N , with Lie algebra

isom(N , gab) = {Z : LZgab = 0} . (2.12)

We will now take a closer look at the solutions of (2.11). For a generic v-dependence of

gAB, one only has rigid (i.e. v-independent) isometries of the metric gAB, with Zv = 0, i.e.

generically: Isom(N , gab) = Isom(gAB) (2.13)

(and as in the case of timelike shells there is then an essentially unique soldering).

While there are some special cases in which a v-dependent metric can possess non-

trivial soldering transformations, as in the example of the Nutku-Penrose construction

of impulsive gravitational waves on the light cone [21] (cf. also section 1.2 of [2] or the

light cone example in [6, 7]), there is an especially interesting case that we will focus on

here, in which the soldering group is not only non-trivial but actually infinite dimensional.

This happens when the metric is independent of v, i.e. translation invariant along the null

generators of N ,

nc∂cgab = 0 ⇔ ∂vgAB = 0 . (2.14)

In particular, this includes the Killing Horizons of stationary black holes and Rindler Hori-

zons (with their boost Killing vector). More generally, since our considerations involve only

N itself, this condition, which implies that the null congruence on N has zero expansion

and shear, is satisfied by arbitrary Non-expanding Horizons, a precursor to (Weakly) Iso-

lated Horizons (see e.g. [8, 9] for reviews). In the current context of null shells, we will

therefore refer to null hypersurfaces with a metric satisfying ∂vgab = 0 or ∂vgAB = 0 as

Horizon Shells.

In this case the component Zv is completely unconstrained, and corresponds to the

freedom to perform arbitrary coordinate transformations of v on N ,

∂vgAB = 0 ⇒ v → F
(
v, yA

)
allowed (2.15)

(here and in the following it is understood that the function F is such that (v, yA)→ (F, yA)

is a legitimate orientation preserving coordinate transformation, i.e. that F satisfies ∂vF >

0). Because of the presence of an arbitrary function F in the coordinate transformation,

– 6 –
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the isometry group Isom(N , gab) is infinite dimensional, and factorises as the semi-direct

product

Horizon Shells : Isom(N , gab) = Isom(gAB) n Sol(N ) , (2.16)

where the infinite dimensional soldering group Sol(N ) (of non-trivial soldering transforma-

tions) is the group of coordinate transformations (2.15),

Sol(N , g) =
{
v → F

(
v, yA

)}
. (2.17)

As a consequence there are e.g. an infinite number of ways to glue two black holes geometries

together (the inside horizon region of one to the exterior region of the other) provided only

that the Israel junction condition is satisfied. In sections 6 and 7 we will analyse in detail

the simplest example exhibiting this phenomenon, namely the soldering of two equal mass

Schwarzschild metrics along their horizon.

Let us also analyse the effect of the transformations generated by Z on the normal

null generator na of N for a general null shell. Since the metric is invariant by the condi-

tion (2.9), and na spans the kernel of the metric, it is clear a priori that LZ preserves the

direction of na, LZn
a ∼ na,

gabn
b = 0 ⇒ 0 = LZ

(
gabn

b
)

= (LZgab)n
b + gabLZn

b = gabLZn
b

⇒ LZn
a ∼ na .

(2.18)

This can also be seen explicitly from n = ∂v, i.e. na = δav , and (2.10),

LZn
a = Zb∂bn

a − nb∂bZa = −∂vZa = −(∂vZ
v)δav = −(∂vZ

v)na . (2.19)

If one further restricts the transformations to those that strictly preserve the normal na,

then the allowed coordinate transformations on the shell are restricted to ∂vZ
v = 0. In the

case of horizon shells, this restricts the soldering transformations (2.15) to

LZn
a = 0 ⇒ ∂vZ

v = 0 ⇒ v → v + F
(
yA
)

allowed . (2.20)

Thus even when there is a preferred (Killing, say) null generator of the horizon shell, the

soldering group preserving this structure is still infinite dimensional.

3 Soldering group, Carrollian manifolds and BMS transformations

Interestingly the above considerations, motivated by the question of the freedom in solder-

ing null shells, are closely related to recent investigations of the (ultra-relativistic) Carroll

group and various other symmetry groups of Carrollian manifolds and Carrollian structures

and their relation with BMS supertranslation symmetries (cf. in particular [6, 7]).

A Carrollian manifold is by definition (we adopt the “weak” definition of [6, 7]) a

manifold equipped with a degenerate non-negative metric whose kernel is everywhere 1-

dimensional (and is thus spanned by a nowhere vanishing vector field). Clearly, accord-

ing to this definition any null hypersurface of a Lorentzian (pseudo-Riemannian) space-
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time defines a Carrollian manifold, the Carroll structure being encoded in the triplet

(N , gab, na) ≡ (N , g, n).3

Given a Carrollian structure, one can then analyse various notions of symmetry groups

preserving (in a suitable sense) such a structure. In particular, the group of transformations

preserving both gab and na could be called the isometry group Isom(N , g, n). Its Lie algebra

is generated by the vector fields Z on N satisfying

isom(N , g, n) = {Z : LZg = LZn = 0} . (3.1)

As we have seen, in the case of horizon shells (as defined above) this isometry group is

infinite dimensional, due to the presence of the transformations (2.20). By extrapolation

from the corresponding terminology for future null infinity I+, which is a natural example

of a Carrollian manifold, these transformations are called

BMS supertranslations : v → v + F
(
yA
)
, (3.2)

and form an infinite dimensional Abelian subgroup of the isometry group of the Carrollian

structure on such a null surface.

Note that, via the identification n = ∂v, this definition of horizon shell BMS transfor-

mations depends on the choice of null normal. For example, unlike at I+, at the horizon

of a static black hole supertranslations of the Killing parameter (Eddington-Finkelstein

advanced v) are not the same as supertranslations of the affine parameter (Kruskal V ).

In passing we also note that for horizon shells (N , g, n) also defines a Carrollian struc-

ture in the strong sense of [6, 7], which requires the existence of a symmetric affine con-

nection ∇ compatible with (N , g, n), i.e.

∇cgab = 0 , ∇cna = 0 . (3.3)

Indeed, it is easy to see that any symmetric connection Γabc with

ΓABC = ΓABC(g) , Γabv = 0 , ΓvAB arbitrary (3.4)

(ΓABC(g) are the components of the Levi-Civita connection of the spatial metric gAB)

satisfies this condition. As the existence of such a connection does not appear to play

a significant role in the context we are interested in, there is also no reason to restrict

the soldering transformations to the group of transformations that preserve the connection

(which would be finite-dimensional).

In the Carrollian setting, the more general allowed soldering transformations (2.15)

appear as a subgroup of what (again by extrapolation from I+) are called Newman-Unti

transformations. Due to its I+ pedigree, the Newman-Unti group also contains conformal

isometries. In the present context of the soldering of horizon shells, conformal isome-

tries are not allowed (as they fail to satisfy (2.11)), and the relevant group is the group

Sol(N, g) (2.17) of soldering transformations.

3For the converse question, how to embed a given Carrollian manifold as a null hypersurface into an

ambient space-time, see [22, 23].
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4 Off-horizon shell extension of the soldering transformations

In keeping with the framework we have adopted for discussing shells, we now need to

understand how to extend the soldering transformations off the shell N in such a way that

the entire metric remains continuous across the shell,

[gαβ ] = 0 . (4.1)

We thus asume that we have a “seed” metric which satisfies (4.1) (in the example of

section 6 this is simply the Schwarzschild metric in Kruskal coordinates, with an empty

shell on the horizon U = 0).

We now want to lift the soldering transformation generated by Z = Zv∂v on N to a

coordinate transformation in an infinitesimal neighbourhood of one side of the shell, say

V+, in such a way that the continuity of the metric (4.1) is maintained. I.e. we extend the

vector field off N as

Z+ = Zv∂v + uzα∂α (4.2)

and impose the requirement that

LZ+gαβ |N = 0 . (4.3)

Because on N the vector field generates a soldering transformation, the conditions

LZ+gab|N = 0 (4.4)

are identically satisfied. Indeed, since

Z+|N = Zv∂v , ∂aZ+|N = (∂aZ
v)∂v , (4.5)

one has
LZ+gab|N = (Zv∂vgab + ∂aZ

αgαb + ∂bZ
αgaα) |N

= (Zv∂vgab + ∂aZ
vgvb + ∂bZ

vgav) |N = 0
(4.6)

because on the null horizon shell ∂vgab = gav = 0. It thus remains to impose the conditions

LZ+guβ |N = 0 . (4.7)

These are linear equations for the coefficients zα,

β = u : Zv∂vguu + 2zαgαu = 0

β = v : Zv∂vguv + (zu + (∂vZ
v))guv = 0

β = B : Zv∂vguB + zαgαB + (∂BZ
v)guv = 0

(4.8)

(here the restriction to N is implied).

In particular, if we now restrict to metrics with

guu = guA = 0 , (∂vguv)|N = ∂v(guv|N ) = 0 , (4.9)

– 9 –
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(typical examples would be spherically symmetric metrics in null or double-null coordi-

nates like the Schwarzschild metric in Eddington-Finkelstein or Kruskal coordinates), the

solutions to the above equations are

zv = 0 , zu = −∂vZv , zA = −guvgAB∂BZv . (4.10)

E.g. for the Schwarzschild metric in Kruskal coordinates (with u = U, v = V ) one has

zV = 0 , zU = −∂V ZV , zA = (2/e)σAB∂BZ
V , (4.11)

with σAB the standard metric on the unit 2-sphere. Defining the function ω(v, θ, φ) by

ZV = V ω(V, θ, φ) , (4.12)

the generator (4.2) of the off-shell extension of the soldering transformation can be rewritten

in the suggestive form

Z+ = ω (V ∂V − U∂U ) + U
(
zA∂A − V (∂V ω)∂U

)
(4.13)

of a “local Killing transformation” (with respect to the Kruskal Killing vector ∼ V ∂V −U∂U
and with local coefficient ω(V, θ, φ)), as was first found in the discussion of the asymptotic

symmetries of Killing horizons in [10]. That the soldering transformation can be writ-

ten as a local Killing transformation is even more transparent in Eddington-Finkelstein

coordinates, with Killing vector ∂v, where (4.2) has this form on the nose.

In principle this can now be exponentiated to find the exact coordinate transformation

to linear order in u. In practice, however, this is a bit tedious, and in the following we will

obtain this transformation directly, starting from the ansatz

v+ = F (xa) + uA(xa) , xA+ = xA + uBA(xa) , u+ = uC(xa) (4.14)

(the linear term uA in v+ will be generated by exponentiation of (4.10)), and demanding

continuity of the metric, [gαβ ] = 0. Continuity of guα then determines the functions

Bα = (A,C,BA).

5 From soldering to the physical properties of the shell

Assuming that we have successfully implemented the steps of finding a non-trivial soldering

transformation and its off-shell lift, we can now determine (pretty much read off) the

physical properties of the shell.

We just need to be slightly more specific about our conventions regarding the choice of

normal vector. Recall from section 2 that the shell is given by the equation Φ(x) = λu = 0.

A null normal (and tangent) to N is then given by

nα = −∂αΦ|N = −λ∂αu|N . (5.1)

Here the sign is chosen such that nα is future pointing when Φ increases towards the future,

and we absorb the freedom to multiply nα by an arbitrary non-vanishing function on N

– 10 –
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into the freedom in the choice of Φ. Since on N we had already chosen n = ∂v, this

correlates the choice of Φ with the choice of coordinate v,

nα∂α = na∂a = ∂v . (5.2)

As the metric is continuous across the shell in the chosen coordinates, so are all its tangential

derivatives. In order to be able to take derivatives in the direction transverse to the shell,

we need to introduce an auxiliary vector field N that is transverse to N , i.e. n.N 6= 0, and

continuous across N , [N ] = 0. A convenient choice is

N = λ−1∂u ⇒ Nαnα = −1 . (5.3)

It then turns out that the complete information about the intrinsic physical properties of

the shell is encoded in the first transverse derivative of the tangential components of the

metric (the choice to make the non-tangential components gαu continuous was just a gauge

choice and has no influence on the physics). Therefore the basic shell-intrinsic tensor that

contains all information about the properties of the shell is

γab = Nα[∂αgab] = λ−1[∂ugab] = [LNgab] . (5.4)

A simple way to determine the γab is to expand the tangential components of the interior

and exterior metrics to linear order in u,

ds2 =
(
g
(0)
ab + ug

(1)±
ab + . . .

)
dxadxb , (5.5)

and to then read off the γab from

γab = λ−1
[
g
(1)
ab

]
. (5.6)

Starting from the soldering transformation v → F (v, yA), the γab are then given explicitly

in terms of F and its 1st and 2nd derivatives,

γab = γab(F, ∂aF, ∂a∂bF ) . (5.7)

In terms of the γab, the intrinsic energy-momentum tensor of the shell is in turn given by

16πSab = −γ∗nanb − γ†gab∗ + 2γ(anb) (5.8)

where gab∗ = δaAδ
b
Bg

AB is the inverse of the spatial (non-degenerate) part of the hypersur-

face metric and

γ∗ = gab∗ γab = gABγAB , γa = γabn
b , γa = gab∗ γb , γ† = γabn

anb = γan
a .

(5.9)

The components of Sab can be interpreted as surface energy density µ, pressure p and

energy currents jA, where

µ = − 1

16π
γ∗ , jA = +

1

16π
γA , p = − 1

16π
γ† . (5.10)
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In particular, the pressure is related to the jump in the surface gravity or inaffinity κ,

defined by

nβ∇βnα = κnα . (5.11)

Indeed, taking the scalar product with the transverse vector N and using N.n = −1 and

the definition of γab (5.4), one finds

κ = −nβNα∇βnα = (∇βNα)nβnα =
1

2
(LNgαβ)nαnβ =

1

2
(LNgab)n

anb , (5.12)

and therefore

[κ] =
1

2
γabn

anb =
1

2
γ† . (5.13)

Note that there is an ambiguity in the operational interpretation of the components of

Sab = µnanb + janb + jbna + pgab∗ (5.14)

due to absence of a rest-frame on the null shell N . As a consequence, different observers

upon crossing the shell will measure rescalings of µ, p and jA as described in detail in

section 3.11 of [4].

For a general null shell the surface energy-momentum tensor has only these 4 indepen-

dent components (in contrast to a timelike shell, which has 6), while γab has 6 components.

Indeed it is evident from the expressions (5.9) that the transverse traceless components γ̂ab
of γab, characterised by

γ̂abn
b = 0 , gab∗ γ̂ab = 0 , (5.15)

do not contribute to the matter content on the shell encoded in Sab. Instead, these com-

ponents, which can be extracted from γab according to

γ̂ab = γab −
1

2
γ∗gab + 2γ(aNb) +

(
NaNb −

1

2
N.Ngab

)
γ† , (5.16)

contribute to the Weyl tensor on the shell and describe the 2 polarisation states of an im-

pulsive gravitational wave travelling along the shell. For more details on this gravitational

wave component in general see e.g. section 2.3 of [2].

Finally, we note that the shell energy-momentum tensor Sab satisfies certain conser-

vation laws derived in [1] (their derivation requires some care, due to the degeneracy of

the metric, and because Sab is only defined on the shell). In the absence of bulk matter

these are

Na

(
∂b + Γ̃b

)
Sab − SabK̃ab = 0 (5.17)

and

Sba;b =
(
∂b + Γ̃b

)
Sba −

1

2
Sbc∂agbc = 0 . (5.18)

Here

Sba ≡ gacScb =
1

16π

(
nbγa − δbaγ†

)
, (5.19)

– 12 –



J
H
E
P
0
3
(
2
0
1
6
)
0
2
9

a tilde over a quantity denotes an average value of the quantities from the two sides of the

shell, Γ̃b is the average of the null surface counterpart of the contracted Christoffel symbol,

defined (in the coordinates that we have used here) as

Γ±b = ∇±µ δ
µ
b = Γ±µµb , (5.20)

and finally Kab is the “transverse extrinsic curvature”, satisfying γab = 2[Kab] and given in

our coordinates simply by

K±ab = (2λ)−1g
±(1)
ab . (5.21)

It may be a bit puzzling that one obtains 4 equations for Sab. We will see that (5.17)

and the spatial components of (5.18) give rise to the 3 expected conservation laws for Sab.

The v-component of (5.18) (equivalently, the contraction of (5.18) with na), however, is

simply a geometric identity which (as such) is identically satisfied. Temporarily including

also bulk matter, this contracted equation reads

naSba;b =
[
Tαβn

αnβ
]

=
[
Tabn

anb
]
. (5.22)

Noting that naSba = 0, we find that the left-hand side is simply

naSba;b = −1

2
naSbc∂agbc = −1

2
SBC∂vgBC = −1

2
pgBC∂vgBC =

1

8π
[κ]θ (5.23)

where θ is the expansion of the null congruence on N . On the other hand, the Raychaudhuri

equation for this congruence reads (upon using the Einstein equations)

∂vθ +
1

2
θ2 + σabσab = κθ − 8πTabn

anb (5.24)

(with σab the spatial shear tensor). Since the left-hand side of this equation depends only

on the intrinsic geometry of N , its jump is zero, and therefore one finds [4]

[κ]θ = 8π
[
Tabn

anb
]

(5.25)

as a geometric identity, and comparison with the above shows that this is precisely the

content of (5.22). In the context of horizon shells, with no bulk matter, this equation is

identically satisfied (without any constraint on the pressure) because the expansion θ = 0.

The remaining 3 equations can be seen to be satisfied for the Sab that we derive in the

examples.4

6 Schwarzschild horizon shell in Kruskal coordinates

To illustrate the above construction, we will now look in detail at the Schwarzschild

(Kruskal) horizon shell. Thus we start with the Kruskal metric without a shell as our

seed metric, and then we generate non-trivial shells on the horizon between two equal mass

black hole metrics via soldering transformations and determine the physical properties of

the shell.
4We should add that the fact that we obtain 4 valid equations without any restrictions on the “type” of

the null hypersurface appears to contradict remarks in section 3.5 of [2] that this should not be possible.

– 13 –



J
H
E
P
0
3
(
2
0
1
6
)
0
2
9

6.1 General construction

In Kruskal coordinates the Schwarzschild metric is

ds2 = −2G(r)dUdV + r2dΩ2 , (6.1)

with

G(r) =
16m3

r
e−r/2m , UV = −

( r

2m
− 1
)

er/2m . (6.2)

We choose the horizon shell N to be the Kruskal horizon U = 0. As discussed in the

previous sections, we then have a large soldering freedom

V → F (V, θ, φ) (6.3)

as a consequence of the fact that the null generators are orbits of an intrinsic isometry of

the induced hypersurface metric, but we can also quickly rederive this from scratch here.

To that end, we introduce coordinates (U±, V±, θ±, φ±) on V+ (U ≥ 0) and V− (U ≤ 0)

respectively, so that we have

ds2± = −2G(r±)dU±dV± + r2±
(
dθ2± + sin2 θ±dφ

2
±
)

on V± . (6.4)

Therefore, the metric induced on the horizon N at U = 0→ r = 2m is

ds2±|N = 4m2(dθ2± + sin2 θ±dφ
2
±) . (6.5)

This induced metric is continuous across the shell (i.e. satisfies the Israel junction condi-

tion (2.2)) provided that we choose

θ+|N = θ−|N , φ+|N = φ−|N (6.6)

(up to isometry rotations). However, as this metric does not depend on the coordinates

V± (Killing horizon), we are free to choose any relation

V+|N = F (V−, θ−, φ−) (6.7)

between the coordinates V± while maintaining the junction condition.5 This is precisely

the soldering freedom (6.3) mentioned above.

As continuous coordinates we now choose the Kruskal coordinates

xα = (U, xa) = (U = U−, V = V−, θ = θ−, φ = φ−) , (6.8)

and the coordinates on the shell are then (naturally) taken to be ya = xa = (V, θ, φ). An

obvious candidate for the defining function Φ(x) with N = {x : Φ(x) = 0} is

Φ(x) = Φ(U) = λU (6.9)

5As already mentioned in section 2, we could of course equivalently perform this transformation on the

exterior coordinate V− instead of “hiding” it behind the horizon.
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with a constant λ to be suitably chosen. As explained in section 5, this gives rise to a

corresponding choice of null normal (5.1)

nα = −∂αΦ|N = −λ∂αU |N ⇒ n = na∂a = (λ/G(2m))∂V . (6.10)

In order to match with our choice of coordinates on N , we choose λ = G(2m), and thus n

and the transverse null vector field N with n.N = −1 (5.3) are

n = ∂V , N =
1

G(2m)
∂U . (6.11)

In order to determine the physical properties of the shell generated by the above soldering

transformation, we now extend the soldering transformation off the shell to a small neigh-

bourhood of N in V+ such that all the components gαβ of the metric are continuous across

the shell, not just those of the induced metric.

To the order in U necessary for the calculation of the energy-momentum tensor of the

shell, the off-shell extension of the soldering transformation has the general form (4.14)

V+ = F
(
V, xA

)
+ UA

(
V, xA

)
, xA+ = xA + UBA

(
V, xA

)
, U+ = UC

(
V, xA

)
(6.12)

(with xA = (θ, φ)). Requiring continuity of the metric in Kruskal coordinates, specifically

of the components gUα, determines

C =
1

FV
, BA =

2

e

σABFB
FV

, A =
e

4
FV σABB

ABB , (6.13)

with σAB the components of the metric on the unit 2-sphere, and FV = ∂V F, FB = ∂BF .

Infinitesimally, this coordinate transformation reduces precisely to the transformation

given in (4.11), with A being generated as a higher order correction by exponentiation

of (4.11). One can easily show that A can be set to zero by adding higher order U2-terms

to the transformations of the remaining coordinates (which has no effect on the properties

of the shell itself).6 We can and will therefore set A to zero for the calculation below.

To calculate the energy-momentum tensor, we follow the procedure described in sec-

tion 5 and determine the γab from the first-order expansion of the metric (5.6)

γab =
1

G(2m)

[
g
(1)
ab

]
. (6.14)

While we only need the leading order term in G(r), G(2m) = 8m2/e, we need to expand

r2 and sin2 θ+ to linear order in U . On V− we just need

r(UV )2 = 4m2 − 8m2

e
UV + · · · , (6.15)

and on V+ we have

r(U+V+)2 = 4m2 − 8m2

e
U+V+ + · · · = 4m2 − 8m2

e

UF

FV
+ · · ·

sin2 θ+ = sin2 θ + 2UBθ sin θ cos θ + · · ·
(6.16)

6This is an alternative way to understand the “gauge invariance” of the space-time components Sµν of

the shell energy momentum tensor under certain transformations of the space-time γµν discussed in [1].
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Putting everything together we obtain

g
(1)−
ab dxadxb = −(8m2/e)V σABdx

AdxB

g
(1)+
ab dxadxb = 8m2

(
−(2/e)dC dF + σABdx

A
(
dBB − (F/eFV )dxB

)
+ sin θ cos θBθdφ2

)
(6.17)

Using the explicit expressions (6.13), one then finds

γV a = 2
∂V ∂aF

FV
= 2∂a logFV

γAB = 2

(
∇(2)
A ∂BF

FV
− 1

2
σAB

(
F

FV
− V

))
,

(6.18)

where ∇(2) is the 2-dimensional covariant derivative associated with σAB. The explicit

expressions for the energy density, surface currents and pressure are then

µ = − 1

32m2πFV

(
∆(2)F − F + V FV

)
jA =

1

32m2π
σAB

FBV
FV

p = − 1

8π

FV V
FV

.

(6.19)

These quantities satisfy the conservation laws (5.17) and (5.18). We had already observed

that the null component of (5.18) is identically satisfied. The conservation law (5.17) can

be shown to be

(∂V + κ̃)µ+

(
∇(2)
A +

1

2
γAV

)
jA +

1

4

(
gABγAB − 4V

)
p = 0 . (6.20)

Here κ̃ is the average value of the surface gravity (inaffinity) on the two sides. Since V is

affine on V−, one has

κ̃ =
1

2
(κ+ + κ−) =

1

2
κ+ . (6.21)

Then it is straightforward to check that (6.20) is satisfied by the quantities in (6.19).

The spatial (angular) components of (5.18) become

∂V γAV = ∂AγV V ⇔ ∂V jA + ∂Ap = 0 , (6.22)

which are obviously also identically satisfied by virtue of (6.18). Note also that the (gra-

dient) currents have the additional property

∂BjA − ∂AjB = 0 . (6.23)

Finally, the two remaining components γ̂ab of γab (5.16) give the 2 polarisations of an

impulsive gravitational wave travelling along the shell, and we find in the above example

that they are

γ̂θφ = γθφ = 2
∇(2)
θ ∂φF

FV

γ̂θθ = − 1

sin2 θ
γ̂φφ =

1

2

(
γθθ −

1

sin2 θ
γφφ

)
=

2

FV

(
∇(2)
θ ∂θF −

1

sin2 θ
∇(2)
φ ∂φF

) (6.24)
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6.2 Special cases

In order to get acquainted with these shells and their properties, we now specialise the

above general construction in various ways.

• Dray ’t Hooft Shell

The simplest example is the Dray ’t Hooft shell [5] which one obtains from a constant

shift V+ = V + b, with

µ =
b

8π(2m)2
, jA = p = 0 . (6.25)

As γAB is pure trace for this constant shift, there is also no accompanying gravita-

tional wave contribution in this case. Thus all the horizon shells we are considering

that are generated by more general soldering transformations can be regarded as a

broad class of generalisations of the Dray ’t Hooft shell.

• Zero Pressure: p = 0

From p ∼ γV V ∼ FV V it follows that

p = 0 ⇒ F (V, θ, φ) = A(θ, φ)V +B(θ, φ) . (6.26)

This result, an angle-dependent affine transformation of V , can also be understood

from the fact that these are precisely the transformations that leave the inaffinity

(surface gravity) κ invariant, so that p ∼ [κ] = 0.

• Zero Pressure and Vanishing Currents: p = jA = 0

Since jA ∼ γV A ∼ FV A, we next deduce

jA = 0 ⇒ F (v, θ, φ) = aV +B(θ, φ) . (6.27)

• BMS Supertranslations of V

From this we learn that, up to the irrelevant rescaling V → aV (which is part of the

isometry (V,U)→ (aV, a−1U) of the Kruskal metric), BMS supertranslations

V → F (V, θ, φ) = V + T (θ, φ) (6.28)

can be characterised as precisely those transformations that lead to a shell with

zero pressure and currents. As we will see below, generically they will also generate

accompanying impulsive gravitational waves travelling along the shell.

The energy density for such a shell is

µ = − 1

32m2π

(
∆(2)T − T

)
, (6.29)

and correspondingly the conservation law (6.20) reduces to the evidently correct

statement

∂V µ = 0 . (6.30)
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Thus we can define a conserved shell energy E[T ] by integrating µ over the spatial

cross-section of the horizon. In this case, the 1st term in (6.29) does not contribute

and we are left with

E[T ] =
1

32πm2

∫ √
|gAB|d2x T (θ, φ) =

1

8π

∫
S2

T (θ, φ) . (6.31)

See the introduction for some discussions of this result.

• No Matter on the Shell: Sab = 0

With F = aV +B one finds that the remaining angular components γAB of γab are

γAB = (2/a)

(
∇(2)
A ∂BB −

1

2
σABB

)
. (6.32)

Thus, the requirement that also the energy density µ ∼ σABγAB vanishes is

µ = 0 ⇒ ∆(2)B = B . (6.33)

As there are no (non-singular) solutions to this equation (the eigenvalues of the

Laplacian are −`(`+ 1) ≤ 0), we conclude that

µ = 0 ⇒ B = 0 , (6.34)

so that the only transformations leading to a shell with vanishing energy-momentum

tensor are the constant rescalings F (V ) = aV , corresponding to the scaling isometry

in Kruskal coordinates already mentioned above.

• Nonexistence of Pure Impulsive Gravitational Waves

With B = 0, not only the trace of γAB is zero, but evidently γAB = 0. Therefore in

this Kruskal horizon shell example we have

Sab = 0 ⇒ γab = 0 . (6.35)

In particular, since the impulsive gravitational wave contributions are encoded in the

transverse traceless part γ̂ab of γab, this means that in the case at hand there can be

no pure impulsive gravitational waves without matter on the shell.

This should be contrasted with the case of null hypersurfaces in Minkowski space [24]

(cf. also section 2.4 of [2]) which, in the present setting, we can think of as Rindler

horizons. In this case matter and gravitational waves decouple and can exist inde-

pendently of each other.

Relaxing the assumption that B is smooth, one can find (almost) purely gravitational

impulsive wave configurations from the equation

µ ∼ ∆(2)B −B = λδ(2)(Ω− Ω0) (6.36)

where the δ-function represents a massless point source at fixed angle travelling along

N . This case has been considered in the context of black hole horizons and corrections
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to Hawking radiation in [11] (cf. also [25] for generalisations) and more recently in

the context of the holography and scattering from black hole horizons e.g. in [12]

and [13].

It thus appears that the more general expression for a shell with matter and impulsive

gravitational wave that we have presented here (e.g. the simple configurations arising

from BMS transformations) are smoothed out versions of this singular configuration

and can perhaps be employed in the above contexts.

• Matter without Impulsive Gravitational Waves: γ̂ab = 0

Finally we determine those soldering transformations that give rise to a shell that con-

tains matter but no impulsive gravitational waves. We see immediately from (6.24)

that a shell with no impulsive gravitational wave component must satisfy the hyper-

bolic equation

∇(2)
θ ∂θF −

1

sin2 θ
∇(2)
φ ∂φF = 0 (6.37)

and the constraint

∇(2)
θ ∂φF = Fθφ −

cos θ

sin θ
Fφ = 0 . (6.38)

The general solution to these two equations is

F (V, θ, φ) = A(V ) +B(V ) ~d.~r(θ, φ) (6.39)

for an arbitrary constant vector ~d, with ~r the unit vector on the 2-sphere,

~r(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ) . (6.40)

Thus absence of an impulsive gravitational wave implies that the coordinate transfor-

mation V+ = F (V, θ, φ) only includes monopole and dipole terms, a plausible result

(but we should note that this simple relation between dipole soldering transforma-

tions and absence of gravitational radiation holds only in Kruskal coordinates, not

e.g. in Eddington-Finkelstein coordinates).

In particular, choosing T (θ, φ) in (6.29) to be an eigenfunction Y`,m of ∆(2) with

` ≥ 2, say, one obtains a configuration with p = jA = 0, but µ 6= 0, accompanied by

an impulsive gravitational wave travelling along the shell.

While we only presented this one special case of horizon shells in detail, it is of course

straightforward to apply the procedure outlined above to other horizon shells, e.g. Reissner-

Nordstrøm, or joining the Schwarzschild black hole to an AdS Schwarzschild black hole etc.

In the cases we have looked at, including extremal Reissner-Nordstrøm, we have found no

special new features beyond those already encountered in the above Schwarzschild - Kruskal

example.
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7 Horizon shell in Eddington-Finkelstein coordinates

7.1 General construction

We will now briefly also look at the Schwarzschild Horizon Shell in Eddington-Finkelstein

coordinates,

ds2 = −fss(r)dv2 + 2dvdr + r2dΩ2 , fss(r) = 1− 2m

r
. (7.1)

In this case it is natural to make the choices Φ = r − 2m and n = ∂v. Of course one can

easily recalculate the γab from scratch with these choices. It is obviously more efficient,

however, to make use of the results of the previous section and to simply transform them

from Kruskal to Eddington-Finkelstein coordinates. However, there is one subtlety that

one needs to pay attention to.

Namely, since Kruskal V and the Eddington-Finkelstein advanced coordinate v are

non-trivially related by

V = ev/4m ,
∂v

∂V
=

4m

V
, (7.2)

so are the corresponding normal vectors,

∂V =
∂v

∂V
∂v =

4m

V
∂v . (7.3)

This leads to an opposite rescaling of the transverse vector N , thus of the γab, and therefore

to appropriate different rescaling of µ, jA, and p which are homogeneous in n of degree 0,1,2

respectively (cf. also section 3.11.5 of [4]). Thus for example, the correct expression for the

pressure in Eddington-Finkelstein coordinates is obtained not just by writing the Kruskal

soldering transformation as

V+ = F (V, θ, φ) = ev+/4m = ef(v, θ, φ) (7.4)

and substituting this into (6.19), but it requires an additional factor of V/4m. Proceeding

either way one finds for the γab

γvv =
8m

fv

(
e−f/4m ∂2v ef/4m

)
− 1

2m

γvA =
8m

fv

(
e−f/4m ∂v∂A ef/4m

)
γAB =

8m

fv

(
e−f/4m ∇(2)

A ∂B ef/4m +
1

2
σAB(fv − 1)

) (7.5)

and then

µ = − 1

8mπfv

(
e−f/4m∆(2)ef/4m + fv − 1

)
jA =

1

64m2π
σAB

(
2
fvB
fv

+
fB
2m

)
p = − 1

8π

(
fvv
fv

+
fv
4m
− 1

4m

)
.

(7.6)
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The one non-trivial conservation law (5.17) is now

(∂v + κ̃)µ+

(
∇(2)
A +

1

2
γAv

)
jA +

1

4

(
gABγAB −

4

m

)
p = 0 , (7.7)

which can be obtained directly from (5.17) or alternatively by transforming (6.20) according

to the above prescription. This equation is again of course identically satisfied though the

calculation to check this is somewhat lengthier than that in Kruskal coordinates. The

angular components of the conservation law are just the obvious Eddington-Finkelstein

counterpart of (6.22).

7.2 Special cases

• BMS Supertranslations of v

One potentially interesting special class of soldering transformations are horizon BMS

supertranslations of v [14–16]

v → f(v, θ, φ) = v + t(θ, φ) (7.8)

In this case the energy density, current and pressure are

p = 0 , jA =
1

128m3π
σAB∂Bt , µ = − 1

8mπ
e−t/4m∆(2)e t/4m (7.9)

Even though the conservation law (7.7) is non-trivial in this case, because of the

presence of both µ and the currents jA, it is nevertheless true (and evident from the

above expression for µ), that the energy density is conserved along the shell, ∂vµ = 0,

as in the case of Kruskal horizon supertranslations discussed in section 6.2. Therefore

we can again define an associated conserved energy E[t] given (after an integration

by parts) by

E[t] =

∫ √
|gAB|d2x µ = − 1

8π

∫
S2

1

4m
σAB∂At∂Bt . (7.10)

Since, when translated back to Kruskal coordinates, this transformation

V+ = V e t/4m, (7.11)

is not of the dipole form (6.39), this energy density and flux will almost invariably

be accompanied by an impulsive gravitational shock wave.

• Comparison to calculations in [1]

As our final illustration of the formalism, we look at a special case of the general

formulation to make contact with some simple solderings considered in [1]. The

general setting is that of two spherically symmetric space-times

ds2± = −e2ψ±f±dv
2 + 2eψ±dvdr + r2dΩ2. (7.12)

joined along their (common) static horizon at r = rs, where f±(rs) = 0. Restricting to

the case for which the interior and exterior geometries are those of the Schwarzschild
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black hole, f±(r) = fss(r), and choosing the exterior metric to be of the standard form

(with ψ− = 0), the non-trivial soldering is encoded in a non-trivial ψ+(v) = ψ(v),

leading to a discontinuity of the metric in these coordinates. In [1] it is then shown

how the energy-momentum tensor of the shell can be determined from the transverse

extrinsic curvatures of the metrics on the 2 sides.

Alternatively, this interior form of the metric can be obtained by taking the interior

metric in standard Eddington-Finkelstein coordinates (ψ = 0) and then applying the

soldering transformation

v+ = f(v) =

∫ v

eψdv . (7.13)

From (7.6) one then deduces immediately that this shell carries non-zero energy

density and pressure given by

µ =
1

8πm

[
e−ψ

]
, p = − 1

8π

[
∂vψ + κ0e

ψ
]

(7.14)

(κ0 = 1/4m is the surface gravity of the Schwarzschild black hole), in complete

agreement with equation (68) of [1].
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