Skip to main content

Self-organized charge confinement in cuprate superconductors: Effects on the normal-and superconducting state

  • Superconductivity
  • Conference paper
  • First Online:
  • 57 Accesses

Part of the book series: Advances in Solid State Physics ((ASSP,volume 39))

Abstract

The observation of self-organized charge, segregation in cuprate superconductors is used to explain two of the most intriguing normalstate properties, namely the pseudogap in the density of states below the temperature T * and the unconventional temperature dependence of the in-plane resistivity. The doped holes reside in nanometer-scale grains due to the fragmentation of the charge stripes, similar to the case of quantum dots, with intervening antiferromagnetic semiconducting/insulating domains. The size of these grains scales with doping concentration. Based on charge confinement in such nano-grains, we propose a model to understand the temperature dependent in-plane resistivity as well as magnitude of the pseudogap as a function of doping. The charge transport is dominated by one- or two-dimensional diffusion at temperatures above T *, a cross-over to quasi-ballistic transport inside the grains below T *, and eventually variable-range hopping at low temperatures. The pseudogap can be identified with the spectroscopic gap of the quantum dots including the quantum fluctuations of the superconducting order parameter. The intergrain coupling via particle exchange allows a macroscopic phase-coherent superconducting state to establish below the critical temperature T c .

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. T. Timusk, and B. Statt, Rep. Prog. Phys. 62, 61 (1999) and references therein.

    Article  ADS  Google Scholar 

  2. C. C. Tsuei and T. Doderer, Europ. Phys. J. B, in press.

    Google Scholar 

  3. T. Doderer and C. C. Tsuei, to be published.

    Google Scholar 

  4. T. Egami, J. Low Temp. Phys. 105, 791 (1996).

    Article  ADS  Google Scholar 

  5. J. M. Tranquada, Physica C 282–287, 166 (1997) and the references therein.

    Article  Google Scholar 

  6. T. Egami, D. Louca, and R. J. McQueeney, J. of Supercond., 10, 323 (1997).

    Article  ADS  Google Scholar 

  7. P. Dai, H. A. Mook, F. Dogan, Phys. Rev. Lett. 80, 1738 (1998).

    Article  ADS  Google Scholar 

  8. Ch. Niedermayer., C. Bernhard, T. Blasius, A. Golnik, A. Moodenbaugh, and J. I. Budnick, Phys. Rev. Lett. 80, 3843 (1998).

    Article  ADS  Google Scholar 

  9. Barbara Goss Levi, Physics Today, June 1998, p. 19.

    Google Scholar 

  10. Z.-X. Shen, P. J. White, D. L. Feng, C. Kim, G. D. Gu, H. Ikeda, R. Yoshizaki, and N. Koshizuka, Science 280, 259 (1998).

    Article  ADS  Google Scholar 

  11. R. J. McQueeney, Y. Petrov, T. Egami, M. Yethiraj, G. Shirane, and Y. Endoh, Phys. Rev. Lett. 82, 628 (1999).

    Article  ADS  Google Scholar 

  12. A. Ino, C. Kim, M. Nakamura, T. Mizokawa, Z.-X. Shen, A. Fujimori, T. Kakeshita, H. Eisaki, and S. Uchida, cond-mat/9902048, 3 Feb 1999.

    Google Scholar 

  13. J. R. Schrieffer, X.-G. Wen, and S.-C. Zhang, Phys. Rev. Lett. 60, 944 (1988).

    Article  ADS  Google Scholar 

  14. J. Zaanen, and W. van Saarloos, Physica C 282–287, 178 (1997).

    Article  Google Scholar 

  15. V. J. Emery, S. A. Kivelson, O. Zachar, Phys. Rev. B 56, 6120 (1997).

    Article  ADS  Google Scholar 

  16. O. Zachar, S. A. Kivelson, V. J. Emery, Phys. Rev. B 57, 1422 (1998).

    Article  ADS  Google Scholar 

  17. Steven R. White, D. J. Scalapino, Phys. Rev. Lett. 81, 3227 (1998).

    Article  ADS  Google Scholar 

  18. C. J. Chen, C. C. Tsuei, Solid State Commun. 71, 33 (1989).

    Article  ADS  Google Scholar 

  19. H. L. Edwards, A. L. Barr, J. T. Markert, and A. L. de Lozanne, Phys. Rev. Lett. 73, 1154 (1994).

    Article  ADS  Google Scholar 

  20. H. L. Edwards, D. J. Derro, A. L. Barr, J. T. Markert, and A. L. de Lozanne, Phys. Rev. Lett. 75, 1387 (1995).

    Article  ADS  Google Scholar 

  21. K. Yamada et al., Phys. Rev. B 57, 6165 (1998).

    Article  ADS  Google Scholar 

  22. B. Batlogg et al., Physica C 235–240, 130 (1994).

    Article  Google Scholar 

  23. H. Takagi et al., Phys. Rev. Lett. 69, 2975 (1992).

    Article  ADS  Google Scholar 

  24. Y. Nakamura, S. Uchida, Phys. Rev. B 47, 8369 (1993).

    Article  ADS  Google Scholar 

  25. B. Ellman et al., Phys. Rev. B 39, 9012 (1989).

    Article  ADS  Google Scholar 

  26. N. P. Ong, Y. F. Yan, J. M. Harris, in Charge transport properties of the cuprate superconductors in High-Tc Superconductivity and the C60 Family, edite by S. Feng and H. C. Ren, (Gordon and Breach Publishers, 1995) pp. 53–79.

    Google Scholar 

  27. R. Gagnon, C. Lupien, L. Taillefer, Phys. Rev. B 50, 3458 (1994).

    Article  ADS  Google Scholar 

  28. A. N. Bloch, R. B. Weisman, C. M. Varma, Phys. Rev. Lett. 28, 753 (1972).

    Article  ADS  Google Scholar 

  29. S. Datta, Electronic Transport in Mesoscopic Systems, (Cambridge University Press, Cambridge (UK) 1995)

    Google Scholar 

  30. N. Taniguchi, and B. L. Altshuler, Phys. Rev. Lett. 71, 4031 (1993).

    Article  ADS  Google Scholar 

  31. A. G. Loeser, Z.-X. Shen, D. S. Dessau, D. S. Marshall., C. H. Park, P. Fournier, and A. Kapitulnik, Science 273, 325 (1996).

    Article  ADS  Google Scholar 

  32. H. Ding, T. Yokaya, J. C. Campuzano, T. Takahashi, M. Randeria, M. R. Norman, T. Mochiku, K. Kadowaki, and J. Giapinzakis, Nature 382, 51 (1996).

    Article  ADS  Google Scholar 

  33. N. L. Saini, J. Avila, A. Bianconi, A. Lanzara, M. C. Asensio, S. Tajima, G. D. Gu, and N. Koshizuka, Phys. Rev. Lett. 79, 3467 (1997).

    Article  ADS  Google Scholar 

  34. J. R. Cooper, J. W. Loram, J. Phys. I 6, 2237 (1996).

    Article  Google Scholar 

  35. G. V. M. Williams et al., Phys. Rev. Lett. 78, 721 (1997).

    Article  ADS  Google Scholar 

  36. A. Mastellone, G. Falci, Rosario Fazio, Phys. Rev. Lett. 80, 4542 (1998).

    Article  ADS  Google Scholar 

  37. C. T. Black, D. C. Ralph, M. Tinkham, Phys. Rev. Lett. 76, 688 (1996).

    Article  ADS  Google Scholar 

  38. K. A. Matveev, A. I. Larkin, Phys. Rev. Lett. 78, 3749 (1997).

    Article  ADS  Google Scholar 

  39. C. C. Tsuei et al., Phys. Rev. Lett. 73, 593 (1994).

    Article  ADS  Google Scholar 

  40. C. C. Tsuei, J. R. Kirtley, Physica C 282–287, 4 (1997) and the references therein.

    Article  Google Scholar 

  41. D. S. Golubev, A. D. Zaikin, Phys. Lett. A 195, 380 (1994).

    Article  ADS  Google Scholar 

  42. I. Morgenstern, W. Fettes, T. Husslein, D. M. Newns, and P. C. Pattnaik, condmat/9812314, 18 Dec 1998.

    Google Scholar 

  43. K. Gofron, J. C. Campuzano, A. A. Abrikosov, M. Lindroos, A. Bansil, H. Ding, D. Koelling, and B. Dabrowski, Phys. Rev. Lett. 73, 3302 (1994).

    Article  ADS  Google Scholar 

  44. R. S. Markiewicz, J. Phys. Chem. Solids 58, 1179 (1997) and the references therein.

    Article  ADS  Google Scholar 

  45. Roland Zeyher, Miodrag L. Kulić, Phys. Rev. B 53, 2850 (1996).

    Article  ADS  Google Scholar 

  46. Miodrag L. Kulić and Oleg V. Dolgov, cond-mat/9902232, 16 Feb 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernhard Kramer

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this paper

Cite this paper

Doderer, T., Tsuei, C.C. (1999). Self-organized charge confinement in cuprate superconductors: Effects on the normal-and superconducting state. In: Kramer, B. (eds) Advances in Solid State Physics 39. Advances in Solid State Physics, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107494

Download citation

  • DOI: https://doi.org/10.1007/BFb0107494

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41573-2

  • Online ISBN: 978-3-540-44553-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics