Skip to main content

Glassy state relaxation and deformation in polymers

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 103))

Abstract

An overview of a nonequilibrium glass theory is presented to describe the structural relaxation and deformation kinetics of polymeric glasses, compatible blends, and particulate composites. The glassy state relaxation is a result of the local configurational rearrangements of molecular segments, and the dynamics of holes (free volumes) provide a quantitative description of the segmental mobility. On the basis of the dynamics of hole motion, a unified physical picture has emerged which enables us to discuss the structure relaxation, physical aging, and glassy state deformation. The links between the bulk and shear relaxations, the change in deformation from linear to nonlinear viscoelastic responses, and the nonlinear viscoelastic nature of plastic deformation are discussed. Theoretical expressions are presented for the determination of the PVT (pressure-volume-temperature) behavior, for the elucidation of the equilibrium and nonequilibrium nature of the glass transition, for the calculation of viscoelastic response, and for the prediction of yield behavior and stress-strain relationships of these polymeric systems.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a:

macroscopic timescale (shift factor)

A:

parameter measures volume interaction

d:

fractal dimension

D:

local diffusion constant

eij :

strain tensor

E:

relaxation modulus

f:

hole (free volume) fraction

ΔH :

activation energy

k:

Boltzmann constant

n:

number of holes

nx :

number of polymer molecules

N:

total number of lattice sites

p:

pressure

q:

cooling rate (<0)

qv :

wave number on fractal lattice

Q:

wave vector of the fluctuation

r:

spatial vector

R:

diffusion length

t:

time

T:

temperature

T r :

reference temperature

Tg :

glass transition temperature

v:

lattice volume

V:

total volume

ΔW :

external work acting on the lattice

x:

number of monomer segments/polymer

α:

= εf/kT 2

β:

stretched exponent

δ:

nonequilibrium hole fraction

εh :

= ε is the hole energy

εf :

flex energy

η:

= E/2(1 + θ) is the shear modulus

θ:

Poisson ratio

ϰ:

= E/3(1−2θ) is the bulk modulus

μ:

physical aging rate

ν:

fractal exponent

ϱ:

state density

σij :

stress tensor

σy :

yield stress

τ:

relaxation time

ϕ:

volume fraction in blends or composites

χ:

interaction parameter

ψ:

relaxation function

ω:

angular frequency

Ωij :

activation volume tensor

9 References

  1. Howard RH (ed) (1973) Physics of glassy polymers. Wiley, New York

    Google Scholar 

  2. Struik LCE (1978) Physical aging in amorphous polymers and other materials. Elsevier, Amsterdam

    Google Scholar 

  3. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  4. Kovacs AJ (1963) Adv Polym Sci 3: 394

    Google Scholar 

  5. Chow TS (1984) Macromolecules 17: 2336

    Article  Google Scholar 

  6. Schwarzl FR, Link G, Greiner R, Zahradnik F (1985) Progr Coll Polym Sci 71: 180

    Google Scholar 

  7. Kovacs AJ, Aklonis JJ, Huchinson JM, Ramos AR (1979) J Polym Sci Polym Phys Ed 17: 1097

    Article  Google Scholar 

  8. Robertson RE, Simha R, Curro JG (1984) Macromolecules 17: 911

    Article  Google Scholar 

  9. Cohen MH, Grest GS (1979) Phys Rev B20: 1077

    Google Scholar 

  10. DeBolt MA, Easteal AJ, Macedo PB, Moynihan CT (1976) J Am Ceram Soc 59: 16

    Google Scholar 

  11. Chow TS (1989) Macromolecules 22: 698

    Article  Google Scholar 

  12. Chow TS (1989) Macromolecules 22: 701; (1992) ibid. 25: 440

    Article  Google Scholar 

  13. Matsuoka S (1985) Polym J 17: 321

    Google Scholar 

  14. Hodge IH (1986) Macromolecules 19: 936

    Article  Google Scholar 

  15. Mandelbrot BB (1982) The fractal geometry of nature. Freeman, San Francisco

    Google Scholar 

  16. Ma SK (1985) Statistical mechanics. World Scientific, Philadelphia, Chap 25

    Google Scholar 

  17. Kohlrausch R (1847) Ann Phys (Leipzig) 21: 393; Williams G, Watts DC (1970) Trans Faraday Soc 66: 80

    Google Scholar 

  18. Doolittle AK (1951) J Appl Phys 22: 1471

    Article  Google Scholar 

  19. Williams ML, Landel RF, Ferry JD (1955) J Am Chem Soc 77: 3701

    Article  Google Scholar 

  20. Vogel H (1921) Phys Z 22: 645; Fulcher, GA (1925) J Am Ceram Soc 8: 339

    Google Scholar 

  21. Adam G, Gibbs JH (1965) J Chem Phys 43: 139

    Article  Google Scholar 

  22. Alexander S, Orbach R (1982) J Phys (Paris) 43: L625

    Google Scholar 

  23. Landau LD, Lifshitz EM (1969) Statistical Physics. 2rd Edn Pergamon Press, Oxford, Chap 12

    Google Scholar 

  24. Chow TS (1988) Polymer 29: 1447

    Article  Google Scholar 

  25. Cates ME (1984) Phys Rev Lett 53: 926; Chow TS (1991) Phys Rev A44: 6916

    Article  Google Scholar 

  26. Gibbs JH, DiMarzio EA (1958) J Chem Phys 28: 373

    Article  Google Scholar 

  27. Chow TS (1986) J Rheology 30: 729

    Article  Google Scholar 

  28. Chow TS (1987) J Polym Sci B25: 137

    Google Scholar 

  29. McKinney JE, Goldstein M (1974) J Res Nat Bur Stds 78A: 331

    Google Scholar 

  30. Chow TS (1983) Polym Comm 24: 77; (1984) Polym Eng Sci 24: 915; 1079

    Google Scholar 

  31. Andrews RD, Kazama Y (1967) J Appl Phys 38: 4118

    Article  Google Scholar 

  32. Chow TS (1990) J Mater Sci 25: 957

    Google Scholar 

  33. Knauss WG, Kenner, VH (1980) J Appl Phys 51: 5131

    Article  Google Scholar 

  34. Turner S (1973) in Howard RH (ed) Physics of glassy polymers, Wiley, New York, p 243

    Google Scholar 

  35. Chow TS, VanLaeken A (1991) Polymer 32: 1798

    Article  Google Scholar 

  36. Halpin JC (1968) in Tsai SW, Halpin JC, Pagano NJ (ed) Composite Material Workshop, Technomic, Stamford, CT, p 87

    Google Scholar 

  37. Kaelble DH (1965) J Appl Polym Sci 9: 1213

    Article  Google Scholar 

  38. Eyring H (1936) J Chem Phys 4: 283

    Article  Google Scholar 

  39. Ward IM (1983) Mechanical properties of solid polymers. 2nd Edn Wiley, New York

    Google Scholar 

  40. McKenna GB (1991), private communication

    Google Scholar 

  41. Ott HJ (1980) Colloid Poly Sci 258: 995

    Article  Google Scholar 

  42. Bauwens-Crowet C, Bauwens JC, Homes G (1972) J Mater Sci 7: 176

    Article  Google Scholar 

  43. Rawson FF, Rider JG (1971) J Polym Sci C33: 87

    Google Scholar 

  44. Chow TS (1978) J Polym Sci, Polym Phys Ed 16: 959

    Google Scholar 

  45. Ishai O, Cohen LJ (1968) J Composite Mater 2: 302

    Google Scholar 

  46. Chow TS (1991) Polymer 32: 29

    Article  Google Scholar 

  47. Zoller P, Hoehn HH (1982) J Polym Sci Polym Phys Ed 20: 1385

    Article  Google Scholar 

  48. Paul DR, Newman S (eds) (1978) Polymer Blends Vol 1, Academic Press, New York

    Google Scholar 

  49. Chow TS (1990) Macromolecules 23: 4648

    Article  Google Scholar 

  50. Maconnachie A, Kambour RP, White DM, Rostami S, Walsh DJ (1984) Macromolecules 17: 2645

    Article  Google Scholar 

  51. Kambour RP, Smith SA, (1982) J Polym Sci Polym Phys Ed 20: 2069

    Article  Google Scholar 

  52. Fried JR, MacKnight WJ, Karasz FE (1979) J Appl Phys 50: 6052

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this chapter

Cite this chapter

Chow, T.S. (1992). Glassy state relaxation and deformation in polymers. In: Free Radical Copolimerization Dispersions Glassy State Relaxation. Advances in Polymer Science, vol 103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0020905

Download citation

  • DOI: https://doi.org/10.1007/BFb0020905

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55108-9

  • Online ISBN: 978-3-540-46727-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics