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Abs t rac t .  An efficient algorithm for exponentiation with precomputa- 
tion is proposed and analyzed. Due to the precomputations, it is mainly 
useful for (discrete log based) systems with a fixed base. 
The algorithm is an instance of a more general method. This method 
is based on two ideas. Firstly, the idea from [3] of splitting the expo- 
nentiation into the product of a number of exponentiations with smaller 
exponents. Secondly, the use of the technique of vector a~ldition chains 
to compute this product of powers. 
Depend ing  on the amount of precomputations and memory, the proposed 
algorithm is about two to six times as fast as binary square and multi- 
ply. It is slightly slower than the method from [3], but requires far less 
memory. 

1 Introduction 

In many cryptographic systems the users must perform one or more exponen- 
tiations in a group, such as Zn or an elliptic curve group. This is a very time 
consuming operation, as it can be decomposed in a large number of multiplica- 
tions in this group. 

The time required for an exponentiation can be reduced by two orthogonal 
methods. On the one hand, one can reduce the time per multiplication by op- 
timizing it. On the other hand, one can reduce the number of multiplications. 
This is the method discussed in this paper. 

In the sequel, an exponentiation is indicated as g*, irrespective of the group 
in which it occurs. Indeed the algorithms discussed below are independent of the 
group they are performed in; they are aimed at reducing the number of group 
operations for an exponentiation, irrespective of this group. 

Assume we want to devise an algorithm to compute g* with as few multipli- 
cations as possible. There a three approaches: 

- The algorithm is independent of both g and x. An example is the binary 
square and multiply (BSM) algorithm, or its m-ary generalization [7]. For a 
random 512-bit exponent, binary square and multiply requires on average 767 
multiplications. The 'sliding window' variant of the m-ary method reduces 
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this to about 611 multiplications, using a temporary storage of 16 powers of 
g. 

- The algorithm is independent of g but depends on z. This is useful for RSA 
[9], for example: there g is the message, while z is a key. 
An example is the precomputation of an optimal sequence of multiplications 
and squarings, a so-called addition chain, ' tailor-made' for ~ [7, 1, 5]. For a 
random 512-bit exponent, about 605 multiplications [1] are needed. 

- The algorithm is independent of z but depends on g. This means that  it is 
suitable for use in for example signature generation and identification as in 
DSS, Brickell-McCurley and Schnorr [8, 4, 10] and most other discrete log 
based protocols, as one has a fixed base g in that  case. 
An example of this approach is the method with precomputation of some 
powers of g from [3]. Depending on the chosen parameters, a 512-bit expo- 
nent requires about 128 multiplications with a storage of 109 precomputed 
powers of g, down to as little as 64 multiplications with a storage of 10880 
precomputed powers. 

This paper takes this last approach: we consider exponentiations with a fixed 
base only. The algorithm from [3] is improved upon with respect to storage: with 
only 32 (resp. 8, 2) precomputed powers, the proposed algorithm takes about 
133 (resp. 183,411) multiplications for 512-bit exponents. 

This paper is organized as follows. Section 2 describes the basic algorithm 
given in [3]. Furthermore, it is briefly discussed what the difference in approach 
of the new algorithm is. Section 3 is on vector addition chains, being the ma- 
jor tool that  the proposed algorithm uses. Section 4 gives the algorithm itself. 
In Section 5, the complexity of this algorithm is assessed; Section 6 gives the 
conclusions. 

2 E x p o n e n t i a t i o n  w i t h  P r e c o m p u t a t i o n  

This section introduces and discusses the algorithm by Brickell, Gordon, Mc- 
Curley and Wilson from [3]. Basically, this algorithm rewrites an exponentiation 
with a large exponent as a product of a number of exponentiations with smaller 
exponents, and cleverly computes this product. 

Assume we want to compute powers g~ for random z smaller than some 
upper bound N. A typical size is N ,.~ 2 ~ Now suppose we have precomputed 
some powers gbo, gb~, . . . ,  gbr~-~. If we can write 

then obviously 

= (1) 
i = 0  

m - 1  

= I I  (2) 
i----0 
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Clearly, the set of exponents has to be chosen cleverly to make the computa- 
tion of Equation 2 more efficient than the usual algorithms. An obvious choice 
is {1, b, b2 , . . . ,bm-1},  with m the smallest integer satisfying b m > N (viz. 
b = I N  1/'"]). That  is, Equation 1 represents the b-ary representation of x for a 
suitably chosen base b. As in [3], we limit the discussion to this case. 

In the rest of this paper, the notation gi = gb' will be employed. In [3] the 
following algorithm is given to compute the product 

r n - 1  

[I  g;', (3) 
i=O 

with h denoting the maximal possible value for the xi's: 

A l g o r i t h m  B 
A,B~- - -1  
f o r d = h d o w n t o  l d o  

for each i with x~ = d do 
B ~ ' - B ' g i  

endfor 
A ~ A . B  

endfor 
return A 

For any xi the following holds: as soon as d = xi, g, is multiplied into B. In 
that  step and the following d - 1 steps, A is multiplied by B; so in the end A is 
multiplied by gi ~' �9 

Note that  this method is essentially unary: to multiply by g~' we just multiply 
xi times by gi. The clever part is that all m of those unary exponentiations 
are done simultaneously. The complete algorithm requires at most m + h - 2 
multiplications [3]. 

Note that  we have m = [log bN],  and h = b -  1. That  is, the number 
of multiplications is at most b + [log b N] - 3; on average it is at most b + 
b-.__.ll b [l~ N] - 3, as an xl is 0 with probability ~. Obviously, we must have 
relatively small values of b to keep this number low. For example, for N = 2512, 
the optimal choice is b = 26, yielding m = 109 and h = 25. 

If we want to decrease the number of factors m in Equation 3 significantly, 
the 'height'  h of the unary exponentiation becomes prohibitively large: m is 
inversely proportional to log s b (viz. m ~ log s N~ log s b), while h is proportional 
to b itself. For example, halving m requires a squaring of b, and conseqflently of 
h. 

By the same argument, a significant decrease of storage is infeasible for Al- 
gorithm B or variants: we obviously need at least m stored powers. That  is, this 
algorithm is not especially suited to minimize storage. (Indeed this is not at- 
tempted in [3]; instead, extensions are proposed that further reduce the number 
of multiplications at the cost of more storage.) 
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Informally, this can be seen as follows. The algorithm deals optimally with 
the number of factors in Equation 3, as one cannot do better than m - 1 mul- 
tiplications for a product of m independent factors. Each of those factors is an 
exponentiation as well, and those are not at all dealt with optimally: the used 
algorithm is unary. One might say that  this favors large m, and consequently 
large storage, and small size h of the exponents in each factor. 

3 V e c t o r  A d d i t i o n  C h a i n s  

3.1 Introduct ion 

In this paper, a different way of computation of Equation 3 is proposed. It is 
based on the observation that  any vector addition chain algorithm can be used to 
perform the computation of a product of a number of exponentiations. This will 
become clear below. The proposed algorithm has a complexity that is roughly 
logarithmic in h. This allows much larger bases and therefore less storage is 
needed. Informally: the factors each are dealt with more efficiently, and though 
the complexity of the algorithm does not split nicely in an 'combination-part '  
(m) and an 'exponentiation-part '  (h), one might say that this is paid for by a 
less efficient combination of the factors. 

3.2 A d d i t i o n  C h a i n s  

Before turning to vector addition chains, we briefly introduce the concept of ad- 
dition chains. The main reference for this subject is [7], for newer developments, 
see [2, 1, 5]. 

In the computation of an exponentiation, every intermediate result is the 
product  of two (not necessarily distinct) preceding intermediate results. The 
computat ion is fully described by the sequence of intermediate exponents. In 
this sequence so = 1 , s l , s 2 , . . . , S L  = z, each si (1 < i < L) is the sum of two 
preceding terms. The number of multiplications for the corresponding exponen- 
t iation equals the length L of the sequence; x is called the target. 

The sequence (s~)i is called an addition chain for x. The problem of finding 
the algorithm that  computes g= with the minimal number of multiplications now 
reduces to finding the shortest addition chain for x. 

3.3 V e c t o r  A d d i t i o n  C h a i n s  

In the computation of a product of powers of g~'s, every intermediate result is the 
product of such powers. The idea of addition chains can be generalized to such 

rt~--i  ez 
products by representing them as vectors. That  is, a product l-L=0 gi is rep- 
resented by the vector e = (e0 , . . . ,  era-l) .  The property that  each intermediate 
result is a product of powers of the g~'s now translates to the property that  each 
term in the corresponding sequence of vectors is the sum of two previous terms. 
It is easily verified that  a sequence of vectors (si)i describing the computation 
of Equation 3 must satisfy the requirements: 
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- the first m terms .~l-m up to so are the unit vectors (representing the gi's); 
- every term, except those unit vectors, is the sum of two preceding terms; 
- the last term 8L is the target a: = (z0, x l , . . . ,  xm-1). 

A sequence of vectors satisfying those requirements is called a vector addition 
cha/n of length L. Obviously, any algorithm to compute Equation 3 can be de- 
scribed in terms of vector addition chains, and conversely, any algorithm that  
produces a vector addition chain with the appropriate target can be used to 
compute this equation. 

3.4 A n  E x a m p l e  

Let m = 3, and a: = (30, 10, 24). With base 32, for example, this would corre- 
spond to exponent 30 + 10.32 + 24. 1024 = 24926. The following vector addition 
chain represents a computation of r,30g10.24 Y0 1 ~2 - 

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (2, 0, 2), (2, 1, 2), (3, 1, 2), 
(5, 2, 4),  (6, 2, 5), (12, 4, 10), (15, 5, 12), (30, 10, 24). 

. 3 0 n 1 0 . 2 4  f r o m  go ,  g l  and g2. That  is, with 9 multiplications, one can compute ~0 sl ~2 
The computation of g03~ g~0, g224 by BSM and subsequently their product would 
take 7 + 4 + 5 + 2 = 18 multiplications. The computations for an exponent 24926 
by BSM would even require 21 multiplications. 

4 E x p o n e n t i a t i o n  u s i n g  V e c t o r  A d d i t i o n  C h a i n s  

4.1 I n t r o d u c t i o n  

For our purpose, one can choose any vector addition chain algorithm. See, for 
example, [11, 5, 2] or "Shamir's trick" [6] or further developments of the latter 
such as [13] (see also [12]) or indeed the method by Brickell et al. from [3]. In the 
given context, the best choice seems to be the one made below; this is discussed 
in the final paper. The vector addition chain algorithm given below is derived 
from [2, appendix to Chapter 4] and is discussed in [5] as well. 

A vector addition chain algorithm can be described by the rule that  selects 
the two terms of the vector addition chain used to form the next term. Since we 
aim at an algorithm with minimal memory requirements, we require that  one of 
the terms used may be discarded from memory. That  is, it is not needed later 
on in the sequence. This implies that  the new term may replace one of the old 
terms in memory. 

Such an algorithm repeatedly updates a fixed-size collection of powers of 
the gi, until one of the elements of the collection equals the target 1-L g~'. The 
proposed algorithm not only updates this collection held in memory, but also 
restates the target in terms of the currently stored elements. That  is, given a 
collection {bi}, the target is rewritten as a product 1-l~ b~'. The elements b~ of the 
collection are called the (current) bases; the exponents t, are called the (current) 
target exponents. The initialization is trivially performed as bi ~-- gi, and $i ~-- x~ 
for all i. 
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4.2 A n  A l g o r i t h m  

The selection rule used for the update is based on the simple observation that  
x a y  b = (xybdiva)ay bm~ That  is, if we replace the target exponents (a, b) by 
(a, b mod a), we may simultaneously replace the base x by x y  bdiva. 

The idea of the algorithm is the repeated application of the above observation 
to the two largest target exponents. That  is, the observation is applied with 
b = t~ax  and a = tnezt. Thus, the largest target value is decreased to a value 
smaller than the next largest value. 

This is now described more formally. Let t / b e  the current target exponents, 
let bi be the corresponding current bases (0 < i < m). Furthermore, denote by 
'max '  and 'next '  the indices of the two largest t~. That  is, for all i, ti < t m a z ,  and 
for all i # max, ti < theft. 

In each step, the algorithm performs the following. First, raise bmax to the 
power q = tma= div t ~ . t .  This takes [log q] squarings and wt(q) - 1 multiplica- 
tions. If q = 1 this is a void step; if q > 1 this is done by for example BSM. 
(The non-bold terms in Section 3.4 correspond to the computation of such a qth 
power with q > 1. This computation requires an extra temporary variable.) Next, 
replace trn~z by tm~x mod tnezt and simultaneously replace bnext by bnext  " bqax. 

The whole step requires /log 2 q] + wt(q) multiplications. For the next step, 
the indices max and next are re-evaluated, so that  they are the indices of the 
largest two current ti again. (Note that the new value of next will be the old 
value of max.) 

The algorithm ends as soon a s  t nex t  - :  0. The final result then is ~m~z, ht . . . .  if 
t,~a~ > 1, we compute it by BSM, else we are done. 

Algor i thm V 
for i = 0 to m -  1 do 

b, ~ g, 
t~ *--- X~ 

e n d f o r  

while (t,,,t > 0) do 
q ~- tmax div t,~xt 
•ma$ ~'- ~raax mod tn,xt 
b~ext *--- bq~= �9 b~,~t 

endwhile 
ttaa~ r e t u r n  bma x 

bmax c a n  b e  Fig. 1. The basic Vector Addition Chain Algorithm. The powers b ~  and t~.. 
computed by any algorithm. 

The pseudocode in Figure 1 gives the basic vector addition chain algorithm 
to compute gZ m-1 = YIi=0 g~'- The power bqax and the return value -maxbt" can be 
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computed by any algorithm, for example BSM. This is the case considered in 
the sequel. 

Note that  for m = 2, this algorithm essentially performs Euclid's algorithm 
for the computation of the greatest common divisor of to and t l .  

4.3  V a r i a n t s  

In the final paper several variants and small improvements will be described. 
Almost all of those use the intermediate results in the computation of b~a x to 
reduce the new value tmax e v e n  further. Therefore, these variants are most useful 
for small m. On the other hand, especially for m = 2 this method increases the 
number of quotients larger than 1. For some results, see Table 1. 

5 Complexity Analysis 

5.1 M e m o r y  R e q u i r e m e n t s  

The required permanent storage is m powers of g, compared to 1 (namely g itself) 
for BSM. During the computation we need space for the targets ti (about log N 
bits), for the bases bi (m powers of g) and one temporary variable used in BSM 
used to compute bqax. Since the exponent must be stored in any exponentiation 
algorithm, it is not recorded in the tables below. 

So, for exponentiation in 25p the storage for intermediate results amounts to 
m + 1 times logp bits. For example, for 512-bits p, and depending on the choice 
of m (between 2 and 32) this ranges from 192 to 2112 bytes, see Table 1. 

Note that  Algorithm B [3] requires only two variables for intermediate results 
(A and B), but one also needs quick read access to all precomputed gi's. For 
Algorithm V one needs a variable (with write access) for each base, not just 
read access. Depending on the hardware platform, this may make a difference. 
This distinction is shown in the tables by prefixing the temporary memory by 
an asterisk. This signifies that  the permanent memory is read only. For example, 
the entry *10882 in Table 2 means that only 2 variables require write access; 
the other 10880 (as found in the column permanent memory) require only read 
a c c e s s .  

5.2 C o m p u t a t i o n a l  C o m p l e x i t y  

The complexity is determined by the computation performed in the while-loop 
in Fig. 1. The computation of the indices next and max are negligible. So only 
the division of ~r~ax by t~xt,  yielding both quotient and remainder, and the 
multiplications in bnext *"- bqax" bnext have a significant influence. 

We assume that  the division is performed as in [7]; there is no reason to use 
a slower algorithm. The complexity of this (long) division is Iql • It.~xtl: it takes 
O(Iql) steps of complexity O(It.~tl) each. The corresponding multiplications 
have a far higher complexity: namely O(Iql • (log N)2). 
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Ilength]algorithm/ time ] memory ] 
logN type r a L  L perm temp 

Ilengthlalgorithm] time [ memory ] 
logN type m /: L perm temp 

Table 1. The performance of the Vector Addition Chain Algorithm. Summary of the 
memory requirements, empirical average number of multiplications L and the esti- 
mate L from Section 5.3 for some relevant values of N (size of the exponent) and m 
(memory). V' denotes a variant of algorithm V, see Section 4.3. 

Furthermore, note that  for larger values of m, we will have target exponents 
that  fit into one or two machine words. This means that  we can use a single 
or double-precision division, rather than a multi-precision division as considered 
above. 

In any case, the division has negligible complexity compared to the multi- 
plications. This is confirmed by empirical results: these are only a few percent 
worse than would be expected on the basis of the number of multiplications 
only. Of course this is highly dependent on the used hardware platform. Note 
that  the availability of a multi-precision division may be a problem on some 
architectures. 

Finally, note that  relatively few multiplications in Algorithm V are squarings. 
Many squaring algorithms are faster than an ordinary multiplication, by making 
use of the fact that  both muliplicands are equal (see, e.g., [7]). This too may 
result in performance slightly worse than expected on the basis of the number 
of multiplications only. 

We conclude that  the computational complexity is determined by the number 
of multiplications. Tha t  is, by the length of the vector addition chain. This is 
worked out below. 

5.3 L e n g t h  o f  a V e c t o r  A d d i t i o n  C h a i n  

Denote the maximal length of a vector addition chain as constructed by 
Algorithm V for exponents x < N and for storage m by L(N, m). The average 
value will be denoted L(N, m). 

Below, we give heuristics for estimates for L(N, m) and L(N, m). It turns 
out to be very hard to find a closed formula for either of these, especially for 
smaller values of m, as in that  case it is not possible to make the simplifying 
assumption that  q = 1. Therefore we give only an estimate for the complexity 
for larger values of m, and the worst case for m = 2. Both results can be found 
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Ilengthlalgorithm I memory I time,, I 
logN reference perm temp mult.'s 

~ s  B [3] I lii "iiil iiil 
hamir [611 151 "161 239 I 

IV3,] I 112 "1241 346161 

Shamir [611 31 *41 447 I 
m-ary [711 1] "!71 6111 

BSM 

Ilengthl algorithm I memory ] time I 
log N reference perm temp mult.'s 

B [3] 

I iil ii 
Shamir [611 151"161 74 I 

[ 1 3 1 1 1 1 1  "121 114 I 
V' 

I ]Shamir[6] ~ .41 123~ 
I Im-ary[7]l 1[ *91 197 I 
[_.__.__l BSM 

Table 2. Comparison of some exponentiation algorithms. Summary of the memory 
requirements, (empirical) average number of multiplications for some relevant values 
of N (size of the exponent), m-ary is its m-ary generalization using a "sliding window". 
[13] is a combination of this sliding window idea and Shamir's trick. 

partly in [5] as well. More details will be given in the final paper. A summary of 
empirical results is given in Table 1. 

In practice, it turns out that  q = 1 almost always, unless log b >> m. This 
is not surprising, as for Euclid's Algorithm this already holds about 41% of 
the time [7, pp. 352-353]. By choosing larger values of m, the ti will be 'closer 
together' than for m = 2 as in Euclid's Algorithm. This implies that q = 1 will 
occur significantly more often than in Euclid's Algorithm. 

For the reasoning below, the possibility that q > 1 is ignored. This seems 
reasonable for m not too small; empirical results show that for N = 2 512 and 
m = 32 values of q > 1 are indeed rare. It can be expected that calculations 
based on this assumption will provide a reasonable (and conservative) estimate 
L ( N ,  m )  for the actual value of the expected length/ , (N,  m). This is confirmed 
by empirical results; even for smaller values of m. 

If q = 1 always, we have that each term si in the vector addition chain is the 
sum of the previous term si-1 and some other term in the set {s~-m, . . . ,  s i - 2 } .  
It is not hard to see that  si and all subsequent terms are minimal (using the 
usual norm) if si = si-1 + si-,~. This observation yields L(N, m). 

So the minimal sequence satisfies si  = s i -1  + s i - m  for all i > 0. 2 Moreover, 
all entries sij of the vectors si satisfy the same recurrence, all with a different 
initial segment: sij  = s i - l j  + s i - m , j  for all i > 0 and for 1 < j < m, and the 
initial m terms of the sequences (sij)i represent the m unit vectors of length m. 

It is readily verified that  these m sequences of entries of the vectors si just  are 
shifts of each other, namely sire = s~+1,1 = si+2,2 . . . .  = s~+m-l ,m-1 .  There- 
fore, we have L ( N ,  m)  = maxi{S~m < N U m } .  Note that S~rn can be approximated 

2 W.l.o.g. we reorder the m initial entries to satisfy this requirement also for 1 _< i < m. 
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by p~ where pm is the largest real solution of x "~ = x m-1 + 1. It follows that  
/~(N, rn) < logb/logpm. (An approximation for Pm is Pm = 1 +lnm/m.) For 
more details, see the final paper. 

For some values of L(N, m), see Table 1. Indeed for m > 4,/~(N, m) proves 
to be a reasonable estimate for L(N, m). 

Note that  the bound L(N, m) is constructive: there is a vector addition chain 
of length L(N,'m). That  is, L(N, m) >_ L(N, m). 

(This shows that  Conjecture 6 from [5] is not completely correct. The bound 
conjectured there translates to L(N, m) < (1 + m~ In m) log b; 3 for N = 2512 and 
m = 64 this yields L(2512, 64) < 139, while L(2512, 16) = t45.) 

Finally, we remark that Theorem 7 in [5] translates to L(N, 2) = log N. 
Indeed this bound is reached for the all-one exponent. 

6 Conclusions 

An method for faster exponentiation using a limited amount of precomputed 
powers is proposed. This method is based on two ideas. Firstly, the idea from [3] 
of splitting the exponentiation into the product of a number of exponentiations 
with smaller exponents. Secondly, the use of the technique of vector addition 
chains to compute this product of powers. 

Furthermore, a specific vector addition chain algorithm [5, 2] has been pro- 
posed and analyzed. Depending on the amount of precomputations and memory, 
this provides an algorithm that  is about two to six times as fast as binary square 
and multiply. It is only slightly slower than the method from [3] using far less 
memory. 

More specifically, a 512-bit exponentiation can be performed in 128 up to 402 
multiplications, using 32 down to 2 precomputed powers. The faster algorithms 
from [3] take 128 down to 64 multiplications, but require 109 up to 10880 precom- 
puted powers. Binary square and multiply and a variant of the m-ary method 
take 767 respectively about 611 multiplications without precomputations. 

The fact that  precomputations have to be done limits the applicability to 
those cryptographic systems where the same base is used very often. This holds 
for most discrete log based systems. 

There are several interesting open problems, such as other vector addition 
chain algorithms requiring less temporary variables, with different t ime/memory 
trade-off, etc. 
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