
Efficient Exponentiat ion using Precomputat ion
and Vector Addit ion Chains

Peter de Rooij

PTT Research*

Abs t rac t . An efficient algorithm for exponentiation with precomputa-
tion is proposed and analyzed. Due to the precomputations, it is mainly
useful for (discrete log based) systems with a fixed base.
The algorithm is an instance of a more general method. This method
is based on two ideas. Firstly, the idea from [3] of splitting the expo-
nentiation into the product of a number of exponentiations with smaller
exponents. Secondly, the use of the technique of vector a~ldition chains
to compute this product of powers.
Depend ing on the amount of precomputations and memory, the proposed
algorithm is about two to six times as fast as binary square and multi-
ply. It is slightly slower than the method from [3], but requires far less
memory.

1 Introduction

In many cryptographic systems the users must perform one or more exponen-
tiations in a group, such as Zn or an elliptic curve group. This is a very time
consuming operation, as it can be decomposed in a large number of multiplica-
tions in this group.

The time required for an exponentiation can be reduced by two orthogonal
methods. On the one hand, one can reduce the time per multiplication by op-
timizing it. On the other hand, one can reduce the number of multiplications.
This is the method discussed in this paper.

In the sequel, an exponentiation is indicated as g*, irrespective of the group
in which it occurs. Indeed the algorithms discussed below are independent of the
group they are performed in; they are aimed at reducing the number of group
operations for an exponentiation, irrespective of this group.

Assume we want to devise an algorithm to compute g* with as few multipli-
cations as possible. There a three approaches:

- The algorithm is independent of both g and x. An example is the binary
square and multiply (BSM) algorithm, or its m-ary generalization [7]. For a
random 512-bit exponent, binary square and multiply requires on average 767
multiplications. The 'sliding window' variant of the m-ary method reduces

* P.O. Box 4 2 1 , 2260 AK Leidschendam. the Netherlands. E-maih
P. J. N.deRooij @research.pt t.nl

390

this to about 611 multiplications, using a temporary storage of 16 powers of
g.

- The algorithm is independent of g but depends on z. This is useful for RSA
[9], for example: there g is the message, while z is a key.
An example is the precomputation of an optimal sequence of multiplications
and squarings, a so-called addition chain, ' tailor-made' for ~ [7, 1, 5]. For a
random 512-bit exponent, about 605 multiplications [1] are needed.

- The algorithm is independent of z but depends on g. This means that it is
suitable for use in for example signature generation and identification as in
DSS, Brickell-McCurley and Schnorr [8, 4, 10] and most other discrete log
based protocols, as one has a fixed base g in that case.
An example of this approach is the method with precomputation of some
powers of g from [3]. Depending on the chosen parameters, a 512-bit expo-
nent requires about 128 multiplications with a storage of 109 precomputed
powers of g, down to as little as 64 multiplications with a storage of 10880
precomputed powers.

This paper takes this last approach: we consider exponentiations with a fixed
base only. The algorithm from [3] is improved upon with respect to storage: with
only 32 (resp. 8, 2) precomputed powers, the proposed algorithm takes about
133 (resp. 183,411) multiplications for 512-bit exponents.

This paper is organized as follows. Section 2 describes the basic algorithm
given in [3]. Furthermore, it is briefly discussed what the difference in approach
of the new algorithm is. Section 3 is on vector addition chains, being the ma-
jor tool that the proposed algorithm uses. Section 4 gives the algorithm itself.
In Section 5, the complexity of this algorithm is assessed; Section 6 gives the
conclusions.

2 E x p o n e n t i a t i o n w i t h P r e c o m p u t a t i o n

This section introduces and discusses the algorithm by Brickell, Gordon, Mc-
Curley and Wilson from [3]. Basically, this algorithm rewrites an exponentiation
with a large exponent as a product of a number of exponentiations with smaller
exponents, and cleverly computes this product.

Assume we want to compute powers g~ for random z smaller than some
upper bound N. A typical size is N ,.~ 2 ~ Now suppose we have precomputed
some powers gbo, gb~, . . . , gbr~-~. If we can write

then obviously

= (1)
i = 0

m - 1

= I I (2)
i----0

391

Clearly, the set of exponents has to be chosen cleverly to make the computa-
tion of Equation 2 more efficient than the usual algorithms. An obvious choice
is {1, b, b2 , . . . ,bm-1}, with m the smallest integer satisfying b m > N (viz.
b = I N 1/'"]). That is, Equation 1 represents the b-ary representation of x for a
suitably chosen base b. As in [3], we limit the discussion to this case.

In the rest of this paper, the notation gi = gb' will be employed. In [3] the
following algorithm is given to compute the product

r n - 1

[I g;', (3)
i=O

with h denoting the maximal possible value for the xi's:

A l g o r i t h m B
A,B~- - -1
f o r d = h d o w n t o l d o

for each i with x~ = d do
B ~ ' - B ' g i

endfor
A ~ A . B

endfor
return A

For any xi the following holds: as soon as d = xi, g, is multiplied into B. In
that step and the following d - 1 steps, A is multiplied by B; so in the end A is
multiplied by gi ~' �9

Note that this method is essentially unary: to multiply by g~' we just multiply
xi times by gi. The clever part is that all m of those unary exponentiations
are done simultaneously. The complete algorithm requires at most m + h - 2
multiplications [3].

Note that we have m = [log bN], and h = b - 1. That is, the number
of multiplications is at most b + [log b N] - 3; on average it is at most b +
b-.__.ll b [l~ N] - 3, as an xl is 0 with probability ~. Obviously, we must have
relatively small values of b to keep this number low. For example, for N = 2512,
the optimal choice is b = 26, yielding m = 109 and h = 25.

If we want to decrease the number of factors m in Equation 3 significantly,
the 'height' h of the unary exponentiation becomes prohibitively large: m is
inversely proportional to log s b (viz. m ~ log s N~ log s b), while h is proportional
to b itself. For example, halving m requires a squaring of b, and conseqflently of
h.

By the same argument, a significant decrease of storage is infeasible for Al-
gorithm B or variants: we obviously need at least m stored powers. That is, this
algorithm is not especially suited to minimize storage. (Indeed this is not at-
tempted in [3]; instead, extensions are proposed that further reduce the number
of multiplications at the cost of more storage.)

392

Informally, this can be seen as follows. The algorithm deals optimally with
the number of factors in Equation 3, as one cannot do better than m - 1 mul-
tiplications for a product of m independent factors. Each of those factors is an
exponentiation as well, and those are not at all dealt with optimally: the used
algorithm is unary. One might say that this favors large m, and consequently
large storage, and small size h of the exponents in each factor.

3 V e c t o r A d d i t i o n C h a i n s

3.1 Introduct ion

In this paper, a different way of computation of Equation 3 is proposed. It is
based on the observation that any vector addition chain algorithm can be used to
perform the computation of a product of a number of exponentiations. This will
become clear below. The proposed algorithm has a complexity that is roughly
logarithmic in h. This allows much larger bases and therefore less storage is
needed. Informally: the factors each are dealt with more efficiently, and though
the complexity of the algorithm does not split nicely in an 'combination-part '
(m) and an 'exponentiation-part ' (h), one might say that this is paid for by a
less efficient combination of the factors.

3.2 A d d i t i o n C h a i n s

Before turning to vector addition chains, we briefly introduce the concept of ad-
dition chains. The main reference for this subject is [7], for newer developments,
see [2, 1, 5].

In the computation of an exponentiation, every intermediate result is the
product of two (not necessarily distinct) preceding intermediate results. The
computat ion is fully described by the sequence of intermediate exponents. In
this sequence so = 1 , s l , s 2 , . . . , S L = z, each si (1 < i < L) is the sum of two
preceding terms. The number of multiplications for the corresponding exponen-
t iation equals the length L of the sequence; x is called the target.

The sequence (s~)i is called an addition chain for x. The problem of finding
the algorithm that computes g= with the minimal number of multiplications now
reduces to finding the shortest addition chain for x.

3.3 V e c t o r A d d i t i o n C h a i n s

In the computation of a product of powers of g~'s, every intermediate result is the
product of such powers. The idea of addition chains can be generalized to such

rt~--i ez
products by representing them as vectors. That is, a product l-L=0 gi is rep-
resented by the vector e = (e0 , . . . , era-l) . The property that each intermediate
result is a product of powers of the g~'s now translates to the property that each
term in the corresponding sequence of vectors is the sum of two previous terms.
It is easily verified that a sequence of vectors (si)i describing the computation
of Equation 3 must satisfy the requirements:

393

- the first m terms .~l-m up to so are the unit vectors (representing the gi's);
- every term, except those unit vectors, is the sum of two preceding terms;
- the last term 8L is the target a: = (z0, x l , . . . , xm-1).

A sequence of vectors satisfying those requirements is called a vector addition
cha/n of length L. Obviously, any algorithm to compute Equation 3 can be de-
scribed in terms of vector addition chains, and conversely, any algorithm that
produces a vector addition chain with the appropriate target can be used to
compute this equation.

3.4 A n E x a m p l e

Let m = 3, and a: = (30, 10, 24). With base 32, for example, this would corre-
spond to exponent 30 + 10.32 + 24. 1024 = 24926. The following vector addition
chain represents a computation of r,30g10.24 Y0 1 ~2 -

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (2, 0, 2), (2, 1, 2), (3, 1, 2),
(5, 2, 4), (6, 2, 5), (12, 4, 10), (15, 5, 12), (30, 10, 24).

. 3 0 n 1 0 . 2 4 f r o m go , g l and g2. That is, with 9 multiplications, one can compute ~0 sl ~2
The computation of g03~ g~0, g224 by BSM and subsequently their product would
take 7 + 4 + 5 + 2 = 18 multiplications. The computations for an exponent 24926
by BSM would even require 21 multiplications.

4 E x p o n e n t i a t i o n u s i n g V e c t o r A d d i t i o n C h a i n s

4.1 I n t r o d u c t i o n

For our purpose, one can choose any vector addition chain algorithm. See, for
example, [11, 5, 2] or "Shamir's trick" [6] or further developments of the latter
such as [13] (see also [12]) or indeed the method by Brickell et al. from [3]. In the
given context, the best choice seems to be the one made below; this is discussed
in the final paper. The vector addition chain algorithm given below is derived
from [2, appendix to Chapter 4] and is discussed in [5] as well.

A vector addition chain algorithm can be described by the rule that selects
the two terms of the vector addition chain used to form the next term. Since we
aim at an algorithm with minimal memory requirements, we require that one of
the terms used may be discarded from memory. That is, it is not needed later
on in the sequence. This implies that the new term may replace one of the old
terms in memory.

Such an algorithm repeatedly updates a fixed-size collection of powers of
the gi, until one of the elements of the collection equals the target 1-L g~'. The
proposed algorithm not only updates this collection held in memory, but also
restates the target in terms of the currently stored elements. That is, given a
collection {bi}, the target is rewritten as a product 1-l~ b~'. The elements b~ of the
collection are called the (current) bases; the exponents t, are called the (current)
target exponents. The initialization is trivially performed as bi ~-- gi, and $i ~-- x~
for all i.

394

4.2 A n A l g o r i t h m

The selection rule used for the update is based on the simple observation that
x a y b = (xybdiva)ay bm~ That is, if we replace the target exponents (a, b) by
(a, b mod a), we may simultaneously replace the base x by x y bdiva.

The idea of the algorithm is the repeated application of the above observation
to the two largest target exponents. That is, the observation is applied with
b = t~ax and a = tnezt. Thus, the largest target value is decreased to a value
smaller than the next largest value.

This is now described more formally. Let t / b e the current target exponents,
let bi be the corresponding current bases (0 < i < m). Furthermore, denote by
'max ' and 'next ' the indices of the two largest t~. That is, for all i, ti < t m a z , and
for all i # max, ti < theft.

In each step, the algorithm performs the following. First, raise bmax to the
power q = tma= div t ~ . t . This takes [log q] squarings and wt(q) - 1 multiplica-
tions. If q = 1 this is a void step; if q > 1 this is done by for example BSM.
(The non-bold terms in Section 3.4 correspond to the computation of such a qth
power with q > 1. This computation requires an extra temporary variable.) Next,
replace trn~z by tm~x mod tnezt and simultaneously replace bnext by bnext " bqax.

The whole step requires /log 2 q] + wt(q) multiplications. For the next step,
the indices max and next are re-evaluated, so that they are the indices of the
largest two current ti again. (Note that the new value of next will be the old
value of max.)

The algorithm ends as soon a s t nex t - : 0. The final result then is ~m~z, ht if
t,~a~ > 1, we compute it by BSM, else we are done.

Algor i thm V
for i = 0 to m - 1 do

b, ~ g,
t~ *--- X~

e n d f o r

while (t,,,t > 0) do
q ~- tmax div t,~xt
•ma$ ~'- ~raax mod tn,xt
b~ext *--- bq~= �9 b~,~t

endwhile
ttaa~ r e t u r n bma x

bmax c a n b e Fig. 1. The basic Vector Addition Chain Algorithm. The powers b ~ and t~..
computed by any algorithm.

The pseudocode in Figure 1 gives the basic vector addition chain algorithm
to compute gZ m-1 = YIi=0 g~'- The power bqax and the return value -maxbt" can be

395

computed by any algorithm, for example BSM. This is the case considered in
the sequel.

Note that for m = 2, this algorithm essentially performs Euclid's algorithm
for the computation of the greatest common divisor of to and t l .

4.3 V a r i a n t s

In the final paper several variants and small improvements will be described.
Almost all of those use the intermediate results in the computation of b~a x to
reduce the new value tmax e v e n further. Therefore, these variants are most useful
for small m. On the other hand, especially for m = 2 this method increases the
number of quotients larger than 1. For some results, see Table 1.

5 Complexity Analysis

5.1 M e m o r y R e q u i r e m e n t s

The required permanent storage is m powers of g, compared to 1 (namely g itself)
for BSM. During the computation we need space for the targets ti (about log N
bits), for the bases bi (m powers of g) and one temporary variable used in BSM
used to compute bqax. Since the exponent must be stored in any exponentiation
algorithm, it is not recorded in the tables below.

So, for exponentiation in 25p the storage for intermediate results amounts to
m + 1 times logp bits. For example, for 512-bits p, and depending on the choice
of m (between 2 and 32) this ranges from 192 to 2112 bytes, see Table 1.

Note that Algorithm B [3] requires only two variables for intermediate results
(A and B), but one also needs quick read access to all precomputed gi's. For
Algorithm V one needs a variable (with write access) for each base, not just
read access. Depending on the hardware platform, this may make a difference.
This distinction is shown in the tables by prefixing the temporary memory by
an asterisk. This signifies that the permanent memory is read only. For example,
the entry *10882 in Table 2 means that only 2 variables require write access;
the other 10880 (as found in the column permanent memory) require only read
a c c e s s .

5.2 C o m p u t a t i o n a l C o m p l e x i t y

The complexity is determined by the computation performed in the while-loop
in Fig. 1. The computation of the indices next and max are negligible. So only
the division of ~r~ax by t~xt, yielding both quotient and remainder, and the
multiplications in bnext *"- bqax" bnext have a significant influence.

We assume that the division is performed as in [7]; there is no reason to use
a slower algorithm. The complexity of this (long) division is Iql • It.~xtl: it takes
O(Iql) steps of complexity O(It.~tl) each. The corresponding multiplications
have a far higher complexity: namely O(Iql • (log N)2).

396

Ilength]algorithm/ time] memory]
logN type r a L L perm temp

Ilengthlalgorithm] time [memory]
logN type m /: L perm temp

Table 1. The performance of the Vector Addition Chain Algorithm. Summary of the
memory requirements, empirical average number of multiplications L and the esti-
mate L from Section 5.3 for some relevant values of N (size of the exponent) and m
(memory). V' denotes a variant of algorithm V, see Section 4.3.

Furthermore, note that for larger values of m, we will have target exponents
that fit into one or two machine words. This means that we can use a single
or double-precision division, rather than a multi-precision division as considered
above.

In any case, the division has negligible complexity compared to the multi-
plications. This is confirmed by empirical results: these are only a few percent
worse than would be expected on the basis of the number of multiplications
only. Of course this is highly dependent on the used hardware platform. Note
that the availability of a multi-precision division may be a problem on some
architectures.

Finally, note that relatively few multiplications in Algorithm V are squarings.
Many squaring algorithms are faster than an ordinary multiplication, by making
use of the fact that both muliplicands are equal (see, e.g., [7]). This too may
result in performance slightly worse than expected on the basis of the number
of multiplications only.

We conclude that the computational complexity is determined by the number
of multiplications. Tha t is, by the length of the vector addition chain. This is
worked out below.

5.3 L e n g t h o f a V e c t o r A d d i t i o n C h a i n

Denote the maximal length of a vector addition chain as constructed by
Algorithm V for exponents x < N and for storage m by L(N, m). The average
value will be denoted L(N, m).

Below, we give heuristics for estimates for L(N, m) and L(N, m). It turns
out to be very hard to find a closed formula for either of these, especially for
smaller values of m, as in that case it is not possible to make the simplifying
assumption that q = 1. Therefore we give only an estimate for the complexity
for larger values of m, and the worst case for m = 2. Both results can be found

397

Ilengthlalgorithm I memory I time,, I
logN reference perm temp mult.'s

~ s B [3] I lii "iiil iiil
hamir [611 151 "161 239 I

IV3,] I 112 "1241 346161

Shamir [611 31 *41 447 I
m-ary [711 1] "!71 6111

BSM

Ilengthl algorithm I memory] time I
log N reference perm temp mult.'s

B [3]

I iil ii
Shamir [611 151"161 74 I

[1 3 1 1 1 1 1 "121 114 I
V'

I]Shamir[6] ~ .41 123~
I Im-ary[7]l 1[*91 197 I
[_.__.__l BSM

Table 2. Comparison of some exponentiation algorithms. Summary of the memory
requirements, (empirical) average number of multiplications for some relevant values
of N (size of the exponent), m-ary is its m-ary generalization using a "sliding window".
[13] is a combination of this sliding window idea and Shamir's trick.

partly in [5] as well. More details will be given in the final paper. A summary of
empirical results is given in Table 1.

In practice, it turns out that q = 1 almost always, unless log b >> m. This
is not surprising, as for Euclid's Algorithm this already holds about 41% of
the time [7, pp. 352-353]. By choosing larger values of m, the ti will be 'closer
together' than for m = 2 as in Euclid's Algorithm. This implies that q = 1 will
occur significantly more often than in Euclid's Algorithm.

For the reasoning below, the possibility that q > 1 is ignored. This seems
reasonable for m not too small; empirical results show that for N = 2 512 and
m = 32 values of q > 1 are indeed rare. It can be expected that calculations
based on this assumption will provide a reasonable (and conservative) estimate
L (N , m) for the actual value of the expected length/ , (N, m). This is confirmed
by empirical results; even for smaller values of m.

If q = 1 always, we have that each term si in the vector addition chain is the
sum of the previous term si-1 and some other term in the set {s~-m, . . . , s i - 2 } .
It is not hard to see that si and all subsequent terms are minimal (using the
usual norm) if si = si-1 + si-,~. This observation yields L(N, m).

So the minimal sequence satisfies si = s i -1 + s i - m for all i > 0. 2 Moreover,
all entries sij of the vectors si satisfy the same recurrence, all with a different
initial segment: sij = s i - l j + s i - m , j for all i > 0 and for 1 < j < m, and the
initial m terms of the sequences (sij)i represent the m unit vectors of length m.

It is readily verified that these m sequences of entries of the vectors si just are
shifts of each other, namely sire = s~+1,1 = si+2,2 = s~+m-l ,m-1 . There-
fore, we have L (N , m) = maxi{S~m < N U m } . Note that S~rn can be approximated

2 W.l.o.g. we reorder the m initial entries to satisfy this requirement also for 1 _< i < m.

398

by p~ where pm is the largest real solution of x "~ = x m-1 + 1. It follows that
/~(N, rn) < logb/logpm. (An approximation for Pm is Pm = 1 +lnm/m.) For
more details, see the final paper.

For some values of L(N, m), see Table 1. Indeed for m > 4,/~(N, m) proves
to be a reasonable estimate for L(N, m).

Note that the bound L(N, m) is constructive: there is a vector addition chain
of length L(N,'m). That is, L(N, m) >_ L(N, m).

(This shows that Conjecture 6 from [5] is not completely correct. The bound
conjectured there translates to L(N, m) < (1 + m~ In m) log b; 3 for N = 2512 and
m = 64 this yields L(2512, 64) < 139, while L(2512, 16) = t45.)

Finally, we remark that Theorem 7 in [5] translates to L(N, 2) = log N.
Indeed this bound is reached for the all-one exponent.

6 Conclusions

An method for faster exponentiation using a limited amount of precomputed
powers is proposed. This method is based on two ideas. Firstly, the idea from [3]
of splitting the exponentiation into the product of a number of exponentiations
with smaller exponents. Secondly, the use of the technique of vector addition
chains to compute this product of powers.

Furthermore, a specific vector addition chain algorithm [5, 2] has been pro-
posed and analyzed. Depending on the amount of precomputations and memory,
this provides an algorithm that is about two to six times as fast as binary square
and multiply. It is only slightly slower than the method from [3] using far less
memory.

More specifically, a 512-bit exponentiation can be performed in 128 up to 402
multiplications, using 32 down to 2 precomputed powers. The faster algorithms
from [3] take 128 down to 64 multiplications, but require 109 up to 10880 precom-
puted powers. Binary square and multiply and a variant of the m-ary method
take 767 respectively about 611 multiplications without precomputations.

The fact that precomputations have to be done limits the applicability to
those cryptographic systems where the same base is used very often. This holds
for most discrete log based systems.

There are several interesting open problems, such as other vector addition
chain algorithms requiring less temporary variables, with different t ime/memory
trade-off, etc.

Acknowledgements

I would like to thank J.ean-Paul Boly, Arjen Lenstra, Berry Schoenmakers and
Hans van Tilburg for their useful comments.

3 It is derived along the same lines as above; in the conjecture itself In m is misprinted
as log m.

399

References

1. J. Bos and M. Coster, "Addition chain heuristics", Advances in Cryptology - Pro-
ceedings of Crypto'89 (G. Brassard, ed.), Lecture Notes in Computer Science, vol.
435, Springer-Verlag, 1990, pp. 400-407.

2. J. N. E. Bos, Practical Pmvacy, Ph.D. thesis, Technical University of Eindhoven,
March 1992.

3. E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson, "Fast exponen-
tiation with precomputation (extended abstract)", Advances in Cryptology- Pro-
ceedings of Eurocrypt'92 (R. A. Rueppel, ed.), Lecture Notes in Computer Science,
vol. 658, Springer-Verlag, 1993, pp. 200-207.

4. E. F. Brickell and K. S. McCurley, "An interactive identification scheme based on
discrete logarithms and factoring", Journal o] Cryptology 5 (1992), no. 1, pp. 29-
39.

5. M. Coster, Some Algomthms on Addition Chains and their Complexity, Tech. Re-
port CS-R9024, Centrum voor Wiskunde en Informatica, Amsterdam, 1990.

6. T. E1Gamal, "A public key cryptosystem and a signature scheme based on dis-
crete logarithms", IEEE Transactions on In]ormation Theory IT-31 (1985), no. 4,
pp. 469-472.

7. D. E. Knuth, Seminumemcal Algorithms, second ed., The Art of Computer Pro-
gramming, vol. 2, Addison-Wesley, Reading, Massachusetts, 1981.

8. National Institute of Technology and Standards, Specifications for the Digital
Signature Standard (DSS), Federal Information Processing Standards Publica-
tion XX, US. Department of Commerce, February 1 1993.

9. R. L. Rivest, A. Shamir, and L. Adleman, "A method for obtaining digital sig-
natures and public-key cryptosystems", Communications o] the A CM 21 (1978),
no. 2, pp. 120-126.

10. C. P. Schnorr, "Efficient signature generation by smart cards", Journal o] Cryp-
tology 4 (1991), no. 3, pp. 161-174.

11. A. Yao, "On the evaluation of powers", SIAM Journal on Computing 5 (1976),
no. 1, pp. 100-103.

12. S.-M. Yen and C.-S. Laih, "The fast cascade exponentiation algorithm and its
application to cryptography", Abstracts of Auscrypt 92, 1992, pp. 10-20 - 10-25.

13. S.-M. Yen, C.-S. L~ih, and A. K. Lenstra, "A note on multi-exponentiation', IEE
Proceedings, Computers and Digital Techniques 141 (1994), no. 5, to appear.

