
C o m m e n t s o n
S o v i e t E n c r y p t i o n A l g o r i t h m *

C. Charnes, L. O'Connor**, J. Pieprzyk, R. Safavi-Naini, Y. Zheng

Department of Computer Science, University of Wollongong
Wollongong, NSW 2522, AUSTRALIA

charnes/j osef/rei/yuliang@cs, uow. edu. au

1 Introduction

The details of the Soviet (now Russian) encryption algorithm were published
in COST 28147-89 [2]. The aim of the designers was to provide an encryption
algorithm with a flexible level of security. The algorithm is an example of DES-
type cryptosystem with a drastically simplified key scheduling. It encrypts 64-bit
messages into 64-bit cryptograms using 256-bit keys. The COST document [2]
recommends the following four modes: simple substitution mode (electronic code-
book mode), stream mode (in [2] called F-mode), stream mode with feedback,
and authentication mode.

2 T h e d e s c r i p t i o n o f t h e C O S T a l g o r i t h m

The COST algorithm consists of 32 iterations (twice more than for the DES).
A single iteration is shown in Figure 1. There are two elements which are secret
in the algorithm: the 256-bit cryptographic key K and the definition of S-boxes
S l , . . . , S s .

The cryptographic key K = (K0, . . . , KT) is stored in the key storage unit
KSU as a sequence of eight 32-bit words (K0, . . . , KT). The 32-bit word Ki is
called a partial key (i = 0 , . . . , 7). To encrypt 64-bit long message, it is first
split into two 32-bit parts which are placed into 32-bit registers R1 and R2. The
contents of the register R1 is added modulo 232 to the partial key K0 (the adder
CM1), i.e.

R I + K 0 (mod2 ~2)

The resulting 32-bit sequence is divided into eight 4-bit blocks. The eight 4-
bit blocks are inputs to the eight corresponding S-boxes $1 , . . . , Ss. Every Si,
i = 1 , . . . , 8, is a permutation. The eight 4-bit outputs of S-boxes are stored in
the shift register R where the contents is rotated 11 bits left (towards high-order
bits). The contents of R is now added bitwise (Exclusive-Ored or XORed) to the

* Support for this project was provided in part by the Australian Research Council
grants A49131885 and A9232172

** Distributed Systems Technology Center, Queensland University of Technology, Bris-
bane, QLD 4001, AUSTRALIA, e-ma~l: oconor~fit.qut.edu.au

434

I
R2

I
R 2

I I t ~ .~ R1

I I L

K

KSU

K 0

K7

Fig. 1. Information flow for a single iteration of the encryption/decryption in GOST

contents of R2 by the adder CM2. The output from CM2 is stored in R1 and
the old value of R1 is stored in R2. This concludes the first iteration.

The other iterations are similar to the first one. In the second iteration, we
use the partial key K1 from the KSU. The iterations 3,4,5,6,7,8 apply partial
keys K2, K3, K4, Ks, K6, K7, respectively. Iterations from 9 to 16 and from 17
to 24 use the same partial keys. The iterations from 25 to 32 apply the reverse
order of partial keys so the 25-th iteration uses the key//7, the 26-th iteration -
the key K6 and so on. The last iteration uses the key K0. So the order of partial
keys in the 32 iterations is as follows:

K0 , . . . , / / 7 , K0, �9 �9 �9 KT, K0 , . . . , KT, KT,.. �9 K0

After 32 iterations the output from the adder CM2 is in R2 and R1 keeps its
previous value. The contents of the registers R1 and R2 are the 64-bit ciphertext
(cryptogram) for the 64-bit plaintext.

3 G e n e r a l p r o p e r t i e s o f G O S T

The GOST algorithm repeats the DES general structure. It is obvious that the
designers of the algorithm tried to achieve a balance between the efficiency of
the algorithm and its security. They used simple and regular building blocks. In
particular, GOST deviates from DES in the following ways:

1. The complicated key schedule has been ommitted and replaced by a ~egular
sequence of partial keys,

435

2. The cryptographic key has been lengthened to 256 bits as compared to 56 bits
for DES. Moreover, the actual amount of secret information in the system,
including the S-boxes, comprises approximately 610 bits of information.

3. The 8 S-boxes $1, $2 " ' , Ss are permutations Si : GF(24) ~ GF(24), which
in total requires the equivalent storage of 2 DES S-boxes.

4. The subley for each round is combined using 32-bit addition with carry
rather than 48-bit XOR as in DES.

5. The irregular permutation block P in DES has been replaced by a simple
shift register R which rotates the contents 11 bits to the left after each round.

6. The number of rounds has been increased from 16 to 32.

As the security of the algorithm relies on secrecy of both the cryptographic
key and the eight permutations Si, i = 1 , . . . , 8, users have to know how to select
these two secret elements. The cryptographic key can be selected at random but
the selection of Si permutations is left to the central authority who knows how to
choose "good" permutations. Therefore from users' point of view, the security is
related to the secrecy of their key K. Note that the central authority may select
permutations in such a way that they can break the algorithm (for instance, by
selecting linear or affine permutations).

Looking at the structure of the GOST algorithm, one can ask whether the use
of permutations instead of much bigger class of all functions, will compromise
the security of the system. Even and Goldreich [1] proved that any DES-type
encryption with a single iteration

L ' = R

I~ = L (~ f (R)

generates the alternating group where f : GF(232) --* GF(2 z2) is a Boolean
function, the input is (L, R) and the output is (L', Rt). Later Pieprzyk and Zhang
[3] showed that if f is a permutation then the DES-type encryption still generates
the alternating group. Thus the use of permutations instead of functions does
not deteriorate the security of the algorithm when a large number of rounds are
considered.

The concatenation of CM1, S-boxes S, and the cyclic shift R can be seen as
a round function F. The F function maps a 32-bit input string into an output
string of the same length, subject to the control of a 32-bit subkey. The central
part of the F function is eight 4 x 4 S-boxes. The F function operates by dividing
a 32-bit input string into eight (8) blocks first, each four (4) bits, and then
substituting each block with four bits specified by the corresponding S-box.

One can see that output bits of the function F are affected by different collec-
tion of inputs depending on their position. This can be explained by properties
of the concatenation of addition modulo 232 and S boxes. Addition modulo 232
generates outputs which all (except one - the less significant output bit) are
nonlinear. This leads us to the following lemma.

Lemrna 1. Outputs of Si are affected by 4i bits of message from the register R1
and 4i bits of partial key (i = 1,. . . ,8).

436

The position of $1 makes it specially vulnerable to the linear attack. S1 permu-
tat ion has to be selected very carefully so the outputs of S1 have the maximum
nonlinearity. As far as F function is concern, GOST compares favourably with
the DES as there is more complex input /output relation.

There is a very interesting problem of selecting S boxes in such a way that
the nonlinearity of the function F is high. In general the addition increases the
nonlinearity but there are cases when you may get reduction of nonlinearity of
the function F compared to the nonlinearity of the S-boxes.

4 Cycl ic Shifts R in G O S T

The primary effect of the cyclic shift is to provide diffusion. To study this we
assume that KSU = 0 and disregard. We concentrate firstly only on the mixing
effect of the cyclic shift within one arm of the algorithm. We consider two cases
of the algorithm in the simple substitution mode:

1. S-boxes are the identity transformation,
2. S-boxes are complete spread functions, i.e. every input bit effects every output

bit of the S-box, or equivalently every output bit depends on every input bit.

Let R~ denote the input to the right-half of the algorithm at round i, and
a~),--, a~l the individual input bits to this round.

4.1 Case 1: S -boxes are ident i ty

We consider the bits effected by a~ - the first input to round 1. Then we have

a~--* a~l ---* a~2 --~ a~

--~ a52 ~ ag3 ~ a~ ==~
a~ ~ =~ a 13 :=~ a 16 =~ a 19

31 4 2 4 4 s

where ~ stands for a three round transformation. Hence after 32 rounds a01
occupies every other bit of the Rl-half exactly once. It is easy to see that any
other cyclic shift rot(i)-which rotates R1 by i places, will have the same property
provided gcd(i, 32) = 1, or equivalently if i is odd.

4.2 Case 2: S -boxes are c o m p l e t e f u n c t i o n s

We consider now the spread of the bit a I in the case that an input to an S-box
effects all the output bits. The effect of this bit spreads over all the 32 bits of
the R1 after 8 rounds. We also note that

a~::~a 4 --+a~ =~a0 v - * a s ,

where ~ denotes a single round and ~ a multiple round.

437

The level of spread at each round determines functional dependencies; e.g. if
in round 1, 16 bits are effected, then an effected bit in round 4 depends on 16
input bits.

We note tha t as long as the cyclic shift is not a multiple of 4 spreading occurs
and 8 rounds are necessary to effect all the bits of R1. However the spreading
depends on the shift. For example if the cyclic shift is ro t (l) , the effect of a~ does
not reach a~l for i < 8. We can compare rotations by introducing a measure p(i) -
the min imum number of rounds required so that an effected bit occupies every
position in R1. It can be seen that p(1) = 8 and p (l l) = 4.

Since gcd(i, 32) = 1, then either rot(i) - 1 (mod 4), or rot(i) - 3 (mod 4).
Now, changing either 1 bit or 3 input bits effects all 4 output bits of an S-box.
Thus to compare the effects of rotations we need only consider rotations rot(i)
for either i = 1 , 5 , . . . , 29, or i = 3, 7 ,31. p(i) is completely determined by the
multiplicity of 4 in i. From this remark we conclude that the minimum number
of rounds such that a bit effected by a~ occupies every position in R1 at least
once is as shown in Table 1. We note that the minimum value of p(i) is 4; this

Table 1. Spreading induced by rotations.

rot(i) 1/3 5 / 7 9 /11 13/ 15 17/19 21/ 23125 / 27 29/31 I
p(i) s 4 5 5 4 I 5 8 I

occurs for rotations: rot(9), r o t (l l) , rot(21), rot(23). It can be seen that smallest
number of rounds required for complete diffusion is at least 4 for any rotation.
For any rotat ion rot(i), a 4-bit block diffuses into a 8-bit block after 2 rounds.
After 3-rounds the 8-bit block diffuses into a 12-bit block. But no mat ter how
these blocks are placed they cannot cover 32 bits. (At most, if they have no
overalps, they cover 4 + 8 + 12 = 24 bits.) So at least 4 rounds are needed for
domplete diffusion.

Note also that 11 and 23 do not divide 232 - 1, the modulus of the adder
CM4 (the adder CM4 is used in the stream mode - see [2]). This could have
influenced the choice of rotation by 11 bits for the cyclic shift register.

In the above analysis we have not taken account of swapping of the two
halves. To study this we can start the algorithm with R2 = 0. Let R~ denote the
left-hand input to the algorithm at round i, we also denote rot(i) by r~ and by
S the permutat ion induced by the S-box. (S : GF(232) ~ GF(232)). With these
conventions the symbolic equations for 2 rounds of the algorithm are:

R 2 -- R1 ~ r iSr iSR1,

R~ = r iS[l l ,

438

and after 3 rounds

R~ = rlSR1 (~ riS(R] �9 riSriSR1),

R~ = R1 �9 riSriSR1.

If we assume that

riS(R1 G riSriSR1) = riSR1 (~ r iSriSriSR1,

we can say something about the diffusion of R1 by the two halves. Using this rela-
tion, we see that after 5 rounds both R~t and R 5 contain the term r tSr iSr iSr iSR1.
But this can be rewritten using the fact that r iS = S~ri for some S ~. (The various
ri and the S-boxes form a group.) So

r lSr iSr iSr iSR1 = S(4)r4RI

(S(•) denotes the composition of n S-boxes, i.e., the product of the induced
permutations.) Consulting Table 1, we see that 5 rounds are required for diffusion
in the two arms of the algorithm for rotations: rot(9), r o t (l l) , rot(21), rot(23).

5 Select ion of S-boxes

One can note tha t the GOST has an effective key length of approximately
610 bits, where 256 bits are used to represent the key and the remaining bits
encode the S-boxes. Each of the 8 S-boxes is a permutation of the integers
[0, 1 , . - . , 14, 15], and there are 16! ~ 244.2 such permutations. It follows that
354 ~-. 8- 44.2 bits are required to specify 8 random S-boxes from the set of all
4-bit permutations, giving a total of 610 = 256 + 354 key bits. To reduce the
size of the key required, the designers could alternately generate a collection of
S-boxes (a pool) of a relatively small size, say 10,000, and use the key to specify
S-box from this fixed pool.

As noted the set of all possible S-boxes is quite large, and does not permit an
exhaustive search to find S-boxes optimal to a set of criteria. Experiments with
randomly selected S-boxes have been done and the S-boxes obtained have been
checked for their suitability with respect to linear and differential cryptanalysis.

References

1. S. Even and O. Goldreich. Des-like functions can generate the alternating group.
IEEE Transactions on Information Theory, 29(6):863-865, November 1983.

2. National Soviet Bureau of Standards. Information Processing Systems. Crypto-
graphic Protection. Cryptographic Algorithm. GOST 28147-89, 1989.

3. J.P. Pieprzyk and Xian-Mo Zhang. Permutation generators of alternating groups.
In Advances in Cryptology - A USCRYPT'90, J. Seberry, J. Pieprzyk (Eds), Lecture
Notes in Computer Science, Vo1.453, pages 237-244. Springer Verlag, 1990.

