Skip to main content

Polymer synthesis via activated esters: A new dimension of creativity in macromolecular chemistry

  • Chapter
  • First Online:
Polymer Synthesis

Part of the book series: Advances in Polymer Science ((POLYMER,volume 111))

Abstract

The polymerization and chemistry of activated acrylates have been elaborated in recent years to provide a uniquely versatile method of polymer synthesis. The new method is simple, generally applicable, and is ideally suitable for the synthesis of specialty polymers of interest in the emerging technologies in chemistry, engineering, biotechnology and medicine. This article discusses the polymerization and copolymerization of activated acrylates by solution and suspension techniques, and reviews polymer properties such as comonomer distribution, molecular weights, 13C-NMR spectra and gel morphology. The use of copolymers of activated acrylates for the synthesis of a variety of specialty polymers, including amphiphilic gels, graft copolymers, and side chain reactive and liquid crystalline polymers is outlined. Potential applications of these polymers are also highlighted, and the versatility of active ester synthesis as a new dimension of creativity in macromolecular chemistry is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AOBt:

1-Acryloyloxybenzotriazol

AOSu:

N-Acryloyloxysuccinimide

AOPcp:

Pentachlorophenyl acrylate

AOTcp:

2,4,5-Trichlorophenyl acrylate

AONp:

4-Nitrophenyl acrylate

AOQu:

Acryloyloxy-8-quinoline

AOPy:

3-Pyridyl acrylate

AOCp:

2-Carboxyphenyl acrylate

AOMcp:

2-Methoxycarbonylphenyl acrylate

10 References

  1. Bergbreiter DE, Martin CR (eds) (1989) Functional polymers. Plenum, New York

    Google Scholar 

  2. IUPAC Microsymposium on Reactive Polymers, Prague, Czechoslovakia (1987) published in Pure Appl Chem 60: (1988); and Reactive Polymers 6: (1987)

    Google Scholar 

  3. Gebelein CG (ed) (1990) Biomimetic polymers. Plenum, New York

    Google Scholar 

  4. Warshawsky A (1987) In: Streat M, Naden D (eds) Ion Exchange and Sorption Processes in Hydrometallurgy. Wiley, New York, p 127

    Google Scholar 

  5. Prasad P, Ulrich D (eds) (1988) Nonlinear optical polymers. Plenum, New York

    Google Scholar 

  6. Arshady R (1989) Polym Eng Sci 29: 1746; (1990) Polym Eng Sci 30: 905 and 915

    Google Scholar 

  7. Arshady R (1991) J Chromatogr 586: 181 and 199

    Google Scholar 

  8. Shalaby WS, McCormic L, Butler B (eds) (1991) Water-soluble polymers: Synthesis, solution properties and applications, ACS Symp Ser 467

    Google Scholar 

  9. Harland RS, Prud'homme RK (1992) Polyelectrolyte gels: Properties, preparation, and applications, ACS Symp Ser 480

    Google Scholar 

  10. DeRossi D, Kajiwara K, Osada Y, Yamauchi A (eds) (1991) Polymer gels. Plenum, New York

    Google Scholar 

  11. Arshady R (1992) Polymer Preprints 33(1): 954

    Google Scholar 

  12. Arshady R (1990) Colloid Polym Sci 268: 948

    Google Scholar 

  13. Arshady R, Atherton E, Clive DLJ, Sheppard RC (1981) J Chem Soc Perkin Trans I 1981: 529

    Google Scholar 

  14. Arshady R, Mosbach K (1981) Makromol Chem 182: 687

    Google Scholar 

  15. Arshady R, Basato M, Corain B, Lora S, Roncato M, Zecca M (1989) J Mol Catal 53: 111

    Google Scholar 

  16. Arshady R, Reddy BSR, George MH (1986) Polymer 27: 769

    Google Scholar 

  17. Arshady R, Illum L, Davis SS (1991) Polym Adv Technol 1: 193

    Google Scholar 

  18. Arshady R (1990) J Bioact Compat Polym 5: 315

    Google Scholar 

  19. Arshady R, Basato M, Corain B, Lora S, Zecca M (1990) Adv Mater 2: 412

    Google Scholar 

  20. Arshady R (1989–90) unpublished work

    Google Scholar 

  21. Arshady R (1992) JMS Rev Macromol Chem Phys C32(1): 101

    Google Scholar 

  22. Benham JL, Kinstle JF (1988) Chemical reactions on Polymers, ACS Symp Ser 364. ACS, Washington DC

    Google Scholar 

  23. Arshady R (1981) Makromol Chem Rapid Commun 2: 573

    Google Scholar 

  24. Arshady R (1983) Makromol Chem Rapid Commun 4: 237

    Google Scholar 

  25. Arshady R (1984) Makromol Chem 185: 2387

    Google Scholar 

  26. Arshady R, Ugi I (1982) Angew Chem Int Edn Engl 21: 374

    Google Scholar 

  27. Arshady R, Ledwith A (1983) Reactive Polymers 1: 159

    Google Scholar 

  28. Epton R, Marr G, Small PW (1981) Polymer 22: 842

    Google Scholar 

  29. Warshawsky A, Kahana N (1979) J Amer Chem Soc 101: 4249

    Google Scholar 

  30. Arshady R (1988) Makromol Chem 189: 1303

    Google Scholar 

  31. Darling GD, Frechet JMJ (1986) J Org Chem 51: 2270

    Google Scholar 

  32. Mitchell AR, Kent SB, Engelhard M, Merrifield R (1978) J Org Chem 43: 2845

    Google Scholar 

  33. Sparrow JT (1976) J Org Chem 41: 1350

    Google Scholar 

  34. Leznoff CC, Wong JY (1976) Cand J Chem 54: 3824

    Google Scholar 

  35. Bodanszky M (1984) The practice of peptide synthesis. Springer, Berlin Heidelberg New York

    Google Scholar 

  36. Pless J, Biossonas RA (1963) Helv Chem Acta 46: 1609

    Google Scholar 

  37. Batz HG, Franzman GF, Ringsdorf H (1973) Makromol Chem 172: 27

    Google Scholar 

  38. Pittman CU Jr, Stahl GA (1981) J Appl Polym Sci 26: 2403

    Google Scholar 

  39. Chengxun L, Chongqing W (1980) J Polym Sci Polym Chem Edn 18: 2411

    Google Scholar 

  40. Narasimhaswamy T, Reddy BSR (1991) J Appl Polym Sci 43: 1615

    Google Scholar 

  41. Su CP, Morawetz H (1977) J Polym Sci Polym Chem Ed 15: 185

    Google Scholar 

  42. Rejmanova P, Lobsky J, Kopecek J (1977) Makromol Chem 178: 2159

    Google Scholar 

  43. Ferruti P (1986) In: Gregoriadis G, Senior G, Poste G (eds) Targeting of drugs with synthetic systems. Plenum, New York

    Google Scholar 

  44. Reddy BSR, Arshady R, George MH (1983) Macromolecules 16: 1813

    Google Scholar 

  45. Reddy BSR, Arshady R, Georgge MH (1985) Eur Polym J 41: 511

    Google Scholar 

  46. Desai MDB, Reddy BSR, Arshady R, George MH (1986) Polymer 27: 96

    Google Scholar 

  47. Arshady R, Fallah F (1992) J Polym Sci Polym Chem 30: 1705

    Google Scholar 

  48. Arshady R (1990) Makromol Chem Rapid Commun 11: 193

    Google Scholar 

  49. Polak A, Blumenfeld H, Wax M, Baughn RL, Whitesides GM (1980) J Am Chem Soc 102: 6324

    Google Scholar 

  50. Yoshida M, Asano M, Yokota T (1990) Polymer 31: 371

    Google Scholar 

  51. Fitch RM, Scholsky KM (1988) In: Rembaum A, Tokes ZA (eds) Microspheres: Medical and biological applications. CRC Press, Boca Raton FL, p 101

    Google Scholar 

  52. Heidman W, Koester H (1980) Makromol Chem 181: 2495

    Google Scholar 

  53. Bevington JC, Melville HW, Taylor RP (1954) J Polym Sci Polym Chem Edn 12: 449

    Google Scholar 

  54. Limanovich AA, Papisov IM, Kabanov VA (1981) Eur Polym J 17: 981

    Google Scholar 

  55. Reddy BSR, Arshady R, George MH (1984) Makromol Chem 185: 1383

    Google Scholar 

  56. Levy GC, Nelson GL (1972) Carbon-13 Nuclear Magnetic Resonance for organic chemists. Wiley Interscience, New York, p 81

    Google Scholar 

  57. Inue Y, Nishioka A, Chujo R (1972) Makromol Chem 156: 207; Shaefer J (1971) Macromolecules 4: 107

    Google Scholar 

  58. Arshady R (1992) Colloid Polym Sci 270: 717

    Google Scholar 

  59. Gordon M, Miller JG, Day AR (1948) J Am Chem Soc 70: 1946

    Google Scholar 

  60. Gordon M, Miller JG, Day AR (1949) J Am Chem Soc 71: 1245

    Google Scholar 

  61. Wieland T, Schaefer W, Bokelman E (1951) Liebigs Ann Chem 99: 573

    Google Scholar 

  62. Bodanszky M (1984) Principles of peptide synthesis. Springer, Berlin Heidelberg New York, p 28

    Google Scholar 

  63. Koenig W, Geiger R (1973) Chem Ber 106: 3626

    Google Scholar 

  64. Koenig W, Geiger R (1970) Chem Ber 103: 788, 2024

    Google Scholar 

  65. Arshady R, Ledwith A, Kenner GW (1981) Makromol Chem 182: 11

    Google Scholar 

  66. Merrifield RB (1988) Makromol Chem Makromol Symp 19: 31

    Google Scholar 

  67. Merrifield B (1991) Profiles, pathways and dreams: The concept and development of solid phase peptide synthesis. American Chemical Society, Washington DC

    Google Scholar 

  68. Balmstrom B (ed) (1992) Noblel lectures in chemistry 1981–1990. World Scientific, London

    Google Scholar 

  69. Carpino LA, Mansour EME, Chung CH, Williams JR, MacDonald R, Knapszyk J, Carman M (1983) J Org Chem 48: 661

    Google Scholar 

  70. Carpino LA (1987) Acc Chem Res 20: 401

    Google Scholar 

  71. 70. a) Kent SBH (1985) In: Derber V, Hruby V, Kople K (eds) Proc 9th Am Peptide Symp. Pierce Chem Co, Rockford I1, p 407

    Google Scholar 

  72. 70. b) Atherton E, Sheppard RC (1985) idem p 415

    Google Scholar 

  73. Narita M, Tomotake Y, Isokawa S, Matsuzawa T, Miyauchi T (1984) Macromolecules 17: 1903

    Google Scholar 

  74. Fields GB, Fields CG (1991) J Am Chem Soc 113: 4202

    Google Scholar 

  75. Gross L, Ringsdorf H, Schyp H (1981) Angew Chem. Int Edn Engl 20: 305

    Google Scholar 

  76. McCullough RD, Lowe RD (1992) Polymer Preprints 33(1): 195

    Google Scholar 

  77. Patil AO, Heeger AJ, Wudl F (1989) Chem Rev 88: 183

    Google Scholar 

  78. Reynolds JR (1988) Chemtech 18: 440

    Google Scholar 

  79. Dusek K (ed) (1984) Adv Polym Sci 57

    Google Scholar 

  80. McCormic CL, Anderson KW, Hutchinson BH (1982–83) JMS Rev. Macromol Chem Phys C22: 57

    Google Scholar 

  81. Ueda M, Horada S, Aoyama S, Imai Y (1981) J Polym Sci Polym Chem Edn 19: 1061

    Google Scholar 

  82. Gelbin ME, Kohn J (1991) Polymer Preprints 32(1): 241

    Google Scholar 

  83. Nishikubo T, Takehara E, Saita S, Matsamura T (1987) J Polym Sci Polym Chem Edn 25: 3049

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Arshady, R. (1994). Polymer synthesis via activated esters: A new dimension of creativity in macromolecular chemistry. In: Polymer Synthesis. Advances in Polymer Science, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0024125

Download citation

  • DOI: https://doi.org/10.1007/BFb0024125

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57198-8

  • Online ISBN: 978-3-540-47949-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics