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1 Introduction

There is a long history of no-go theorems for de Sitter solutions in string theory. Starting

with the supergravity work of Gibbons [1, 2] and continued by Maldacena-Nunez [3], no-go

theorems for dS have been formulated with ever increasing breadth [4–9] (see also [10, 11]

for related discussions). These works led to the recent proposal [12] that four-dimensional

theories derived from string theory, i.e. the string landscape, satisfy a universal bound,

referred to as the de Sitter swampland conjecture:

|∇V |
V
≥ c. (1.1)

The conjecture states that any four-dimensional effective field theory which violates this

bound does not have an embedding in string theory, and hence is in the so-called swamp-

land [13, 14]. Since [12], a number of works have studied and extended the above conjec-

ture [15–27].

The related swampland distance conjecture [14] states that the range traversed by

scalar fields in field space is bounded by ∆ ∼ O(1) in Planck units. More quantitatively,

the conjecture asserts that at large field excursion D that there emerges a tower of light

states with mass given by:

m ∼Mpe
−αD, (1.2)

where α is an order 1 number. This implies the breakdown of low energy effective field

theory, as can be seen for simple examples such as a Kaluza-Klein reduction on a circle, in

the limit when the circle becomes large.
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The combination of these two conjectures leads to interesting possibilities. As dis-

cussed in [28], it is easy to construct cosmological toy models that satisfy the swampland

conjecture (1.1) but violate the distance conjecture. It is also possible to construct cosmo-

logical toy models that satisfy both criteria. The prime examples of these cases are large

field inflation and quintessence respectively.

However, it remains to be determined what combination of these conjectures is realized

by string theory. In this context, two questions arise regarding the fate of the dS in string

theory:

1. Do there exist explicit solutions to the ten dimensional equations of motion that

violate (1.1)? If so, do they have descriptions as four dimensional effective field

theories?

2. Do there exist complicated field configurations which realize an exact or quasi dS4

without violating (1.1)? And again, if so, do they have a corresponding four dimen-

sional effective field theory?

In this work we study these questions by considering the explicit solutions to the ten-

dimensional equations of motion, working primarily in the 11-dimensional M-theory lift of

dS4 ×X6 in type IIB string theory, with X6 an arbitrary six-dimensional manifold.

As a prelude to this, we consider multi-field models with time-dependence, which

under certain conditions can be mapped to higher derivative single-field models. These

models allow for positive cosmological constant solutions without violating the swampland

conjecture (1.1), but there are no known embeddings of these models in string theory.

Despite that, these class of examples suggest the existence of a broader picture in which

time-dependent backgrounds in the string landscape would form the cornerstone to study

cosmological evolution of our universe.

We then consider the leading α′ corrections to type IIB string theory. These enter

the ten-dimensional action as higher derivative terms, and manifest themselves in four-

dimensions as corrections to the Kahler potential of the multifield model. At leading order

in α′, no static solutions exist, and hence solutions are intrinsically time-dependent. We

demonstrate that the swampland conjecture (1.1) is never violated in this setup, and that

any solution will eventually decompactify, implying that again the solution ceases to be in

the regime of four-dimensional effective field theory.

With these preliminary investigations in mind, we then undertake a more thorough

analysis of the effect of string corrections to supergravity. Our main tool in this analysis

will be a parametrization of the higher derivative corrections to the supergravity action

which arise from the α′ and string loop corrections. When lifted to M-theory, this manifests

itself as a complicated system of time-dependent equations of motion, of which one can

make a surprising amount of sense. This analysis confirms the intuition built by the

previous sections that the main players in assessing the dS swampland conjecture in string

theory are: (i) higher derivative corrections, (ii) multiple fields, and (iii) time-dependences.

The analysis from M-theory provides evidence, though not definitive conclusions, for

the answers to the above questions: we find that under certain conditions, there do exist
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dS4 solutions that violate conjecture (1.1), but they involve a tower of quantum corrections

and hence are not in the regime of four-dimensional low-energy effective field theory. If one

allows for a time-dependence of the cosmological constant, a so-called quasi -de Sitter space,

then it is possible to both satisfy the conjecture (1.1) and be a valid effective field theory,

consistent with the claims regarding quintessence in [28]. While more work is certainly

needed to solidify these results, we take this as evidence that fate of dS in string theory is

not yet sealed.

The outline of this paper is as follows: in section 2 we consider toy models with time-

dependence. In section 3 we consider the leading α′ correction to type IIB string theory,

and in section 4 undertake a more complete analysis via a lift to M-theory. We conclude

in section 5 with directions for future work.

2 Towards a background with positive cosmological constant in the land-

scape

It has been argued in [12] that the time-dependent fields may allow for positive cosmologi-

cal constant solutions1 without a violation of the swampland conjecture. Similarly, recent

work [26] has argued that multi-field models have the potential for allowing a quasi-dS solu-

tion, i.e. inflation, without a violation of the swampland conjecture. Here we demonstrate

the relation between these approaches, and argue that vacua with positive cosmological

constants are indeed possible without a violation of the swampland conjecture. This pro-

vides a way of realizing positive cosmological constant solutions from time-dependent fields.

Interestingly, doing so leads to higher derivative terms in the single field effective action.

We start with the action of a non-linear σ model,

L =
√
−g
[
−GIJ(φ)∂µφ

I∂µφJ − V (φ)
]

(2.1)

where φI are a set of N scalars, GIJ is the metric on the kinetic manifold, and V (φ) is the

potential, both of which in principle depend on all the φI . For simplicity we work with a

two-field example where only one of the fields has a non-canonical kinetic term, and the

potential depends only on this field. We consider:

L =
√
−g
[
−1

2
f(χ)(∂φ)2 − 1

2
(∂χ)2 − V (χ)

]
(2.2)

The swampland conjecture for this theory reads,

|V,χ|
V (χ)

≥ c, (2.3)

independent of φ. Clearly, if the kinetic mixing between χ and φ induces dynamics for φ,

the above swampland conjecture does not capture the full dynamics of the theory. This

potentially allows for interesting cosmological solutions without violating the above bound.

1By positive cosmological constant solutions, we will always mean solutions for V > 0 without all the de

Sitter isometries. For example in section 4 we will see an example where the four-dimensional metric is de

Sitter like but the fluxes break the de Sitter isometries.
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As discussed in [44], provided the field χ has a positive mass, the two field model above

is classically equivalent to a single-field higher-derivative action for φ, of the form

L =
√
−gP (X) , X = −1

2
(∂φ)2. (2.4)

The mapping between the two descriptions is given by [44],

f(χ) = P,X |X=M3
pχ
, V (χ) = [XP,X − P ] |X=M3

pχ
, (2.5)

where ,X denotes a derivative with respect to X. This matching is consistent provided

P,X > 0. In general, P (X) theories are valid even when P (X) = 0, however in this case the

matching is only classical and the P (X) theory does not have a two field UV completion.

The utility of the higher derivative action (2.4) is the ease of constructing de Sitter

solutions. Such a solution exists at X = X0 > 0 provided two conditions are satisfied:

P,X(X0) = 0 , P (X0) = −ΛM2
p (2.6)

The first condition is required by the equations of motion, while the second condition is

required for the solution to be de Sitter space. One can easily check that this indeed solves

the equations of motion of the two-field model,

χ̈+ 3Hχ̇+ f,χX = V,χ

f(χ)φ̈+ 3Hf(χ)φ̇+ f,χχ̇φ̇ = 0, (2.7)

which are solved by f(χ) = P,X = 0, χ̇ = 0, and f,χX−V,χ = 0. However, the requirement

that f(χ) = 0 implies that the de Sitter solution does not have a two-field UV completion.

Nonetheless, motivated by the connection to multifield models, we will proceed to study

de Sitter solutions in P (X) theories, and will use the multifield models only to rephrase

the swampland conjecture.

Explicit examples of P (X) models that give dS minima are not difficult to find. Con-

sider the choice:

P (X) = −X
2

M4
p

+
X4

4M10
p Λ

, (2.8)

where Λ, chosen for later convenience, has dimension of M2
p . Recalling the equation of

motion is ∂t(
√
−gφ̇P,X) = 0, this admits a solution satisfying P,X(X0) = 0,

X0 =
√

2M3
p

√
Λ. (2.9)

One can easily check that this satisfies the requirements for a dS solution (2.6). The

solution for φ is time-dependent, and is given by

φ(t) = φ0 + (8Λ)1/4M3/2
p t (2.10)

Moreover, this solution satisfies the conditions for the quantum mechanical consistency of

a P (X) theory. The theory expanded about the X = X0 vacuum is,

P (X) =
2X2

M4
p

+
X4

4M10
p Λ

+

√
2X3

√
ΛM7

p

− ΛM2
p , (2.11)
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which satisfies the quantum mechanical consistency conditions of a P (X) theory (see

e.g. (66) of [45]):

P,X ≥ 0 , P,X + 2XP,XX ≥ 0, (2.12)

where X has been redefined as X → X +X0.

With the working P (X) theory in hand, one can easily deduce the corresponding two-

field model. For the above case, the corresponding two field model is,

f(χ) = −2
χ

Mp
+

χ3

MpΛ
, V (χ) = −M2

pχ
2 +

3

4

(
M2
p

Λ

)
χ4. (2.13)

The P (X) solution above corresponds to the time dependent φ given above and a constant

VEV for χ:

χ0 =
X

M3
p

=
√

2Λ. (2.14)

This solution gives f(χ) = 0 and hence the two-field model cannot be consistently quantized

in the dS minimum. Nonetheless, the mapping is consistent classically, and from this we

can apply the dS swampland conjecture.

The conjecture takes a simple form, in Planck units Mp = 1,

|V,χ|
V (χ)

=
|X0P,XX(X0)|

Λ
> c, (2.15)

and thus becomes a constraint on the second derivative of P (X). For the model above, the

swampland conjecture reads,

c .
4
√

2√
Λ
, (2.16)

which is easily satisfied for a small cosmological constant. Indeed in the present universe,

Λ ∼ 10−122M2
p , and the bound reads c < 10122. Thus we find that positive cosmological

constant solutions can exist without violating the swampland conjecture. This also applies

to quintessence or inflationary models that can be realized as a small deformation of this

field configuration.

However, one can immediately see from (2.10) that this P (X) theory ceases to be

an effective field theory at late times, t ∼ 1/
√
Mp

√
Λ, at which point the field excursion

becomes Planckian ∆φ ∼ Mp, violating the swampland distance conjecture. This points

towards the possibility that while dS or quasi-dS solutions may exist without violating the

swampland conjecture, these solutions are not low energy effective fields theories.

3 Type IIB string theory and stringy corrections to the Kahler potential

Motivated by the previous section, we now consider Type IIB string theory, and the effect

of including perturbative corrections. As we will see, the leading α′ correction introduces

the necessary ingredients: modified kinetic terms and time-dependences, but in itself not

sufficient to realize dS or violate the swampland conjecture.
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3.1 No scale compactification

We start by considering a no-scale compactification, specified by the Kahler potential

K0 = −3log
(
T + T

)
≡ −2logV, (3.1)

and a constant superpotential:

W = W0. (3.2)

The classical scalar potential of this theory is given by the standard N = 1 d = 4 expression,

V = |W0|2eK
(
K ,T T̄K,TK,T̄ |W0|2 − 3

)
, (3.3)

which vanishes for the no-scale model. Considering only the single chiral superfield T , the

mass spectrum is given by,

m2
ψ = 3m2

3/2 =
3|W0|2(
T + T

)3 , m2
ReT = 0 , m2

ImT = 0, (3.4)

There is an additional tower of KK-modes, with masses quantized in units of

mKK = Mp ·
Mp

(T + T )
. (3.5)

When expressed in terms of the canonically normalized volume modulus ϕ
Mp

=
√

3
2 log

(
φ
Mp

)
,

φ = Re T , the KK mass takes the form

mKK = Mp · e
−
√

3
2
ϕ/Mp , (3.6)

which realizes the swampland distance conjecture (1.2). Typical constructions of inflation

in string theory take volumes V ∼ 103 and hence φ ∼ 50 − 100Mp, in which case mKK ∼
10−2Mp and the KK modes are very heavy. In particular, we note that this corresponds

to super-Planckian values for the canonical scalar field ϕ ∼ 5Mp.

Let us contrast the situation here with that of a U(χ) = m2χ2 potential that is

derived as a perturbation expansion about χ = 0. This is the case for complex structure

moduli, which have a mass proportional to |W0|2, or for brane position moduli, with χ the

fluctuation of the position of the brane about a fixed position r0. In that case, one expects

new light degrees of freedom for large field excursions, as discussed in [28]. However, for

the volume modulus, the supergravity limit is only applicable in the limit that φ > Mp in

the first place. For smaller volumes, one expects massive string states to become massless.

Thus it is only for intermediate volumes, e.g. φ ∼ 100, that this effective description is

valid. Here we will show that the swampland conjecture cannot be violated in this regime.

As a final comment on the field range of φ, we note that the initial condition for φ

in the early universe may be in any of the three regimes: small, intermediate, large. The

first case arises in string gas cosmology, while the second arises in string inflation, and the

latter has been consider as a pre-inflationary state in [43].
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3.2 String theory corrections to Kahler potential and the swampland

We now consider the effect of stringy corrections to the four-dimensional supergravity

description which break the no-scale structure. As emphasized in [8], supersymmetry is

broken by taking W0 6= 0, and in this in fact leads to a breakdown of perturbation theory,

since the string-theoretic tower of no-scale breaking corrections to the Kähler potential

will each generate a classical scalar potential for the resulting supergravity theory. One is

forced to consider a corrected Kahler potential of the form,

K = K0 +
∑
nm

δKmn

(
α′
n
, gms

)
, (3.7)

where δKmn is the correction to the Kahler potential at order α′n and gms .

A systematic analysis of corrections to the Kähler potential was done in [35]. The

result of [35] is summarized as [38],

K ' −2logV +
k1

V2/3
+
k2

V
+

k3

V4/3
+ . . . (3.8)

where k1, k2, k3 are parameters to be computed in a given model. The first term is a α′2

correction [41, 42], the second term is the α′3 correction, and the third term is a string

one-loop correction. Beyond this, the precise corrections are not known.

We will for the moment study only the leading α′ correction, first worked out by [40].

The Kahler potential is given by,

K = −2 · log

(
V̂ + α′3

ξ̂

2

)
,

ξ̂ = − ζ(3)χ

4
√

2(2π)3
· (S + S̄)3/2 , (3.9)

where χ is the Euler number of the Calabi-Yau, and S is the dilaton. The dilaton S is

fixed at a constant value by the background fluxes, encoded in W0. One finds for the scalar

potential,

V = − 3W 2
0 ξ

ξ3 − 24ξφ3 − 32
√

2φ9/2
' +

3W 2
0 ξ

32
√

2φ9/2
+O(ξ2), (3.10)

while the mass formulae become

m2
3/2 =

|W0|2

8φ3

(
1− ξ√

2φ3/2

)
, m2

ψ = 3m2
3/2 (3.11)

m2
ReT =

297|W0|2

128
√

2

ξ

φ13/2
, m2

ImT = 0. (3.12)

This potential is of the runaway type: for positive ξ (negative χ) the volume runs away to

∞ while for negative ξ (positive χ) the volume collapses to 0. The potential for positive ξ

is shown in figure 1.

The lack of minimum at finite volume indicates that there is no stable background

about which to compute non-perturbative corrections, as suggested in [8]. However one
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V(ϕ)

Figure 1. Potential V (φ) from leading α′ correction with positive ξ (i.e. negative χ).

may still study the perturbative dynamics in this unstable background, since despite the

non-existence of a stable background solution, there do exists rolling solutions.

With this in mind, we now turn to the swampland conjecture. Importantly, note that

∇V is defined as
√
gij∂φiV ∂φjV , where and hence depends on metric on the kinetic field

space manifold. It is thus easiest to evaluate the swampland conjecture in terms of the

canonical field,

ϕ

Mp
=

√
3

2
log

φ

Mp
. (3.13)

Then one can easily compute the quantities involved:

|∇V |
V

=
9

2
·
√

2

3
(3.14)

And hence the swampland condition is satisfied for all values of φ, even for φ � Mp.

However, similar to section 2, this setup violates the swampland distance conjecture at

late times, indicating an eventual breakdown of effective field theory.

4 Quantum corrections and de Sitter from M-theory

We now turn to a thorough analysis of the equations of motion. The swampland criterion

rules out four-dimensional de Sitter solutions from string theory so the natural question is

whether this is borne out of the no-go conditions proposed in [4] and [7]. Both of these

no-go conditions are in fact the refined forms of the no-go conditions originally proposed

in [1, 2] and [3], and deal with eliminating all classical sources, including orientifold planes

and anti-branes, that were originally thought of giving rise to four-dimensional de Sitter

vacua from string theory. In [4] it was proposed that a severe fine-tuning may be required to

realize any hope of getting a four-dimensional de Sitter solution. Whether such fine-tunings

are indeed possible was not discussed in [4], and here we want to not only discuss this aspect

of the construction but also measure it against the swampland criteria of [12, 28].

4.1 Vacua with de Sitter isometries and their M-theory uplifts

Our starting point then is the assumption that there does exist a four-dimensional de

Sitter solution in type IIB string theory, and we ask what kind of quantum corrections are

– 8 –
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required to fully realize such a solution. To simplify certain aspects of the computations,

we will use M-theory uplift to study the various ingredients entering our analysis. Needless

to say such uplifting do not change any physical aspects of the results, and we could have

analyzed this directly from type IIB also as was shown in [7], but the sheer brevity of the

expressions from M-theory is an attractive alternative to the somewhat tedious exercise of

keeping track of the multiple fields in type IIB theory.

The type IIB background that we want can be expressed in terms of a six-dimensional

compact internal space with an unwarped metric gmn in the following way:

ds2 =
1

Λ(t)
√
h

(
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+
√
hgmndy

mdyn, (4.1)

where Λ(t) is a time-dependent function, ym are the coordinates of the internal space, and

h is the warp-factor that could be a function of all the internal coordinates. For simplicity

however we can take h(r) to be a function of the internal radial coordinate. The dilaton

remains a constant so the string and the Einstein metric coincides. Note that the way

we represented the background, the internal space is time independent and therefore the

four-dimensional Newton’s constant will be time independent. We will also take:

Λ(t) ≡ Λ|t|2, (4.2)

with Λ > 0 so that the four-dimensional metric in (4.1) is indeed a de Sitter space.2 Our

aim now is to answer two set of questions that are related to (4.1). The first is to ask

whether all the fluxes and the quantum corrections that go in the construction of (4.1)

can be time independent. The second is to investigate on the minimal set of quantum

corrections needed to actually realize a background of the sort given in (4.1).

Answering both these questions will take us to M-theory where the analysis will be

much more tractable, as mentioned earlier. To lift the background (4.1) to M-theory, we

will compactify the x3 direction to a circle and fiber it over the x11 circle to form a torus

T2 of complex structure τ = i. Let us denote the complex coordinate of the torus by z.

As is well known, in M-theory we have to deal with a eight-dimensional manifold, which

is in fact the torus T2 fibered over a six-dimensional base. However compared to what

we had in (4.1), neither the base nor the fiber of our eight-dimensional space can be time

independent. The precise metric is [4]:

ds2
8 =

gmndy
mdyn

Λ1/3|t|2/3
+ Λ2/3|t|4/3|dz|2, (4.3)

where one could see that as time progresses the size of the six-dimensional base increases

whereas the size of the fiber torus shrinks. This will take us to type IIB theory at late times

but the background there may not have the full de Sitter isometries. In the M-theory side,

one might be worried that supergravity analysis could not be valid at early times if the size

of the base approaches Planck’s length, and it is indeed a genuine concern so for the time

2We are essentially using the so-called flat slicing for a four-dimensional de Sitter space. This does not

globally cover de Sitter, in fact they only cover the top triangle, although there is a relation between flat

slicing and global coordinates. Note that in this coordinate system time flows from t = −∞ to t = 0.
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being we will restrict our study within the allowed range of time evolution. Of course as

we shall soon see, quantum effects are essential to consistently realize a background of the

form (4.1), so in the end it is not just supergravity analysis that we require, but a more

detailed analysis with quantum corrections. On the other hand in the type IIB side, as is

evident from (4.1), nothing untoward happens to the internal six-dimensions at early times.

Keeping all these in mind, let us first switch on G-fluxes Gmnpq,Gmnpa and Gmnab on

the internal eight-dimensional space, where m,n denote coordinates on the six-dimensional

base, and a, b denote coordinates on the fiber torus. These fluxes generically cannot be all

time independent, but we can keep the components Gmnpa to be time-independent without

loss of generalities. However, as argued in [4], to solve EOMs consistently we also require

a spacetime component of the three-form flux of the form:

Cµνρ =
εµνρ

hΛ2|t|4
, (4.4)

where µ, ν denote 2+1 dimensional spacetime coordinates and h is the warp-factor ap-

pearing in (4.1). The three-form flux increases in value as time progresses, and the time

dependence of (4.4) and some of the other G-flux components already tell us that the

background (4.1) when dimensionally reduced to four-dimensions will have time dependent

moduli fields therefore cannot quite have all the de Sitter isometries. Such dependences

should remind the readers of the time-dependent cases discussed earlier, but at this stage it

is a bit premature to make concrete conclusions. We need more details, and in the following

we elaborate the story further emphasizing on the EOMs and the quantum effects.

The first issue that we want to concentrate on is the time dependence of the internal

fluxes exemplified above. For concreteness we have taken all possible components of the

fluxes, and using these let us define an integral of the form:

I1 =

∫
Σ8

d8x
√

g8

(
GmnpqGmnpq + GmnpaGmnpa + GmnabGmnab

)
, (4.5)

subset of which is basically the terms responsible for a part of the cosmological constant.

In type IIB language the first term is the five-form contribution, the second term is the NS

and RR three-form contributions and the third terms is the RR three-form contribution.

In other words we are switching on:

Cmna(y, t) = Cmna(y) + δCmna(y, t)

Cmnp(y, t) = Cmnp(y, t) + δCmnp(y, t)

Cmn3(x11, t) = Cmn3(x11, t) + δCmn3(x11, t), (4.6)

where δC denote fluctuations above the background values of the corresponding fields.

Note that, according to our choice, we have kept Cmna to be time-independent. However

subtleties appear from the time dependences of the background values of other two com-

ponents in (4.6) as de Sitter isometries can be broken from their time-dependences. One

way out would be to take vanishing values for the Gmnpq and Gmnab components. Alter-

natively, we can assume that the time-dependences are very slow.3 Taking the latter into

3In other words, ∂[mCnpq] � Ċnpq.
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considerations, the above choices of the internal fields now give rise to another integral of

the form:

I2 =

∫
Σ8

d8x
√

g8

(
G0npqG0npq + G0npaG0npa

)
, (4.7)

where the absence of the G0nab piece can be accounted from the choice (4.6). The logic

behind the two integrals, (4.5) and (4.7), should be clear from the following decomposition

of the three-form flux in M-theory:

δCMNP (y, t) =

b3∑
i=1

ϕi(y, t)⊗ Ω
(i)
MNP (y), (4.8)

where Ω
(i)
MNP (y) are the harmonic three-forms on the eight-manifold Σ8 in (4.3) and b3

is the third Betti number of Σ8. The next level of subtlety now appears from the time

dependence in (4.3). However if the topology of Σ8 does not change, we expect Ω
(i)
MNP to

not change very much and so all variations with respect to time should appear in the scalar

fields ϕi. Such a state of affair then tells us that I2 and I1 precisely give us the kinetic

and the potential terms of the scalar fields respectively. In fact if we also allow the other

components of the G-flux namely Gµmnp and Gµmna, where µ are all the three-dimensional

coordinates, then:∫
d3x
√
−g3 (I1 + I2) = −

∫
d3x
√
−g3

[
1

2

n∑
k=1

∂µφk∂
µφk − V ({φk})

]
, (4.9)

with φk now denoting the canonically normalized scalars from ϕk, and V ({φk}) being the

potential of all the scalars appearing in the spectrum. Note that the upper limit of the sum

in (4.9) is no longer b3 but n ≡ b3 + h11 + 2h31 that involves the Hodge numbers h11 and

h31 of the eight-manifold.4 These additional scalars come from the metric fluctuations.

The story now is closer to what we discussed in earlier sections, albeit now in three-

dimensions. The M-theory analysis reproduces a potential V ({φk}) for the scalars φk in

the dimensionally reduced spacetime. For all of these to make sense the potential has to

be time independent. The time derivative of I1 gives us:

∂I1
∂t

=

∫
Σ8

d8x

√
g8

hΛ|t|2

[
∂

∂t
(GmnpqG

mnpq) +
1

Λ2|t|4
∂

∂t

(
GmnabG

mnab
)]

−
∫

Σ8

d8x
2
√
g8

hΛ|t|3

(
GmnpqG

mnpq +
3GmnabG

mnab

Λ2|t|4
+

2GmnpaG
mnpa

Λ|t|2

)
, (4.10)

where Gmnpq, Gmnab and Gmnpa are the unwarped versions of the G-fluxes as given in

eq. (5.9) of [4]. Similarly g8 is the unwarped metric of the eight-dimensional space Σ8

given in (4.3). A similar integral, but with slightly different time-dependent coefficients,

will appear in the type IIB side too but because of the self-dual nature of the five-form it is

4Assuming of course that the eight-manifold Σ8, at any given time, allows for an integrable complex

structure. If it doesn’t then the analysis will be more involved. Here we will avoid these subtleties.
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difficult to write this explicitly. However one might go to the non self-dual type IIB action

where an integral like (4.10) can indeed be written (with additional constraints).

Demanding the vanishing of such an integral seems to imply time-dependences of the

G-flux components, although in the type IIB side if we only retain the Gmnpa components,

which are time-independent, the integral (4.10) could vanish.5 Of course we haven’t yet

introduced any quantum effects so any such conclusions based on classical flux configura-

tions should be considered incomplete. In the following section, we therefore proceed to

the next stage of our analysis related to the quantum corrections.

4.2 Equations of motion and quantum effects from M-theory

The quantum corrections appear from variety of sources in M-theory: there are higher order

curvature corrections, higher order G-flux corrections, and M2 and M5-brane instantons

corrections. As discussed in [4], these corrections may be divided into topological and non-

topological pieces and in the following we will concentrate only on the polynomial parts

of the bosonic non-topological corrections around weak curvatures and small G-flux field

strengths. These may be expressed as:6

VQ ≡
∑

m,n,p,q

∫
d8x
√

g8

(
Cmnpq�mRn�pGq +Dmnpq�m (Rn)rs�

p (Gq)rs + . . .

M2m+2p+q+2n−8
p

)
, (4.11)

where Cmnpq,Dmnpq are constants and the powers of the curvature and the G-flux, which are

raised and lowered by the warped metric components, are contracted in appropriate ways

as described in [46–55]. The dotted terms involve higher tensorial contractions. All these

terms are suppressed by powers of Mp, and we will discuss later what kind of hierarchies

exist between them. For example Rn and Gm may be constructed using multiple possible

contractions.7 Thus to make sense of VQ one will have to impose some extra hierarchies

to restrict the series to only finite number of terms. For the time being we will proceed

without worrying too much about this, and express the quantum pieces as the following

three-dimensional integral:

I3 = M3
p

∫
d3x
√
−g3VQ. (4.12)

Combining this with (4.9) will give us the complete picture in three-dimensions. If we

shrink the fiber-torus of Σ8 to zero size this will take us to type IIB theory where we can

have a four-dimensional description. The quantum piece therein will be related to (4.11)

via the duality map, and so would be the energy-momentum tensor whose typical form, in

5This in turn will also avoid introducing non self-dual type IIB action.
6In string theory or M-theory the fields are taken to be dimensionless, therefore it is the derivative

expansion that matters. This is used to fix the dimensions.
7For example R2 ≡ c0R

2 + c1RmnR
mn + c2RmnpqR

mnpq + . . ., where ci are constants and the dotted

terms are other possible contractions. Similar expansions may be made for G2 and higher powers of R and

G. In fact existence of terms like these can help us to get the Born-Infeld action with multi Taub-NUT

spaces for type IIA D6-branes [56–60].
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three-dimensions, may be written as [4]:

TMN = − 2√
−g11

δI3
δgMN

≡
∑
i

h1/3
(
Λ|t|2

)αi C(i)
MN , (4.13)

where C(i)
MN are functions of h, gMN ,Mp and the background three-form flux CMNP . The

time dependences are extracted out of each terms in such a way that C(i)
MN ’s are all time

independent. Clearly if we arrange the series (4.13) with decreasing αi, i.e if we make the

following arrangements:

αi > αi+1, (4.14)

then there is some hierarchy between the various quantum terms, at least perturbatively.

This hierarchy will be lost if αi = 0. The logic behind such an arrangement is to note that

the type IIA coupling gs is proportional to:

gs ∝
(
Λ|t|2

)1/2
h1/4, (4.15)

which decreases slowly with time towards weak coupling, but is strongly coupled at early

times. In this sense M-theory is the correct description of the background at early times,

and therefore (4.14) does indeed provide some hierarchy between the various quantum

pieces when gs < 1.8 To see how this works out precisely let us first consider some time-

neutral terms in the quantum sum:

Λ(1) ≡
GmnpqG ab

mn Gabpq

M3
p

, Λ(2) ≡
R2RabRabG

mnabGpqabG
pqcdGcdmn

M12
p

(4.16)

Λ(3) ≡
GrsabG

rsabR[mn][pq]R
[mn]GpqcdR[cd]

M9
p

, Λ(4) ≡
RRmnpqG

mn
abG

pqab

M6
p

Λ(5) ≡
R2GmnabG

mnab

M6
p

, Λ(6) ≡
�2GmnabG

mnab

M6
p

, Λ(7) ≡
(�R) GmnabG

mnab

M6
p

,

where we have assumed that the warp-factor h is a function of all the coordinates of the

eight-manifold so that Rab is non-zero, the G-flux components with all lower indices are

time independent,9 and � here is defined with respect to the six-dimensional base only.10

8Note however that the situation at hand is more subtle than one might have anticipated. Consider for

example the case where gs < 1 at certain time t0. The hierarchy that we gain with such weak-coupling

scenario quickly fades away when gs > 1 at an early time. The effective field theory is no longer under

control at an earlier time as an infinite series of higher order corrections become relevant. This is of course

one of the many issue that one would face describing a four-dimensional theory from the type IIA side, but

the breakdown of any effective field theory that we want to discuss here will be unrelated to the early time

strong coupling effect that appears here. One interesting point to note however is that, as t → −∞, the

three-form flux (4.4) goes to zero faster than the M-theory metric. If the other flux components are time

dependent, and goes to zero at early times, then this is where the full de Sitter isometries should be visible

in the type IIB side.
9The fact that this is indeed possible is the subject of this section and will be rigorously demonstrated

below.
10� ≡ 1√

g6
∂m
(√

g6g
mn∂n

)
where g6 is the determinant of the six-dimensional base metric of Σ8.
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Note that Λ(i)’s do not scale with respect to time but appear with different orders in

Mp. Now imagine we want to extract a term of the form
(
Λ|t|2

)αi from the quantum

series (4.12). Such a term can appear from various pieces in the quantum series (4.12)

or (4.11) in (4.13). For example let us first construct the following series:

1

M
6aγ
p

∑
{nk}

C{nk}
∏
k

Λ
nk
(k)

[R3aγg w
n

M0
p

+
R3aγ−4Gw

pqrG
pqr

n

c1M
−6
p

+
R2Gw

pabG
pab

n

(
RRcdR

cd
)aγ

c2M8
p

+ . . .

]

=
(
Λ|t|2

)|aγ | D(γ)w
n (4.17)

where the terms in the first bracket above are all Lorentz scalars with integer C{nk}, ci
are dimensionless constants, and the appearance of negative powers of Mp is because of

our choice of large aγ . To identify (4.17) to the full C(γ)
MN in (4.13) one will have to work

out another series by multiplying the series in the first bracket of (4.17) to yet another

time-neutral rank two tensor series constructed like (4.16) in the following way:

1

M
12aη
p

∑
{nl}

C{nl}
∏
l

Λ
nl
(l)

(RGpqcdG
pqcd

)3aη−3
G rab
m Gwrab

M−10
p

+

(
R�

′3R[ab]∂[qR∂n]G
qnab

)aη
R(mw)

d1M
3aη+2
p

+. . .


=
(
Λ|t|2

)−|aη | E(η)
mw, (4.18)

where �′ is defined as the Laplacian along the torus direction of Σ8, di are dimensionless

constants, and R[MN ] and R(MN) denote the anti-symmetric and the symmetric parts of

RMN . Note that the power of Λ|t|2 is now a negative integer −|aη|, compared to what we

had in (4.17). This implies that we can multiply the two series (4.17) and (4.18) to get the

following new series:

C(η,γ)
mn =

∑
w

E(η)
mwD(γ)w

n =
∑
w

(
Λ|t|2

)|aη |−|aγ |
M

12aη+6aγ
p

∑
{nl}

C{nl}
∏
l

Λnl(l)

∑
{nk}

C{nk}
∏
k

Λnk(k)


×

[(
RGpqcdG

pqcd
)3aη−3

G rab
m Gwrab

M−10
p

+ . . .

][
R2Gw

uσδG
uσδ
n

(
RRαβR

αβ
)aγ

c2M8
p

+ . . .

]
.

(4.19)

The above form of the expression is more useful than any of the two series (4.17) and (4.18)

because it not only tells us how to extract any powers of Λ|t|2, but also gives us a way to

rewrite the time-neutral series in a more elegant way. As a first trial, let us identify C(k)
mn

of (4.13) with C(η,γ)
mn in the following way:

C(k)
mn ≡M2

pC(η,γ)
mn , k ≡ |aη| − |aγ |, (4.20)

implying that we need to scan a range of two integers for a given choice of the integer k.

The above approach points out to an infinite degeneracies for any given value of k. For

example, the set of zeroes of k includes an infinite range of integers of the form:{
k = 0

∣∣∣ (an, an) ∀n
}
, (4.21)
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and similarly for other choices of k. Clearly such infinite degeneracies are not visible

from either of the two parent series (4.17) and (4.18), but comes out in the open once we

follow the above procedures. Therefore, after the dust settles, the C(k)
mn functions may be

succinctly presented as the following series:

C(k)
mn =

∑
w

(
Λ|t|2

)k
M

12(k+|aγ |)+6|aγ |−2
p

∑
{nl}

C{nl}
∏
l

Λnl(l)

∑
{nm}

C{nm}
∏
m

Λnm(m)

 (4.22)

×

[(
RGpqcdG

pqcd
)3(k+|aγ |)−3

G rab
m Gwrab

M−10
p

+ . . .

]

×

[
R2Gw

uσδG
uσδ

n

(
RRαβR

αβ
)|aγ |

c2M8
p

+ . . .

]
.

for all integer values of aγ giving rise to the infinite degeneracies. Thus for a given value of k,

what linear combinations are actually chosen can only be determined once we know the full

quantum expansion, i.e all the terms in (4.11), of M-theory. Note that
(
Λ|t|2

)|k|
in (4.22)

may be easily constructed from (4.17) by contracting the series with gnw, thus forming a

Lorentz invariant series. Similarly
(
Λ|t|2

)−|k|
may be easily constructed from (4.18) by

contracting the series (4.18) by R2gmw and identifying the exponent to −|k| accordingly.11

This way (4.22) can be represented completely as a rank 2 symmetric tensor constructed

out of R, G and their derivatives. At this stage, we can even relax the symmetric property

of the tensor to allow for inherent torsion in the background, although note that (4.22) is

not the most generic answer we can have for C(k)
mn. We can combine six different series,

like (4.17) and (4.18), and contract them in the standard way to construct the C(k)
mn series.

In a similar vein the other two series for C(k)
ab and C(k)

µν can also be constructed. Using

these, the energy-momentum tensor TMN from (4.13) may now be rewritten, using (4.22),

in the following way:

TMN =
∑
k

h1/3
(
Λ|t|2

)αk C(k)
MN =

∑
k

(
Λ|t|2

)αk+k J(k)
MN , (4.23)

where the functional form for J(k)
mn can be easily extracted from (4.22) and from the equiva-

lent series for C(k)
ab and C(k)

µν . The above arrangement is a useful way to organize the series,

but is not necessarily unique. Other arrangements are clearly possible, and we will discuss

them later. Either way, from (4.23) we see that TMN is in general a function of time, and

the time-independent contributions come from the following set:

{αk} = 0, ∀k, (4.24)

which are precisely the infinitely degenerate functions (4.22). Additionally,

from (4.17), (4.18) and (4.22) we see that to the same order in gs the terms in the brack-

ets appear with various powers of Mp. Although the gs expansion is creating a specific

11For large exponent, another choice includes contracting the series (4.18) with
(
GpqabG

pqab
)2

gmw to

form a Lorentz invariant series. Similar story goes for positive exponent.
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hierarchy compared to the Mp expansion, and is seemingly better suited at arranging the

quantum corrections, the convergence12 of the series for a given power of gs is in question

now. From the preliminary analysis presented here, it is not guaranteed the series will be

convergent.13 Despite this, at strong coupling it will still be the right expansion parameter

because the equations of motion, that we will analyze below, will again be better expressed

in powers of Λ|t|2. This way matching the quantum pieces can be performed efficiently.

This now brings us to the point where we will have to analyze all the EOMs of the

system carefully. Fortunately some aspect of this is already studied in [4] and [55] so our

work will be somewhat simplified. However compared to [4] and [55], we will keep track of

Gmnp0 piece just for completeness sake.

The metric of the six-dimensional base gmn of the eight-manifold Σ8, can be determined

by the time-independent flux Gmnpa and the quantum corrections in the following way:

Gmn − 6Λhgmn =
1

4h

(
GmpqaG

pqa
n − 1

6
gmnGpqraG

pqra

)
+ h1/3

∑
{αi}=0

C(i)
mn, (4.25)

where Gmn is the Einstein tensor constructed out of the unwarped metric gmn. Note that

the quantum pieces appear as sum over all the set of αi that vanish i.e sum over all the

set in (4.24). For a given value of αi, we already raised the issue of convergence in (4.22).

Now that we are dealing with the sum of all the C(i)
mn functions, the situation is more

acute now. Even if we assume that each of the series in (4.22), for a given set of αi, is

convergent, unless this set is of finite size there isn’t much hierarchy between the various

quantum pieces. We will discuss more on this in section 4.3. The time-dependent fluxes,

on the other hand, are related via the following EOM:

Λ|t|2

12h

(
GmpqrG

pqr
n − 1

8
gmnGpqrlG

pqrl

)
+

1

4hΛ|t|2

(
GmpabG

pab
n − 1

4
gmnGpqabG

pqab

)
+

Λ2|t|4

4

(
Gmpq0G

pq0
n − 1

6
gmnGpqr0G

pqr0

)
+ h1/3

∑
{αi}6=0

(
Λ|t|2

)αi C(i)
mn = 0, (4.26)

where the quantum pieces are defined by the set of all αi that do not vanish and because

of our choice (4.6) we do not have any G0mab pieces in (4.26). However the time-dependent

fluxes, as mentioned earlier, break the de Sitter isometries so with these fluxes the back-

ground in type IIB side cannot be strictly de Sitter, although it will be a background

with positive cosmological constant. A way out, suggested earlier, would be to take the

flux components to be very slowly varying with time and, following footnote 3, ignore the

G0mnp components altogether. Interestingly if we make the following choice for αi:

αi ≡ (1,−1, 0, 0, 0, . . .) , (4.27)

12By convergent we will henceforth mean, unless mentioned otherwise, well-behaved or controlled.
13In (4.22), for example, there are in fact three different series running in parallel. One, is with respect to

the time-neutral and Lorentz invariant functions, some of which are being collected in (4.16). Two, is with

respect to the factor of
(
Λ|t|2

)k
which may be expressed by appropriately constructing Lorentz invariant

series from (4.17) and (4.18), and finally three, is with respect to the symmetric rank two tensor functions

for a given power of Λ|t|2. The convergence properties of all these series are not guaranteed, at least from

the simple analysis that we presented here.
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then we can even allow the Gmnpq and the Gmnab flux components to be time-independent,

allowing us to rigorously realize the time scalings of the series (4.16), (4.17), (4.18)

and (4.22). Such a choice leads to time independent scalars in the type IIB side prompting

|∇V | = 0, and therefore violating the swampland bound in [12]. From our set of EOMs,

we see that precisely in this limit most of αi vanish, leading us to take into account all

possible quantum corrections. This seems like a clear sign that there is no effective field

theory description anymore, unless the series in (4.22) are all convergent and so are their

sum. Of course at this stage the choice (4.27) appears adhoc, so we will have to analyze

the other EOMs to make any definitive statement.

There are two other set of time-independent EOMs that appear from analyzing the

Einstein’s equation related to the fiber torus T2 of Σ8 and the three-dimensional spacetime

components. They may be expressed in the following way [4]:14

(
9hΛ +

R

2

)
δab +

1

12h

(
GamnpG

mnp
b − 1

2
δabGcmnpG

cmnp

)
+ h1/3

∑
{αi}=0

C(i)
ab = 0

(
3Λ +

R

2h
− �h

2h2

)
=
GmnpaG

mnpa

24h2
+

κ2T2n3

h2
√

det gmn
δ8(x−X)− 1

3h2/3

∑
{αi}=0

Cµ(i)µ , (4.28)

where n3 is the number of static M2-branes located at any point X ≡ (y, z, z̄) in the internal

space Σ8. The quantum pieces are again summed over all αi that vanish, similar to what

we had earlier. Note that Cµ(i)
µ and C(i)

ab are determined by putting non-trivial metrics for

2 + 1 dimensional spacetime and the fiber torus T2 respectively and then computing their

effects on (4.11). After which one can extract Tµν and Tab using (4.13).

The two remaining time-dependent EOMs appearing from Einstein’s equations are

easy to find. They are again constructed using Gmnpq and Gmnab fluxes and, now ignoring

the G0mnp flux components, may be expressed in the following way [4]:

ηµν
24h2

(
GmnpqG

mnpq

4
+
GmnabG

mnab

Λ2|t|4

)
− 1

h2/3

∑
{αi}6=0

(
Λ|t|2

)αi−1 C(i)
µν = 0 (4.29)

1

4h

(
GacmnG

cmn
b − 1

4
δabGmncdG

mncd

)
− δabΛ

2|t|4

96h
G2
mnpq + h1/3

∑
{αi}6=0

(
Λ|t|2

)αi+1 C(i)
ab = 0.

Similar issues encountered earlier for (4.26) arise again, and may be resolved by taking

slowly varying flux components as before. Interestingly, we see that if we impose (4.27),

the Gmnpq and Gmnab flux components become time independent as before. It is somewhat

miraculous that the choice (4.27) allows us to choose time independent fluxes and yet get

a time dependent metric of the form (4.1) in type IIB theory. The caveat however is the

choice (4.27) itself: allowing most of αi to vanish entails all quantum corrections and,

14We do not want cross-terms in the metric of the form gMµ or g3M , where M are all the spatial

coordinates, to arise at the loop level as they would lead to either B-fields or cross-terms in the metric in

the type IIB side, ruining the de Sitter isometries.
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unless we have some hierarchy between the various quantum pieces, there seems to be no

simple EFT description in four-dimensions.

What about a more generic choice than the one considered in (4.27)? This is a pertinent

question to ask at this stage because the choice (4.27) is not quite motivated from the

physical criteria of the theory. Let us then choose the following values for αi:

αi ≡ (1,−1, a1, a2, a3, . . . , an, 0, 0, 0, . . .) , (4.30)

where ai are integers and we will impose some hierarchy between them. The question is how

do the set of time-dependent equations (4.26) and (4.29) behave with the choice (4.30)?

To analyze this, note that the three set of equations in (4.26) and (4.29) may now be

written as:

F(i)
1 (y) + G(i)

1 (t)F(i)
2 (y) +

n+2∑
k=3

G(i)
2k (t)F(i)

3k (y) = 0, (4.31)

where i = 1, 2, 3 and the sum over k takes into account all the ai variables appearing

in (4.30). By construction (4.31) only involves all the non-zero values of (4.30). The F(i)
1

functions are defined in the following way:

F(1)
1mn = GmpqrG

pqr
n − 1

8
gmnGpqrlG

pqrl + 12h4/3C(1)
mn (4.32)

F(2)
1µν = ηµνGmnpqG

mnpq − 24h4/3C(1)
µν , F(3)

1ab = δabGmnpqG
mnpq − 96h4/3C(1)

ab ,

where the C(1)
MN are the quantum pieces, for example (4.22), appearing in the time de-

pendent equations (4.26) and (4.29) and the flux components are the unwarped flux com-

ponents of [4] as mentioned earlier. In the same vein, the other F(i)
2 functions take the

following form:

F(2)
2µν = ηµνGmnabG

mnab − 24h4/3C(2)
µν

F(1)
2mn = GmpabG

pab
n − 1

4
gmnGpqabG

pqab + 4h4/3C(2)
mn

F(3)
2ab = GacmnG

cmn
b − 1

4
δabGmncdG

mncd + 4h4/3C(2)
ab , (4.33)

where they follow the same pattern as in (4.31) and we have used the tensorial notations

to distinguish the various functions. Finally the F
(i)
3k functions take the following form:

F
(1)
3kmn = 12h4/3C(k)

mn, F
(2)
3kµν = −24h4/3C(k)

µν , F
(3)
3kab = −96h4/3C(k)

ab . (4.34)

All the F(i)
m are functions of the internal coordinates of Σ8, although for simplicity we take

them to be functions of the six-dimensional base y (and for some components, functions

of x11). They are also rank 2 tensors. The G(i)
1 and G(i)

2k , on the other hand, are scalar

functions of t only and we can define them in the following way:

G(1)
1 =

3

Λ2|t|4
= 3G(2)

1 = − 3

28
G(3)

1 , G(1)
2k =

(
Λ|t|2

)αk−1
= G(2)

2k = G(3)
2k . (4.35)
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Clearly the above set of functions suggests that (4.31) is rather hard to solve analytically,

so one needs to go order by order in the choice of ai in (4.30). Let us first take the simplest

case with ai = 0. This is of course the choice (4.27) encountered earlier. Since G(i)
1 are not

constants, the simplest solution of the system of equations are:

F(i)
1 = F(i)

2 = 0, (4.36)

implying that all the six equations in (4.32) and (4.33) vanish. The quantum terms C(i)
MN

are essential to fix the flux components, and after the dust settles, one may show that

Gmnpq as well as Gmnab are time independent functions.

Question now is whether such time independency can be maintained if we switch on

a1 in (4.30). In the language of (4.31) this means we are switching on G(i)
23 and F(i)

33 . The

class of solution for the set of equations is not hard to find, and may be expressed as:

G(i)
1 = a(i)G(i)

23 + b(i), F(i)
1 = b(i)F(i)

2 , F(i)
33 = −a(i)F(i)

2 , (4.37)

where a(i) and b(i) are constants (the repeated indices are not summed over). Looking at

the time dependences of G(i)
1 and G(i)

23 it is easy to infer that:

b(i) = 0, a(1) = 3, a(2) = 1, a(3) = −28, α3 = a1 = −1, (4.38)

where we see that the extra quantum bit is fixed to a1 = −1 making it coincide with the

second alphabet in (4.30). Any other choice is not allowed by the first equation in (4.37)

as we want to keep Λ constant. This means the Gmnpq and Gmnab flux components can

still be time-independent and satisfy the following set of equations:

F(i)
1 = 0, F(i)

33 = −a(i)F(i)
2 , (4.39)

where the functional forms for F(i)
1 ,F(i)

33 and F(i)
2 may be extracted from (4.32), (4.34)

and (4.33) respectively, and a(i) values are taken from (4.38).

Switching on the other ai components in (4.30), we can easily see that the analysis

follows similar pattern. The Gmnpq and Gmnab flux components can still remain time-

independent and the generic choice for αi appears to be:

αi ≡ (1,−1,−1,−1,−1,−1, . . . ,−1, 0, 0, 0, 0, . . .) . (4.40)

The (−1) chain suggests that the set of quantum pieces are treated equally and therefore

a simple redefinition of these terms implies an equivalence to the original choice of (4.27),

at least in the set-up that we concentrate here.15 This hopefully provides one additional

justification for the choice (4.27).

A question however arises regarding the quantum series in the time-dependent equa-

tions of (4.26) and (4.29): what if we combine the (−1) chain of (4.40) to express the αi

15The issue of sum over C(i)
MN should appear here too, but since the (−1) chain is finite this is not as

acute as having an infinite chain of (−1). Such a case will be discussed soon.
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values, not as (4.27) but as (4.30)? In other words can we view the ai pieces in (4.30) to

allow for the following arrangements of the quantum pieces:

n∑
i=1

(
Λ|t|2

)ai C(i)
mn =

N∑
i=1

(
Λ|t|2

)ai−1 C(i)
µν =

N∑
i=1

(
Λ|t|2

)ai+1 C(i)
ab = 0, (4.41)

so that higher order quantum effects do not change the equations of motion? Clearly such

an arrangement is an attractive explanation for the choices of αi in (4.30) instead of (4.27)

or its equivalent form (4.40). However we now face a rather severe issue: (4.41) cannot

quite be a reasonable explanation because each of the equations in (4.41) has to be valid

at any instant of time t, giving rise to a continuous infinite number of constraints. Such a

constrained system doesn’t appear to have any non-trivial solutions. Thus the simplicity

of (4.40) or (4.27) cannot quite be attributed to quantum cancellations of the form (4.41),

instead we should view the whole tower of (0) chain to enter the time-independent equa-

tions (4.25) and (4.28) to allow for time-independent internal metric gmn and internal

G-flux Gmnpa. Unfortunately the quantum pieces entering (4.25) and (4.28) do not have

any apparent hierarchy16 so doesn’t seem to have any simple effective field theory descrip-

tion from which we can extract the values of gmn and Gmnpa components.

The above set of constraints in (4.41) already raises formidable problems, but we will

press on by assuming that the (ai) chain in (4.30) is somehow cancelled out. This way we

only retain a chain of the form (4.27), and following this logic, another related question can

also be asked at this stage. Instead of a semi-infinite sequence of (0)’s in (4.40) or (4.30),

or their equivalent form (4.27), can we allow for a sequence of mostly (−1) in say (4.40)?

For example what would happen if we allow for the following sequence for αi:

αi ≡ (1,−1,−1,−1,−1,−1, . . . ,−1) , (4.42)

with no zeroes appearing anywhere? One issue immediately arises with the choice (4.42):

the time-independent equations for the metric and the fluxes, i.e (4.25) and (4.28) respec-

tively, do not have any contributions from the quantum pieces. Such a system of equations

cannot have any solutions, as we shall argue in section 4.3. This clearly rules out the

choice (4.42).

However let us assume, just for the sake of an argument, that a choice like (4.42)

somehow manages to provide consistent solutions for the system of equations in (4.25)

and (4.28). Question then is: will (4.42) allow for an effective field theory description in

lower dimensions? Plugging (4.42) in the set of equations (4.26) and (4.29), we see that

the quantum pieces in these equations make the following contributions:

√
h

g2
s

( ∞∑
i=2

C(i)
MN

)
, (4.43)

where h(y) is the warp-factor and gs is the type IIA coupling (4.15). The sum of the quan-

tum pieces are arranged without any hierarchies and it is not clear, for example from (4.22),

16They are suppressed by Mp but as we saw in (4.11) and (4.22) it is not clear whether this supplies

sufficient hierarchy between the quantum pieces.
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whether the sum of the C(i)
MN terms is convergent. A similar question could also arise for

the quantum sums in (4.25) and (4.28): the convergence of each of the series is not clear

at all. Additionally, and it is one of the most pertinent observation, all the quantum series

of C(i)
MN appear in the sum (4.43) with equal footings. This is of course the root of our

problem regarding the absence of an effective field theory description of the system. One

possible way out is to Borel sum the series in (4.25) and (4.28) (and also in (4.43)) to make

sense of them. If doable, Borel summing will imply introducing infinite degrees of freedom

ruining a simple effective field theory description of the theory. Whether such a procedure

is indeed possible has never been checked. Thus more work is needed to make sense of the

quantum effects in this theory.

Let us now come to a more generic analysis of the quantum series. The issue raised

with the set of constraints in (4.41) could in fact be related to our choice (4.20), which

is simply not generic enough to accommodate such large set of constraints. One way out

would be to maybe identify C(k)
MN in (4.13) to some linear combinations of C(η,γ)

MN in (4.19).

Implementing this will then lead to a new possibility of rearranging the quantum series for

TMN in a different way from what we did in (4.23). How should this be done? The time

neutral series (4.22) gives us a hint as to how to proceed. Using these, let us define the

rank 2 tensor C(k)
MN of (4.13) in the following way:

C(k)
MN ≡

∑
l

α
(k)
l H(l)

MN , where H(l)
MN ≡M

2
pC

(η,γ)
MN , l ≡ |aη| − |aγ |, (4.44)

and α
(k)
l are dimensionless numbers or more generically dimensionless Lorentz invariant

functions of the unwarped curvature and fluxes. The other function appearing above,

namely C(η,γ)
mn is given in (4.19) with similar constructions for C(η,γ)

ab and C(η,γ)
µν . We have

assumed that α
(k)
l 6= α

(m)
l , and therefore different values of k in (4.44) will represent

different combinations of the time neutral series in say (4.19). We can now use these

time-neutral C(k)
MN functions to define an energy momentum tensor of the form:

TMN ≡
∑
k

(
Λ|t|2

)βk C(k)
MN , (4.45)

which is a variant of the energy-momentum tensor given earlier in (4.23). The story now

proceeds in exactly the same way we studied before. For example, the choice (4.27) would

now tell us that the chain of (0)’s are precisely the sum of the C(k)
MN from (4.44), which

in turn are the various combinations of the time neutral series H(l)
MN being summed over.

Such a construction is clearly more involved than the simple picture that we had before,

but shares the same flavor of problems that we encountered earlier, albeit now in a different

guise. For example, previously we had summed over all the C(η,γ)
mn functions to analyze the

time independent EOM (4.25). The Mp hierarchy in each C(η,γ)
mn in the end is clearly a red

herring and is therefore irrelevant to our discussion here. The fact that all C(η,γ)
mn appeared

equally was the root of the problem. In the present case, with a redefined quantum sum,

the issue is more acute: all C(k)
mn would now appear equally creating the same issue as

before, albeit more strongly. It is then the sum of the (sum-of-the) H(l)
mn functions that

form the root cause of problems.

– 21 –



J
H
E
P
0
1
(
2
0
1
9
)
1
4
5

At this point we could also entertain a chain of the form (4.30), and in turn ask similar

questions as before. Much like (4.41) the situation at hand will give rise to similar set of

constraints again leading to continuous infinite number of constraints, possibly forbidding

a non-trivial solution. The story then seems almost similar to what we had before with two

exceptions. The first, can be seen from the fact that previously the C(k)
MN from (4.22) were

all different functions of R and G, but now the C(k)
MN from (4.44) could become similar if

α
(k)
l = α

(m)
l for k 6= m. The second, appears from a choice of a set of α

(k)
l that lead to

vanishing C(k)
MN with non-vanishing H(l)

MN ingredients. These are precisely the set of C(k)
MN

that may be used to satisfy the set of constraints in (4.41) via:

C(p)
mn = C(p)

ab = C(p)
µν = 0, (4.46)

for certain set of k = {p}, i.e for certain linear combinations of H(l)
MN with the set of

{α(p)
l }. This way we see that (4.46) may now provide non-trivial solutions to the equations

of motions without violating the no-go conditions of [4], provided we retain a set of α
(k)
l

different from α
(m)
l when k 6= m giving the required non-vanishing C(k)

MN . These C(k)
MN are

the time-neutral rank 2 tensors that are all different functions of R and G appearing for

example in the EOMs (4.25) and (4.28). The detailed structure is elucidated in table 1.

We can now see how the original choice of (4.20) fits in the generalized picture. Consider

the following choice of the coefficients α
(±k)
l :

α
(±k)
l = δ

(±k)
l , k = 1, . . . , n, (4.47)

which can be plugged in the EOMs (4.25), (4.28), (4.26) and (4.29) leading to the con-

structions that we had earlier. The difference however arises once we start analyzing the

set of constraint equations (4.41). The above identification (4.47) is not helpful for k > n.

In fact for k > n, we should resort back to the linear combinations (4.44) to allow for a

consistent solution. Notice that in table 1 we have put an upper limit of |k| = |s|. This

is because both n and s are arbitrarily large as the number of time-neutral rank 2 tensors

in (4.19) are arbitrarily large (with each having further infinite degeneracies). Thus from

the generalized construction (4.44), many different arrangements of the quantum terms

may be made for k ≤ n.

In the end however, as we discussed earlier, none of the above constructions can save the

day because of the underlying loss of gs hierarchy. Therefore a different rearrangements

of the quantum terms cannot quite help us in resolving the root cause of the problem,

although it does help us in giving a consistent class of solutions with the constraints (4.41).

Once we make theGmnpq andGmnab fiux components time dependent, in turn providing

an alternative resolution of the tension we had in realizing (4.30) and (4.41), the situation

at hand changes quite a bit. For example let us consider the following behavior of the flux

components:

Gmnpq(t, y) ≡
∑
i

(
Λ|t|2

)−|ai| g(i)
mnpq(y)

Gmnab(t, y) ≡
∑
i

(
Λ|t|2

)−|bi| g(i)
mnab(y), (4.48)
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Coefficients ∀l Time neutral rank 2 tensors Relevant equations

α
(±1)
l C(±1)

MN (4.26), (4.29)

α
(0)
l , α

(±2)
l , . . . , α

(±n)
l C(0)

MN ,C
(±2)
MN , . . . ,C

(±n)
MN ; C(0)

MN +
∑n

k=2 C
(±k)
MN (4.25), (4.28)

α
(±n±1)
l , . . . , α

(±n±s)
l C(±n±1)

MN = C(±n±2)
MN = . . . = C(±n±s)

MN = 0 (4.41)

Table 1. The full contributions from the quantum effects in the energy-momentum tensor to

the EOMs. Since both n and s can be arbitrarily large, the second row elucidates the loss of an

effective field theory description, whereas the third row provides an exact solution to the constraint

equations.

where the signs of the exponents are chosen such that the fluxes decrease as we approach

early times.17 We have also assumed the fluxes to be defined on the six-dimensional base

parametrized by y, and g
(i)
mnpq and g

(i)
mnab are some functions of y to be determined from

the two equations (4.26) and (4.29) as well as the G-flux equation:

DM

(
GMNPQ

)
=

1√
−g

εNPQM1...M8

[
1

2(4!)2
GM1...M4GM5...M8 +

2κ2T2

8!
(X8)M1...M8

]
+

2κ2T2n3√
−g

∫
d3σ εµνρ∂µX

N∂νX
P∂ρX

Q δ11(x−X) +
1√
−g

(
δSquantum

δCNPQ

)
, (4.49)

where GMNPQ and CMNP are the warped components in the sense that the indices are

raised or lower by the warped M-theory metric (and as such involve time-dependent pieces).

Similarly the determinant of the metric g is the warped M-theory metric and it is used

to define the covariant derivative DM . However the epsilon tensor is defined using the

unwarped metric components and T2 gives the tension of the M2-branes. As such κ2T2

takes care of the dimensions of the topological and the brane terms (see [4] for more

details).

Before moving ahead with the analysis of (4.48), let us verify the consistency of our

original choice of (4.4) which was derived from the slow moving membranes. Since the

membranes are still expected to move slowly, the choice (4.4) should remain a valid choice

now too. Plugging (4.4) in (4.49) then gives us:

−�h =
1

12
Gmnpa (∗8G)mnpa +

2κ2T2

8!
√
g

(X8)M1...M8
εM1...M8 (4.50)

+
2κ2T2√

g

[
n3δ

8(x−X)− n̄3δ
8(x− Y )

]
+

1
√
g

(
δStop

δC012
+
δSntop
δC012

)
,

where the result is expressed in terms of unwarped metric and flux components with (n3, n̄3)

being the number of M2 branes and anti-branes respectively where, for simplicity, we can

assume that they differ by 1 to not change the l.h.s. of (4.50). We have also divided

the quantum corrections to topological and the non-topological pieces, same way as we

did in [4].

17More generic choices are clearly possible, and we will discuss implications of them later.
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There are two interesting points to note from (4.50). First, the flux components

Gmnpa continues to be time independent even if G012m, Gmnpq and Gmnab are all time

dependent as in (4.4) and (4.48) respectively. Secondly, the warp factor h will be a smooth

function in the fully quantum corrected scenario (more on this in the next section), and

therefore integrating the l.h.s. of (4.50) over the eight manifold Σ8, assuming no boundary,

is expected to reproduce the anomaly cancellation condition with M2-branes and fluxes

of [63–66]. Subtlety however arises because the metric of Σ8 is time dependent, whereas the

analysis of [63–66] are exclusively for static backgrounds. The X8 polynomial is topological,

so doesn’t quite depend on how the metric of X8 changes with time, but the quantum

corrections are heavily constrained because:

∂

∂t

(
δStop

δC012
+
δSntop
δC012

)
= 0. (4.51)

Whether this is possible to maintain remains to be seen. One simple solution could be to

take the terms in the bracket of (4.51) vanishing, in which case the anomaly cancellation

condition of [63–66] will not change. Another solution could be that the contributions to the

bracket come from Lorentz-invariant time-neutral pieces, similar to the ones in (4.16), but

now with spacetime flux components G012m. Such contributions are difficult to construct

in practice , so it remains to be seen how a scenario like this might be realized in our set-up.

Clearly more work is needed to make any definitive statement here.

Coming back to the G-flux components (4.48), it is now easy to see that the αi values

can be different from what we had in (4.27) or (4.40). We can take the following chain of

alphabets for αi:

αi ≡ (a1, a2, a3, . . . , an, 0, 0, . . . , 0, 0, an+1, an+2, . . .) , (4.52)

where the finite chain of (0) is there to maintain the time independent flux components

Gmnpa. This is necessary otherwise the anomaly cancellation condition will get even more

constrained from the integral of (4.50) over Σ8. In the language of table 1 it is as though

the first row has expanded to accommodate the (ai) chain from (4.52), and the second row

has substantially reduced. That this is possible, despite the fact that we have an infinite

number of time-neutral rank 2 tensors, may be seen from the fact that any α
(±k)
l that goes

in the first row of table 1 cannot reappear in the time-neutral series in the second row to

avoid double-counting under the choice (4.47). This means we can use most of the α
(±k)
l

coefficients to solve the time-dependent equations (4.26) and (4.29), leaving a finite chain

of time-neutral pieces behind for the time-independent equations (4.25) and (4.28). These

finite chain of (0) tell us that the sum of the quantum pieces:∑
{αi}=0

{
C(i)
mn,C

(i)
ab ,C

(i)
µν

}
, (4.53)

can be controlled provided the individual pieces C(i)
MN themselves have convergent series.

On the other hand, the quantum series in (4.26) and (4.29) tell us that the g
(i)
mnpq and

g
(i)
mnab components from (4.48) will now be determined in terms of the semi-infinite sum
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of quantum series C(i)
MN provided the series have a well defined hierarchy. Therefore the

whole analysis now revolves not just around around the convergence of the series in (4.44),

but more importantly on the existence of a hierarchy. Whether this is possible or not will

be the subject of the following section.

4.3 Quantum constraints, hierarchy and the swampland

The quantum constraints that we discussed in the previous section, both for the time

independent as well as the time dependent cases, can now be succinctly presented by

combining the three equations in (4.25) and (4.28) in the following way [4]:

1

12

∫
d8x
√
g GmnpaG

mnpa + 12Λ

∫
d8x
√
g h2 + 2κ2T2n3

+

∫
d8x
√
gh4/3

1

2

∑
{αi}=0

Ca,ia +
1

4

∑
{αi}=0

Cm,im − 2

3

∑
{αi}=0

Cµ,iµ

 = 0, (4.54)

where Λ > 0 and only the time-independent flux components Gmnpa appear in the above

equation, even if we have other time-independent flux components. The second line is the

contribution from the quantum pieces that we discussed earlier, and the above equation

should be regarded as a constraint on the quantum pieces because all the terms in the

first line are positive definite. Therefore the above equation will only have a solution if the

following constraint is satisfied [4]:

1

2

∑
{αi}=0

〈Ca,ia 〉+
1

4

∑
{αi}=0

〈Cm,im 〉 −
2

3

∑
{αi}=0

〈Cµ,iµ 〉 < 0, (4.55)

where the expectation values are defined by simply integrating the h4/3 weighted quantum

pieces over the eight-manifold as in [4]. The above constraint is highly non-trivial18 not

only because it involves the C(i)
MN factors from (4.44), where the thorny issue of convergence

would reappear, but also because now it involves a sum of all the C(i)
MN factors arranged

so that it is a negative definite number. Could such constraint be ever satisfied?

To answer all the questions raised above, let us study the scenario at hand more

carefully. First note that we are in principle talking of four different series here. They can

be tabulated in the following way:

(1) The series VQ given in (4.11) which is the main series of quantum corrections, and is

expressed with inverse powers of Mp.

(2) The series of time-neutral functions, some of which are presented in (4.16). They are

also expressed as inverse powers of Mp.

18The fact that this constraint has no solution in the presence of branes, anti-branes, orbifold and

orientifold planes as well as the p-form fluxes in the absence of the quantum corrections has already been

discussed in [4] so we will not elaborate the story anymore. Interested readers may find all the details in [4]

(and verify for himself or herself that for the choice of αi in (4.42) no solutions exist). Instead we want to

concentrate on the convergence and the hierarcy issues of the quantum series here.
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(3) The complete series of C(i)
MN functions, given in (4.44), and expressed in inverse

powers of Mp. This series involve the time-neutral series as a subset, plus they are

infinitely degenerate.

(4) The sum of all the series C(i)
MN which are collected for example from the chain of (0)’s

in (4.27). These (0)’s are arranged in a semi-infinite chain.

The convergence of each of these series is important to make sense of all the quantum

corrections in the theory. Since all the pieces in every series are suppressed by inverse

powers of Mp, clearly there seems to be at least one simple way to control them: take

the Mp → ∞ limit. Unfortunately this simple procedure doesn’t work because of various

factors including time-dependences of the M-theory metric as well as the presence of non-

local and non-polynomial pieces in the quantum corrections (that we didn’t discuss) which

may go as positive powers of Mp.
19 This time dependence in fact triggers off the type

IIA coupling gs, as given in (4.15), and therefore the suppressions factors in each of the

components of a given series are not inverse powers of Mp, but the following combinations:(
Λ|t|2

)±|a|
M b
p

∝ (gs)
±2|a|

M b
p

; a ≥ 0, b ∈ Z, (4.56)

where the time-neutral series is exactly the a = 0 limit of (4.56), and we have ignored the

warp-factor h dependence of gs in (4.15) as this doesn’t effect the results. What is important

is the appearance of both gs and Mp, and therefore calls for an hierarchy between them.20

Let us now ask, under what conditions do we expect to see the full de Sitter isometries

in the type IIB side? Clearly this would happen when all the flux components are time

independent. The flux components Gmnpa are already time-independent, as we can easily

infer from (4.25) and (4.28), and it is not very hard to make the equations for the other two

components Gmnpq and Gmnab, namely (4.26) and (4.29), time independent by choosing

the chain (4.27) or (4.40). The spacetime component of the G-flux, namely the G012m

component in (4.4) is time-dependent but this is proportional to the volume form in the

type IIB side and therefore respects the de Sitter isometries. We should then ask if solutions

are possible at all times. If we take a finite value for Mp, the issue of the convergence for

19As an example, let us consider any of the Λ(k) pieces in (4.16). They are all time-neutral, and for our

purpose we can choose Λ(1) as a representative. Using this let us define the following function:

M6
p

∫ y1

0

∫ y2

0

. . .

∫ y8

0

d8y′
√
g8 �Λ(1)(y

′
1, . . . , y

′
8) ≡M3

pΓ(5)(y1, . . . , y8)

which is by construction a time-neutral function also, but now appears with a positive power of Mp. We

can raise this to arbitrary powers to generate positive powers of M3
p . By construction they are non-local

functions and may therefore contribute to the non-local counter-terms discussed for example in [67, 68].
20The negative powers of gs imply non-perturbative contributions near gs → 0. As such they could

be expressed as exp
[
−
(

1

g
|a|
s

)]
and the quantum series could be summed accordingly. Such a conclusion

can arise from Borel summing the series in gs. Once the series appears non-convergent or asymptotic,

Borel summability can be applied and the final answer provides a hint as to what non-perturbative effects

contribute. However near strong coupling, i.e gs → ∞, the 1/gs effects are perturbative, so the quantum

series could involve polynomial powers of 1

g
|a|
s

. An example is the choice (4.48).
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the infinitely degenerate series in (4.22) reappear. However even if convergence of each of

the series in (4.44) is guaranteed, the convergence of the sum over all the C(i)
MN is not clear.

More so, the acute issue of the possibility to maintain the constraint (4.55), where the sum

of three such different series appear, is clearly not guaranteed unless of course there exists

a very strong hierarchy between all the quantum pieces in (4.44).

Let us elaborate this a bit more. Our careful study in the previous section told us

that the quantum series that we have to consider include all the C(i)
MN pieces that may be

summed in the following fashion:

∑
k

(
Λ|t|2

)αk C(k)
MN =

∑
k

g2αks

(∑
b

(ckb)MN

Mβkb
p

)
(4.57)

= g2α1
s

[
(c11)MN

Mβ11
p

+
(c12)MN

Mβ12
p

+ . . .

]
+ g2α2

s

[
(c21)MN

Mβ21
p

+
(c22)MN

Mβ22
p

+ . . .

]
+ . . .

where βkb ∈ Z; and the (ckb)MN pieces may be extracted from (4.22) and from the equiv-

alent expansions for C(k)
ab and C(k)

µν . The above series shows that for any given power of

gs, there exists a series in all powers of Mp coming from, say, (4.44), with the non-local

contributions included in. This series has a weak hierarchy governed by the (ckb)MN fac-

tors, which in turn are functions of R and G, so cannot be arbitrarily tuned. Additionally,

as we saw from (4.44), the series also has an infinite degeneracy, but we will ignore this

for the time being. In fact, as alluded to earlier, M-theory may allow us to chose a par-

ticular combination dictated by the underlying structure of the local and the non-local

quantum corrections. On the other hand, the gs provides a strong hierarchy because it

can be partially tuned by changing t (recall, from (4.44), that (ckb)MN are all time inde-

pendent functions). Thus there are at least two levels of convergences that we seek here:

one, the convergence of the series in (ckb)MN and two, the convergence of the series in gs.

Although none are guaranteed here, the subtlety lies elsewhere. This can be seen in the

following way. First, what we actually need is not the gs expansion, but the series when

{αk} = 0, which are precisely the time-neutral series that would contribute to the quantum

corrections here. This implies:

∑
{αk}=0

C(k)
MN =

∑
k

(∑
b

(ckb)MN

Mβkb
p

)
(4.58)

=

[
(c11)MN

Mβ11
p

+
(c12)MN

Mβ12
p

+ . . .

]
+

[
(c21)MN

Mβ21
p

+
(c22)MN

Mβ22
p

+ . . .

]
+ . . . ,

where βkb ∈ Z. Looking at the each of the series in brackets in (4.57) and (4.58), one

might erroneously think that there is a leading order term in each of them. However

this is not the case as is evident from the following argument. If we only consider the

polynomial corrections to the action, namely (4.11), then each C(k)
MN ’s would have a different

leading power of 1/Mp, creating a hierarchy between the quantum corrections. However

as we mentioned earlier, there are also non-local corrections with positive powers of Mp
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(see for example footnote 19), so the series don’t have a leading order term, potentially

destroying this hierarchy. Preserving the Mp hierarchy in the presence of these corrections

would require that the higher order non-local corrections are sufficiently suppressed by

the coefficients (ckb)MN , which cannot be guaranteed without a more detailed analysis of

these terms.

The subtlety should be clear now: there are no more hierarchies left between the

individual series in the brackets above. Each of the series in the brackets, which are

basically C(k)
MN , come with all powers of Mp and now contribute equally to the sum! The

hierarchies provided by (ckb)MN , as mentioned above, are pretty weak to allow for any

controlled approximation for the sum. The situation however improves dramatically once

a small time dependence is switched on. Factors of gs appear as in (4.57), providing strong

hierarchy, and in turn controlling the sum.

Thus our argument here implies that there is at least no simple effective field theory

description for the background with full de Sitter isometries. Of course it is always possible

that we are ignoring other terms in the quantum series that would in fact allow solutions

with de Sitter isometries to exist. Such quantum pieces may not be expressible as poly-

nomial powers of R and G at weak curvatures and weak field strength, and also probably

not as the non-local terms alluded to earlier. We are not aware of these terms, but if they

occur and indeed also allow for solutions to exist, the whole swampland criteria will have

to be revisited.

What happens with time dependent fluxes of the form (4.48)? For such a case de

sitter isometries should be visible when t→ −∞. Unfortunately in this limit gs →∞ and

therefore from the scaling argument in (4.56) we can easily see that even in the limit of

finite Mp or Mp → ∞, unless there is well defined hierarchy between gs and Mp, none of

the above four series seems convergent!21

What happens at later time when t is finite with the time-dependent fluxes? In this

limit gs can be made small and, allowing a finite Mp, there appears some hope of controlling

the quantum series in some meaningful way, and solutions could exist. However in this

limit the background doesn’t have all the de Sitter isometries so we will not be violating

the swampland conjecture of [12]. Additionally due the presence of the non-zero time

dependent flux components Gmnpq and Gmnab, there would be time-dependent moduli in

four-dimensions (in the type IIB side). As is expected, such time-dependent moduli allow

solutions to exist without violating the swampland conjecture.

A related question would be: what about later time, i.e when t→ 0? Unfortunately in

this limit the G-flux components in (4.48) blow up so our simple analysis cannot provide

any definitive statement here. However as hinted earlier, more generic choices of flux

configurations are possible that allow finite values at late times. For such configurations,

we are exploring the gs → 0 limit and solutions could exist provided:

g
2|a|
s

M b
p

� 1, (4.59)

21We could instead take positive exponents in (4.48). For this case de Sitter isometries will be visible at

late times where gs → 0. In either case, it is the perturbative expansion in gs that mostly matters here.
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in the limit when Mp →∞ and assuming the g
−2|a|
s effects are controlled non-perturbatively

(see footnote 20). This is not much of a surprise because, as discussed above, the back-

ground does not have all de Sitter isometries, so there could be solutions without violating

the swampland criteria.

Finally, what about flat and AdS spaces? Are there effective field theory descriptions

for such cases? The simplest answer is the following. The no go constraint (4.55), assum-

ing this to be more generic than being derived from a metric (4.1), can be easily solved

when Λ = 0 or Λ < 0 without introducing the series of quantum corrections. Therefore

both flat and AdS spaces are possible classically. A more non-trivial question however is

the one associated with the series of quantum corrections. Do the quantum corrections

allow effective field theories associated with flat and AdS spaces?22 To answer this let us

bring back the two quantum series discussed in (4.57) and (4.58). Note that the apparent

non-existence of an effective field theory for a de Sitter space, in the type IIB side, has

absolutely nothing to do with the convergence or the divergence of each of the series (in

powers of Mp) in the brackets of (4.57) and (4.58). The actual reason therein was the

loss of gs hierarchy: each of the brackets contributed equally to the sum, and therefore an

infinite collections of the brackets were taken into account to make sense of the EOMs, thus

ruining an effective field theory description. However the situation changes drastically once

we take flat and AdS spaces. The four main equations, the two time-independent equa-

tions (4.25) and (4.28) and the two time-dependent equations (4.26) and (4.29), now no

longer appear in the way they appeared here. In other words, the decoupling of the EOMs

into time-dependent and time-independent pieces, solely because of the Λ|t|2 factor in the

metric (4.1), does not happen now! Additionally, the type IIA string coupling is no longer

time dependent as in (4.15) here. This way gs can be made arbitrarily small, thus ignoring

both perturbative and non-perturbative quantum corrections altogether. In the language

of our de Sitter computation, this is as though we are not resorting to the (0) chains in the

time-independent equations (4.25) and (4.28), and keeping gs → 0 in the time-dependent

equations, essentially eliminating the (−1) chains in (4.26) and (4.29) altogether.

At this stage it might be interesting to compare the situation at hand with the strong

coupling behavior of QCD. The QCD action is exact, analogous to the string world sheet

action. The supergravity action we play with emerges only as a limit of string theory,

somewhat analogous to chiral perturbation theory as an EFT of the pion (which is valid in

the hadronic phase of QCD). In the QCD case, when quantum corrections to the pion EFT

become large, it indicates that the pions split into quarks, in which case one must use the

full QCD action. We refer to this phenomena as the “breakdown of effective field theory”.

In our work, the quantum corrections at play are string-theoretic (e.g. string-loop

diagrams), which add terms to the supergravity effective action. By “breakdown of effective

field theory”, we mean the solution is no longer well described as a supergravity limit, but

is intrinsically stringy. Our work is an attempt to make progress in understanding this

phase of theory utilizing both supergravity and stringy ingredients.

22According to the swampland criteria, for both cases |∇V | = 0. However for the flat space, V = 0,

whereas for the AdS space, V < 0. The swampland criteria are clearly satisfied for both cases, allowing

effective field theories to exist.
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Let us elaborate this in some more details as it would illustrate the difference between

the two approaches. Thus in more quantitative terms, for QCD the quantum corrections

have the form:

Q1 ≡
∑
a

(g2
YM )aCa, (4.60)

where Ca are computed from loops and for a < 0 we have the non-perturbative (NP)

effects. They eventually may be expressed as powers of e−1/g2
YM . On the other hand, for

the de Sitter case the series we expect is:

Q2 ≡
∑
a

gasCa, (4.61)

where Ca =
∑

bDabM b
p and b is summed for all positive and negative integers in a way

discussed in details earlier. If this is the case, EFT is defined and would match with the

EFT of QCD mentioned above. Unfortunately what we actually get is:

Q3 ≡
∑
a

Ca, (4.62)

with no gs dependences! Thus there is at least no simple EFT description here, evident

from the loss of gs and Mp hierarchy, and therefore differs from QCD where we do expect

an EFT description. All in all this shows that to allow for a four-dimensional de Sitter

in string theory we will require an infinite number of degrees of freedom at every scale

resulting in a loss of EFT description. This is then the key point of difference between the

two theories.23

Before ending this section let us comment on one issue that we kept under the rug so

far, and has to do with the α′ corrections to the T-duality rules themselves. Our analysis

involved two backgrounds (4.1) and (4.3), in type IIB and in M-theory respectively, that

are related by shrinking the M-theory torus to zero size. As such this involves one T-

duality. Since we are exclusively dealing with non-supersymmetric cases, the T-duality

rules of [62] should also receive α′ corrections. This means the time-independent M-theory

fluxes, Gmnpa, Gmnpq and Gmnab, should not just go to time-independent three and five-

form fluxes in type IIB side, but these fluxes (including the metric (4.1)) should also receive

α′ corrections. The scale α′ can be related to Mp in the following standard way:

α′ ≡ 1

R11M3
p

, (4.63)

where R11 is the radius of the eleven-dimensional circle which we take to be a constant

here. This implies that the length along the eleventh direction may be written as:

l11 ≡ h1/6
(
Λ|t|2

)1/3
R11 = g2/3

s R11, (4.64)

as it appears in the metric (4.3) (for more details see [4]).24 The question that we can ask

at this stage is whether there is a way to ignore the O(α′) corrections to the fluxes. This

23We thank the referee for raising this issue.
24We can use (4.64) to define an effective scale as α′eff ≡ g

−2/3
s α′. By construction, this is time-dependent.

– 30 –



J
H
E
P
0
1
(
2
0
1
9
)
1
4
5

is subtle because the typical smallest quantum corrections appearing in the series (4.58)

and (4.57) are respectively:

co ≡ ±
〈coo〉
M
|βo|
p

, (4.65)

and g2αo
s co, where Mp can be finite or large, and gs, the type IIA coupling takes some

average value for the range of time that we consider here. In the limit of large Mp and

small average value of gs, we can define the parameters appearing in (4.65) in the following

suggestive way:

|βo| ≥ |βkb|, 〈coo〉 ≤ 〈(ckb)MM 〉min, αo ≥ αb, gs < 1, Mp →∞, (4.66)

where (ckb)
M
M is the trace of (ckb)MN with indices raised or lowered by the time-independent

parts of the metric, in line with our choice of raising and lowering the M-theory flux com-

ponents by time-independent parts of the metric. The subscript min denote the minimum

value that the function (ckb)MN takes at any given point on the eight-manifold Σ8. This

way co and g2αo
s co will at least quantify the minimum values of the quantum corrections

that may appear in any of the two series (4.58) and (4.57) respectively. Therefore following

the limits in (4.66), if we demand:

R11 >
Mp

g2αo
s |co|

, (4.67)

with the assumption that αo = 0 for the series (4.58), then it is easy to see that the

string scale α′ may be expressed, using the eleven-dimensional radius (4.67) and Mp in the

limit (4.66), as the following expression:

α′ ≤ g2αo
s |〈coo〉|
M

4+|βo|
p

. (4.68)

This tells us that the α′ corrections, in this limit, will be smaller than the smallest con-

tributions from any given series in (4.58) or (4.57). This way we can at least ignore the

α′ corrections to the T-duality rules that describe our type IIB background (4.1) from the

dimensional reduction of the M-theory background (4.3).

5 Discussions and conclusions

The fate of de Sitter in string theory remains an open question. In light of ever increasing

precision in measurements of the cosmological constant [27], it is imperative to determine

the status of dS solutions and quasi-dS solutions to string theory. To make progress in

this direction, in this work we have confronted the swampland conjecture with explicit

equations of motion from string theory.

We have considered bounds on the four-dimensional potential, and generalizations

to complicated multi-field configurations. We have found evidence from four dimensions,

section 2, that a positive cosmological cosmological constant may exist without violating
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the swampland conjecture (1.1), but at the cost of a breakdown of effective field theory at

late times. The leading stringy corrections to supergravity indeed satisfy the conjecture

and lead to such a breakdown of EFT at late times, albeit without giving a solution

resembling dS.

In our analysis of the ten-dimensional equations of motion, studied from their 11-

dimensional M-theory description, we have found similar results to the four-dimensional

toy models. By parametrizing the perturbative and non-perturbative corrections to the

supergravity action, we were able to formulate consistency conditions for the realization

of dS in string theory, and in this context the existence of de Sitter and quasi-de Sitter

solutions, satisfying or not the de Sitter swampland conjecture, seems fundamentally at

odds with the validity of four-dimensional effective field theory. It may the case that a

hierarchy of corrections can be found which allows for an effective field theory description,

but an explicit realization of this remains an open problem.

Finally, we note that we have thus far not touched upon the relation to dS no-go the-

orems [4] in much details. While it should be somewhat clear how IIB no-go theorems are

possibly circumvented at late times, i.e. by putting in a series of quantum corrections to

allow for positive cosmological constant solutions at late times, it is less obvious how these

results relate to the no-go theorems formulated in heterotic string theory [5, 6]. While

the duality chain which relates these theories implies an isomorphism between the mod-

uli spaces of the respective theories [61], and hence a mapping between solutions to the

equations of motion of the respective theories, it does not imply that a quasi de Sitter

background is dual to another quasi de Sitter background. In addition, any attempt at

explicit comparison is complicated by the fact that the perturbative duality symmetries,

e.g. Buscher’s rules, required to take the orientifold limit of IIB, themselves receive α′ cor-

rections [62].25 Thus it remains an open problem if the strong no-go theorems in heterotic,

e.g. the all-order in α′ result of [5], place strong constraints on vacua with positive cosmo-

logical constants in type IIB. This is certainly an interesting question, which we plan to

explore in future work.
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