Skip to main content

Mechanosensitive ion channels in nonspecialized cells

  • Chapter
  • First Online:
Book cover Reviews of Physiology Biochemistry and Pharmacology, Volume 132

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 132))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman MJ, Wickman KD, Clapham DE (1994) Hypotonicity activates a native chloride current in Xenopus oocytes. J Gen Physiol 103:153–179

    Google Scholar 

  • Akay M, Craelius W (1993) Mechanoelectrical feedback in cardiac myocytes from stretch-activated ion channels. IEEE Trans Biomed Eng 40:811–816

    Google Scholar 

  • Akoev GN, Alekseev NP, Krylov BV (1988) Mechanoreceptors. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ashmore JF (1991) The electrophysiology of hair cells. Ann Rev Physiol 53:465–476

    Google Scholar 

  • Awayda MS, Ismailov II, Berdiev BK, Benos DJ (1995) A cloned renal epithelial Na+ channel protein displays stretch activation in planar lipid bilayers. Am J Physiol 268:C1450–C1459

    Google Scholar 

  • Bainbridge FA (1915) The influence of venous filling upon the rate of the heart. J Physiol (Lond) 50:65–84

    Google Scholar 

  • Bargmann CI (1994) Molecular mechanisms of mechanosensation. Cell 78:729–731

    Google Scholar 

  • Bear CE (1990) A nonselective cation channel in rat liver cells is activated by membrane stretch. Am J Physiol 258:C421–C428

    Google Scholar 

  • Bear CE, Li CH (1991) Calcium-permeable channels in rat hepatoma cells are activated by extracellular nucleotides. Am J Physiol 261:C1018–C1024

    Google Scholar 

  • Bedard E, Morris CE (1992) Channels activated by stretch in neurons of a helix snail. Can J Physiol Pharmacol 70:207–213

    Google Scholar 

  • Benos DJ, Cunningham S, Baker RR, Beason KB, Oh Y, Smith PR (1992) Molecular properties of amiloride sensitive sodium channels. In: Blaustein MP, Habermann E, Reuter H, Schweiger M (eds) Reviews of Physiology Biochemistry and Pharmacology. Springer, Berlin Heidelberg New York, pp 31–114

    Google Scholar 

  • Berendsen HJC (1996) Bio-molecular dynamics comes of age. Science 271:954–955

    Google Scholar 

  • Berrier C, Coulombe A, Houssin C (1992) Gadolinium ion inhibits loss of metabolites induced by osmotic shock and large stretch-activated channels in bacteria. Eur J Biochem 206:559–565

    Google Scholar 

  • Bloom M, Evans E, Mouritsen OG (1991) Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys 24:293–397

    Google Scholar 

  • Boitano S, Sanderson MJ Dirksen ER (1994) A role for Ca2+-conducting ion channels in mechanically induced signal transduction of airway epithelial cells. J Cell Sci 107:3037–3044

    Google Scholar 

  • Bonhivers M, Guihard G, Pattus F, Letellier L (1995) In vivo and in vitro studies of the inhibition of the channel activity of colicins by gadolinium. Eur J Biochem 229:155–163

    Google Scholar 

  • Bourque CW, Oliet SH, Richard D (1994) Osmoreceptors, osmoreception, and osmoregulation. Front Neuroendocrinol 15:231–274

    Google Scholar 

  • Bowman CB, Lohr JW (1996) Curvature sensitive mechanosensitive ion channels and smotically evoked movements of the patch membrane. Biophys J 70:A365

    Google Scholar 

  • Bowman CL, Ding JP, Sachs F, Sokabe M (1992) Mechanotransducing ion channels in astrocytes. Brain Res 584:272–286

    Google Scholar 

  • Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in arabidopsis. Cell 60:357–364

    Google Scholar 

  • Brady AJ (1991) Mechanical properties of isolated cardiac myocytes. Physiol Eur Rev 71:413–428

    Google Scholar 

  • Bregestovski P, Medina I, Goyda E (1992) Regulation of potassium conductance in the cellular membrane at early embryogenesis. J Physiol (Paris) 86:109–115

    Google Scholar 

  • Brown HM, Ottoson D, Rydqvist B (1978) Crayfish stretch receptor: and investigation with voltage-clamp and ion-selective electrodes. J Physiol (Lond) 284:155–179

    Google Scholar 

  • Charles AC, Merrill JE, Dirksen ER, Sanderson MJ (1991) Intercellular signaling in glial cells: Calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6:983–992

    Google Scholar 

  • Chen V, Guber HA, Palant CE (1994) Mechanosensitive single channel calcium currents in rat mesangial cells. Biochem Biophys Res Commun 203:773–779

    Google Scholar 

  • Chen C-C, Akoplan AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN (1995) A P2X purinoceptor expressed by a subset of sensory neutrons. Nature 377:428–434

    Google Scholar 

  • Chen Y, Simasko SM, Niggel J, Sigurdson WJ, Sachs F (1996) Ca2+ uptake in GH3 cells during hypotonic swelling: the sensory role of stretch-activated ion channels. Am J Physiol 270:C1790–C1798

    Google Scholar 

  • Craelius W (1993) Stretch-activation of rat cardiac myocytes. Exp Physiol 78:411–423

    Google Scholar 

  • Dai J, Sheetz MP (1995) Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophys J 68:988–996

    Google Scholar 

  • Davis MJ, Donovitz JA, Hood JD (1992) Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells. Am J Physiol 262:C1083–C1088

    Google Scholar 

  • Denk W, Webb WW (1992) Forward and reverse transduction at the limit of sensitivity studied by correlating electrical and mechanical fluctuations in frog saccular hair cells. Hearing Res 60:89–102

    Google Scholar 

  • Denk W, Webb WW, Hudspeth AJ (1989) Mechanical properties of sensory hair bundles are reflected in their Brownian motion measured with a laser differential interferometer. Proc Natl Acad Sci USA 86:5371–5375

    Google Scholar 

  • Dennerll, Joshi HC, Steel VL, Buxbaum RE, Heidemann SR (1988) Tension and compression in the cytoskeleton of PC-12: neurites. II. Quantitative measurements. J Cell Biol 107:665–674

    Google Scholar 

  • Diamond SL, Sachs F, Sigurdson WJ (1994) The mechanically induced calcium mobilization in cultured endothelial cells is dependent on actin and phopholipase. Arterioscler Thromb 14:2000–2009

    Google Scholar 

  • Ding JP, Pickard BG (1993a) Modulation of mechanosensitive calcium-selective cation channels by temperature. Plant J 3:713–720

    Google Scholar 

  • Ding JP, Pickard BG (1993b) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J 3:83–110

    Google Scholar 

  • Docherty RJ (1988) Gadolinium selectively blocks a component of calcium current in rodent neuroblastoma glioma hybrid (NG108-15) cells. J Physiol (Lond) 398:33–47

    Google Scholar 

  • Dopico AM, Kirber MT, Singer, JJ Walsh, JV Jr (1994) Membrane stretch directly activates large conductance Ca2+-activated K+ channels in mesenteric artery smooth muscle cells. Am J Hypertension 7:82–89

    Google Scholar 

  • Doroshenko P, Neher E (1992) Volume-sensitive chloride conductance in bovine chromaffin cell membrane. J Physiol (Lond) 449:197–218

    Google Scholar 

  • Driscoll M (1996) Molecular genetics of touch sensation in C. elegans: mechanotransduction and mechano-destruction. Biophys J 70:A1

    Google Scholar 

  • Duncan RL, Hruska KA (1994) Chronic, intermittent loading alters mechanosensitive channel characteristics in osteoblast-like cells. Am J Physiol 267:F909–916

    Google Scholar 

  • Duncan RL, Hruska KA, Misler S (1992) Parathyroid hormone activation of stretch-activated cation channels in osteosarcoma cells (UMR-106.01) FEBS Lett 307:219–223

    Google Scholar 

  • Edwards C, Ottoson D, Rydqvist B, Swerup C (1981) The permeability of the transducer membrane of the crayfish stretch receptor to calcium and other divalent ions. Neurosci 6:1455–1460

    Google Scholar 

  • Edwards KL, Pickard BG (1987) Detection and transduction of physical stimulii in plants. In Wagner E, Greppin H, Millet B (eds) The cell surface in signal transduction. Springer, Berlin Heidelberg New York, pp 41–66

    Google Scholar 

  • Elliott JR, Needham D, Dilger JP, Haydon DA (1983) The effects of bilayer thickness and tension on gramicidin single-channel lifetime. Biochim Biophys Acta 735:95–103

    Google Scholar 

  • Ermakov YA, Averbakh AZ, Lobyshev VI, Sukharev SI (1996) Effects of gadolinium on electrostatic and thermodynamic properties of lipid membranes. Biophys J 70:A96

    Google Scholar 

  • Erxleben C (1989) Stretch-activated current through single ion channels in the abdominal stretch receptor organ of the crayfish. J Gen Physiol 94:1071–1083

    Google Scholar 

  • Erxleben CF (1993) Calcium influx through stretch-activated cation channels mediates adaptation by potassium current activation. Neuroreport 4:616–618

    Google Scholar 

  • Evans E, Needham D (1987) Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions. J Phys Chem 91:4219–4228

    Google Scholar 

  • Evans E, Yeung A (1994) Hidden dynamics in rapid changes of bilayer shape. Chem Phys Lipids 73:39–56

    Google Scholar 

  • Falke LC, Misler S (1988) Ion channel activity during osmoregulation in clonal neuroblastoma. Biophys J 53:412a

    Google Scholar 

  • Falke LC, Misler S (1989) Activity of ion channels during volume regulation by clonal N1E115: neuroblastoma cells. Proc Natl Acad Sci USA 86:3919–3923

    Google Scholar 

  • Fahlke C, Rudel R (1992) Giga-seal formation alters properties of sodium channels of human myoballs. Pflugers Arch 420:248–254

    Google Scholar 

  • Filipovic D, Sackin H (1992) Stretch-and volume-activated channels in isolated proximal tubule cells. Am J Physiol 262:F857–F870

    Google Scholar 

  • Franco A Jr, Lansman JB (1990) Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature 344:670–673

    Google Scholar 

  • Franco A Jr, Winegar BD, Lansman JB (1991) Open channel block by gadolinium ion of the stretch-inactivated ion channel in mdx myotubes. Biophys J 59:1164–1170

    Google Scholar 

  • Franco-Obregon A Jr, Lansman JB (1994) Mechanosensitive ion channels in skeletal muscle from normal and dystrophic mice. J Physiol (Lond) 481:299–309

    Google Scholar 

  • French AS (1986) The role of calcium in the rapid adaptation of an insect mechanoreceptor. J Neurosci 6(8) 2322–2326

    Google Scholar 

  • French AS (1992) Mechanotransduction. Ann Rev Physiol 54:135–152

    Google Scholar 

  • Gallez D, Coakley WT (1986) Interfacial instability at cell membranes. Progr Biophys Mol Biol (Lond) 48:155–199

    Google Scholar 

  • Gannier F, Beranengo JC, Jacquemond V, Garnier D (1993) Measurements of sarcomere dynamics simultaneously with auxotonic force in isolated cardiac cells. IEEE Trans Biomed Eng 40:1226–1232

    Google Scholar 

  • Gannier F, White E, Lacampagne A, Garnier D, Le Guennec J (1994) Streptomycin reverses a large stretch induced increase in (Ca)i in isolated guinea pig ventricular myocytes. Circ Res 28:1193–1198

    Google Scholar 

  • Goligorsky MS (1988) Mechanical stimulation induces Ca2+ transients and membrane depolarization in cultured endothelial cells. Effects on Ca2+ in co-perfused smooth muscle cells. FEBS Lett 240No.12:59–64

    Google Scholar 

  • Grubmuller H, Heymann B, Tavan P (1996) Ligand binding: Molecular mechanics calculation of streptavidin-biotin rupture force. Science 271:997–999

    Google Scholar 

  • Gruen DW, Wolfe J (1982) Lateral tensions and pressures in membranes and lipid monolayers. Biochim Biophys Acta 688:572–580

    Google Scholar 

  • Grunder S, Thiemann A, Pusch M, Jentsch TJ (1992) Regions involved in the opening of CIC-2: chloride channels by voltage and cell volume. Nature 360:759–762

    Google Scholar 

  • Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol (Lond) 352:685–701

    Google Scholar 

  • Gustin MC (1991) Single-channel mechanosensitive currents. Science 253:800

    Google Scholar 

  • Gustin MC (1992) Mechanosensitive ion channels in yeast. Mechanisms of activation and adaptation. Adv Comp Environ Physiol 10:19–38

    Google Scholar 

  • Gustin MC, Zhou X, Martinac B, Kung C (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science 242:762–766

    Google Scholar 

  • Gyorke S, Fill M (1993) Ryanodine receptor adaptation: control mechanism of Ca2+ release in the heart. Science 260:807–809

    Google Scholar 

  • Hackney CM, Furness DN (1995) Mechanotransduction in vertebrate hair cells: structure and function of the stereociliary bundle. Am J Physiol 268:C1–13

    Google Scholar 

  • Hagmann J, Dagan D, Burger MM (1992) Release of endosomal content induced by plasma membrane tension: video image intensification and time lapse analysis. Exp Cell Res 198:298–304

    Google Scholar 

  • Hamill OP, Lane JW, McBride DW (1992) Amiloride: a molecular probe for mechanosensitive ion channels. Trends Pharmacol Sci 13:373–376

    Google Scholar 

  • Hamill OP, McBride DW (1995) Mechanoreceptive membrane channels. Am Scientist 83:30–37

    Google Scholar 

  • Hamill OP, McBride DW Jr, (1992) Rapid adaptation of single mechanosensitive channels in Xenopus oocytes. Proc Natal Acad Sci USA 89:7462–7466

    Google Scholar 

  • Hansen DE, Craig CS, Hondeghem LM (1990a) Stretch-induced arrhythmias in the isolated canine ventricle. Circulation 81:1094–1105

    Google Scholar 

  • Hansen DE, Craig CS, Hondeghem LM (1990b) Stretch-induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation 81:1094–1105

    Google Scholar 

  • Hansen DE, Borganelli M, Stacy GP Jr, Taylor LK (1991) Dose-dependent inhibition of stretch-induced arrhythmias by gadolinium in isolated canine ventricles. Evidence for a unique mode of antiarrhythmic action. Circ Res 69:820–831

    Google Scholar 

  • Hase CC, Le Dain AC, Martinac B (1995) Purification and functional reconstitution of the recombinant large mechanosensitive ion channel (MscL) of Escherichia coli. J Biol Chem 270:18329–18334

    Google Scholar 

  • Haws CM, Lansman JB (1991) Developmental regulation of mechanosensitive calcium channels in skeletal muscle from normal and mdx mice. Proc R Soc Lond (Biol) 245:173–177

    Google Scholar 

  • Haws CM, Winegar BD, Lansman JB (1996) Block of single L-type Ca2+ channels in skeletal muscle fibers by aminoglycoside antibiotics. J Gen Physiol 107:421–432

    Google Scholar 

  • Hille B (1992) Ionic channels of excitable membranes. Sinauer Association, Sunderland

    Google Scholar 

  • Hisada T, Ordway RW, Kirber MT, Singer JJ, Walsh JV Jr (1991) Hyperpolarization-activated cationic channels in smooth muscle cells are stretch sensitive. Pflugers Arch 417:493–499

    Google Scholar 

  • Hisada T, Singer JJ, Walsh JV Jr (1993) Aluminofluoride activates hyperpolarization-and stretch-activated cationic channels in single smooth muscle cells. Pflugers Arch 422:397–400

    Google Scholar 

  • Hoch H, Staples RC, Whitehead B, Comeau J, Wolf ED (1987) Signaling for growth orientation and cell differentiation by surface topography in Uromyces. Science 235:1659–1662

    Google Scholar 

  • Holley MC, Ashmore JF (1990) A cytoskeletal spring for the control of cell shape in outer hair cells isolated from the guinea pig cochlea. Eur Arch Otorhinol 247:4–7

    Google Scholar 

  • Hong K, Driscoll M (1994) A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in C. elegans (comments). Nature 367:470–473

    Google Scholar 

  • Howard J, Hudspeth AJ (1988) Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog's saccular hair cell. Neuron 1:189–199

    Google Scholar 

  • Hoyer J, Distler A, Haase W, Gogelein H (1994) Ca2+ influx through stretch-activated cation channels activates maxi K+ channels in porcine endocardial endothelium. Proc Natl Acad Sci USA 91:2367–2371

    Google Scholar 

  • Hu H, Sachs F (1994) Effects of mechanical stimulation on embryonic chick heart cells. Biophys J 66:A170

    Google Scholar 

  • Hu H, Sachs F (1995) Whole cell mechanosensitive currents in acutely isolated chick heart cells: correlation with mechanosensitive channels. Biophys J 68:A393

    Google Scholar 

  • Hu H, Sachs F (1996) Single-channel and whole-cell studies of mechanosensitive currents in chick heart. J Memb Biol 154:205–216

    Google Scholar 

  • Huang M, Chalfie M (1994) Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367:467–470

    Google Scholar 

  • Huang M, Gu G, Ferguson EL, Chalfie M (1995) A stomatin-like protein necessary for mechanosensation in C. elegans. Nature 378:292–295

    Google Scholar 

  • Hudspeth AJ (1989) How the ear's works work. Nature 341:397–404

    Google Scholar 

  • Izu YC, Sachs F (1991) B-D-Xyloside treatment improves patch clamp seal formation. Pflugers Arch 419:218–220

    Google Scholar 

  • Johansson B, Mellander S (1975) Static and dynamic components in the vascular myogenic response to passive changes in length as revealed by electrical and mechanical recordings from rat portal vein. Circ Res 36:76–83

    Google Scholar 

  • Jorgensen F, Ohmori H (1988) Amiloride blocks the mechano-electrical transduction channel of hair cells of the chick. J Physiol (Lond) 403:577–588

    Google Scholar 

  • Kawahara K (1993) Stretch-activated channels in renal tubule. Nippon Rinsho 51:2201–2208

    Google Scholar 

  • Kernan M, Cowan D, Zucker C (1994) Gentic dissection of mechanosensory transduction: Mechano reception-defective mutations of drosophila. Neuron 12:1195–1206

    Google Scholar 

  • Kim D (1992) A mechanosensitive K+ channel in heart cells — activation by arachidonic acid. J Gen Physiol 100(6):1021–1040

    Google Scholar 

  • Kim D, Sladek CD, Aguado-Velasco C, Mathiasen JR (1995) Arachidonic acid activation of a new family of K+ channels in cultured rat neuronal cells. J Physiol 484:643–660

    Google Scholar 

  • Kim E, Niethammer M, Rothschild A, Jan YN, Sheng M (1995) Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature 378:85–88

    Google Scholar 

  • Kim YK, Dirksen ER, Sanderson MJ (1993) Stretch-activated channels in airway epithelial cells. Am J Physiol 265:C1306–C1318

    Google Scholar 

  • Kimitsuki T, Ohmori H (1993) Dihydrostreptomycin modifies adaptation and blocks the mechano-electric transducer in chick cochlear hair cells. Brain Res 624:143–150

    Google Scholar 

  • Kirber MT, Walsh JV, Singer JJ (1988) Stretch-activated ion channels in smooth muscle: a mechanism for the initiation of stretch-induced contraction. Pflugers Arch 412:339–345

    Google Scholar 

  • Krapivinsky G, Gordon EA, Wickman K, Velimirovic B, Krapivinsky LC, Krapivinsky DE (1995) The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins. Nature 374:135–141

    Google Scholar 

  • Kubalski A, Martinac B, Ling KY, Kung C (1993) Activities of the ion channels in membranes of E. coli lacking the major lipoprotein. J Membr Biol 131:151–160

    Google Scholar 

  • Lab MJ (1980) Transient depolarisation and action potential alterations following mechanical changes in isolated myocardium. Cardiovasc Res 14:624–637

    Google Scholar 

  • Lab MJ, Zhou BY, Spencer CI, Horner SM, Seed WA (1994) Effects of gadolinium on length-dependent force in guinea-pig papillary muscle. Exp Physiol 79:249–255

    Google Scholar 

  • Lacampagne A, Gannier F, Argibay J, Garnier D, Le Guennec JY (1994) The stretch-activated ion channel blocker gadolinium also blocks L-type calcium channels in isolated ventricular myocytes of the guinea-pig. Biochim Biophys Acta 1191:205–208

    Google Scholar 

  • Lambert S, Bennett V (1993) From anemia to cerebellar dysfunction. A review of the ankyrin gene family. Eur J Biochem 211:1–6

    Google Scholar 

  • Lane JW, McBride D, Hamill OP (1991) Amiloride block of the mechanosensitive cation channel in Xenopus oocytes. J Physiol (Lond) 441:347–366

    Google Scholar 

  • Lane JW, McBride DW Jr, Hamill OP (1992) Structure-activity relations of amiloride and its analogues in blocking the mechanosensitive channel in Xenopus oocytes. British J Pharmacol 106:283–286

    Google Scholar 

  • Lane JW, McBride DW Jr, Hamill OP (1993) Ionic effects on amiloride block of the mechanosensitive channel in Xenopus oocytes. Br J Pharmacol 108:116–119

    Google Scholar 

  • Langton PD (1993) Calcium channel currents recorded from isolated myocytes of rat basilar artery are stretch sensitive. J Physiol 471:1–11

    Google Scholar 

  • Lansman JB, Franco Jr A (1991) What does dystrophin do in normal muscle. J Physiol (Lond) 411:409–411

    Google Scholar 

  • Lebert M, Hader DP (1996) How Euglena tells up from down. Nature 379:590

    Google Scholar 

  • Lecar H, Morris C (1993) Biophysics of mechanotransduction. In: Rubanyi GM (ed) Mechanoreception by the Vascular Wall. Futura, Mount Kisco, pp 1–11)

    Google Scholar 

  • Lehtonen JYA, Kinnunen PKJ (1995) Phospholipase A2: as a mechanosensor. Biophys J 68:1888–1894

    Google Scholar 

  • Levina NN, Lew RR, Heath IB (1994) Cytoskeletal regulation of ion channel distribution in the tip-growing organism Saprolegnia ferax. J Cell Sci 107:127–134

    Google Scholar 

  • Lewis RS, Ross PE, Cahalan MD (1993) Chloride channels activated by osmotic stress in T lymphocytes. J Gen Physiol 101:801–826

    Google Scholar 

  • Liu M, Xu J, Tanswell AK, Post M (1994) Inhibition of mechanical strain-induced fetal rat lung cell proliferation by gadolinium, a stretch-activated channel blocker. J Cell Physiol 161:501–507

    Google Scholar 

  • Machemer H, Braucker R (1992) Gravireception and graviresponses in ciliates. Acta Protozool 31:185–214

    Google Scholar 

  • Magleby KL, Stevens CF (1972) The effect of voltage on the time course of end-plate currents. J Physiol 223:151–171

    Google Scholar 

  • Marchenko SM, Sage SO (1996) Mechanosensitive ion channels from endothelium of excised rat aorta. Biophys J 70:A365

    Google Scholar 

  • Markin VS, Martinac B (1991) Mechanosensitive ion channels as reporters of bilayer expansion. A theoretical model. Biophys J 60:1120–1127

    Google Scholar 

  • Martinac B (1993) Mechanosensitive ion channels: biophysics and physiology. In Jackson M (ed) Thermodynamics of cell surface receptors. CRC, Boca Raton. pp 327–351

    Google Scholar 

  • Martinac B, Adler J, Kung C (1990) Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348:261–263

    Google Scholar 

  • Marunaka Y, Tohda H, Hagiwara N, Nakahari T (1994) Antidiuretic hormone-responding nonselective cation channel in distal nephron epithelium (A6). Am J Physiol 266:C1513–C1522

    Google Scholar 

  • Matsumoto H, Baron CB, Coburn RF (1995) Smooth muscle stretch-activated phospholipase C activity. Am J Physiol 268:C458–465

    Google Scholar 

  • McBride DW Jr, Hamill OP (1992) Pressure-clamp: a method for rapid step perturbation of mechanosensitive channels. Pflugers Arch 421:606–612

    Google Scholar 

  • McCobb DP, Fowler NL, Featherstone T, Lingle CJ, Saito M, Krause JES (1995) A human calcium-activated potassium channel gene expressed in vascular smooth muscle. Am J Physiol 269:H767–77

    Google Scholar 

  • Medina I, Bregestovski P (1991) Sensitivity of stretch-activated K+ channels changes during cell-cleavage cycle and may be regulated by cAMP-dependent protein kinase. Proc R Soc Lond (Biol) 245:2–64

    Google Scholar 

  • Methfessel C, Witzemann V, Takahashi T, Mishina M, Numa S, Sakmann B (1986) Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels. Pflugers Arch 407:577–588

    Google Scholar 

  • Moody WJ, Bosma MM (1989) A nonselective cation channel activated by membrane deformation in oocytes of the ascidian Boltenia villosa. J Membr Biol 107:179–188

    Google Scholar 

  • Morris CE (1992) Are stretch-sensitive channels in molluscan cells and elsewhere physiological mechanotransducers? Experientia 48:852–858

    Google Scholar 

  • Morris CE (1995) Stretch-sensitive ion channels. In: Sperelakis N (ed) Principles of cell physiology and biophysics. Academis, New York, pp 483–489

    Google Scholar 

  • Morris CE (1996) Stretch channels whether they meant to be or not to be. Biophys J 70:A1

    Google Scholar 

  • Morris CE, Horn R (1991a) Single-channel mechanosensitive currents. Science 253:801–802

    Google Scholar 

  • Morris CE, Horn R (1991b) Failure to elicit neuronal macroscopic mechanosensitive currents anticipated by single-channel studies. Science 251:1246–1249

    Google Scholar 

  • Morris CE, Sigurdson WJ (1989) Stretch-inactivated ion channels coexist with stretch-activated ion channels. Science 243:807–809

    Google Scholar 

  • Morris CE, Williams B, Sigurdson WJ (1989) Osmotically-induced volume changes in isolated cells of a pond snail. Comparative Biochem Physiol 92:A 479–483

    Google Scholar 

  • Munger BL, Ide C (1987) The enigma of sensitivity in Pacinian corpuscles: a critical review and hypothesis of mechano-electric transduction. Neurosci Res 5:1–15

    Google Scholar 

  • Naruse K, Sokabe M (1993) Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. Am J Physiol 264:C1037–C1044

    Google Scholar 

  • Nazir S (1994) The role of mechnoelectric feedback in the atrium of the isolated Langendorff-perfused guinea-pig heart, and its pharmacological modulation by streptomycin. Thesis, University of Lond

    Google Scholar 

  • Nazir SA, Dick DJ, Sachs F, Lab MJ (1995) Effects of G. spatulata venom, a novel stretch-activated channel blocker, in a model of stretch-induced ventricular fibrillation in the isolated heart. Circulation 292:I–641, #3076

    Google Scholar 

  • Niggel J, Hu H, Sigurdson WJ, Bowman C, Sachs F (1996) Grammostola spatulata venom blocks mechanical transduction in GH3 neurons, Xenopus oocytes and chick heart cells. Biophys J 70:A347

    Google Scholar 

  • Nishizaka T, Miyata H, Yoshikawa H, Ishiwata S, Kinosita K (1995) Unbinding force of a single motor molecule of muscle measured using optical tweezers. Nature 377:251–254

    Google Scholar 

  • Olesen S-P (1995) Cell membrane patches are supported by proteoglycans. J Membr Biol 144:245–248

    Google Scholar 

  • Oliet SH, Bourque CW (1993) Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature 364:341–343

    Google Scholar 

  • Oliet SHR, Bourque CW (1996) Gadolinium uncouples mechanical detection and osmoreceptor potential in supraoptic neurons. Neuron 16:175–181

    Google Scholar 

  • Opsahl LR, Webb WW (1994a) Transduction of membrane tension by the ion channel alamethicin. Biophys J 66:71–74

    Google Scholar 

  • Opsahl LR, Webb WW (1994b) Lipid-glass adhesion in giga-sealed patch-clamped membranes. Biophys J 66:75–79

    Google Scholar 

  • Ordway RW, Petrou S, Kirber MT, Walsh JV Jr, Singer JJ (1995) Stretch activation of a toad smooth muscle K+ channel may be mediated by fatty acids. J Physiol (Lond) 484:331–337

    Google Scholar 

  • Palmer LG, Frindt G (1996) Gating of Na channels in the rat cortical collecting tubule: effects of voltage and membrane stretch. J Gen Physiol 107:35–46

    Google Scholar 

  • Palmer RE, Brady AJ, Roos KP (1996) Mechanical measurements from isolated cardiac myocytes using a pipette attachment system. Am J Physiol 270:C697–C704

    Google Scholar 

  • Paoletti P, Ascher P (1994) Mechanosensitivity of NMDA receptors in cultured mouse central neurons. Neuron 13:645–655

    Google Scholar 

  • Pender N, McCulloch CA (1991) Quantitation of actin polymerization in two human fibroblast sub-types responding to mechanical stretching. J Cell Sci 100:187–193

    Google Scholar 

  • Pleusamran A, Kim D (1995) Membrane stretch augments the cardiac muscarinic K+ channel activity. J Membr Biol 148:287–297

    Google Scholar 

  • Popp R, Hoyer J, Meyer J, Galla HJ, Gogelein H (1992) Stretch-activated non-selective cation channels in the antiluminal membrane of porcine cerebral capillaries. J Physiol (Lond) 454:435–449

    Google Scholar 

  • Quasthoff S (1994) A mechanosensitive K+ channel with fast-gating kinetics on human axons blocked by gadolinium ions. Neurosci Lett 169:39–42

    Google Scholar 

  • Rajala GM, Kalbfleisch JH, Kaplan S (1976) Evidence that blood pressure controls heart rate in the chick embryo prior to neural control J Embryol Exp Morphol 36:685–695

    Google Scholar 

  • Rajala GM, Pinter MJ, Kaplan S (1977) Response of the quiescent heart tube to mechanical stretch in the intact chick embryo. Dev Biol 61:330–337

    Google Scholar 

  • Ring A (1992) Monitoring the surface tension of lipid membranes by a bubble method. Eur J Physiol 420:264–268

    Google Scholar 

  • Ring A, Sandblom J (1988) Evaluation of surface tension and ion occupancy effects on gramicidin A channel lifetime. Biophys J 53:541–548

    Google Scholar 

  • Riquelme G, Jaimovich E, Lingsch C, Behn C (1982) Lipid monolayer expansion by calcium-chlorotetracycline at the air/water interface and, as inferred from cell shape changes, in the human erythrocyte membrane. Biochim Biophys Acta 689:219–229

    Google Scholar 

  • Rosenberg PA, Finkelstein A (1978) Interaction of ions and water in gramicidin A channels. J Gen Physiol 72:327–340

    Google Scholar 

  • Rosenmund C, Westbrook GL (1993) Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron 10:805–814

    Google Scholar 

  • Rothstein A, Mack E (1992) Volume-activated calcium uptake: its role in cell volume regulation of Madin-Darby canine kidney cell. Am J Physiol 262:C339–C447

    Google Scholar 

  • Rotin D, Bar-Sagi D, O'Brodovich H, Merilainen J Lehto VP, Canessa CM, Rossier BC, Downey GP (1994) An SH3 binding region in the epithelial Na+ channel (alpha rENaC) mediates its localization at the apical membrane. EMBO J 13:4440–4450

    Google Scholar 

  • Ruknudin A, Song MJ, Sachs F (1991) The ultrastructure of patch-clamped membranes: a study using high voltage electron microscopy. J Cell Biol 112:125–134

    Google Scholar 

  • Ruknudin A, Sachs F, Bustamante JO (1993) Stretch-activated ion channels in tissue-cultured chick heart. Am J Physiol 264:H960–H972

    Google Scholar 

  • Rusch A, Kros CJ, Richardson GP (1994) Block by amiloride and its derivatives of mechano-electrical transduction in outer hair cells of mouse cochlear cultures. J Physiol 474:75–86

    Google Scholar 

  • Rydqvist B, Purali N (1993) Transducer properties of the rapidly adapting stretch receptor neurone in the crayfish (Pacifastacus leniusculus) J Physiol (Lond) 469:193–211

    Google Scholar 

  • Sachs F (1987) Baroreceptor mechanisms at the cellular level. Fed Proc 46:12–16

    Google Scholar 

  • Sachs F (1988) Mechanical transduction in biological systems. Crit Rev Biomed Eng 16:141–169

    Google Scholar 

  • Sachs F (1994) Modeling mechanical-electrical transduction in the heart. In: Mow VC, Guliak F, Tran-Son-Tray R, Hochmuth RM (eds) Cell mechanics cellular engineering. Springer, Berlin Heidelberg New York, pp 308–328

    Google Scholar 

  • Sachs F, Feng Q (1993) Gated, ion selective channels observed with patch pipettes in the absence of membranes: novel properties of the gigaseal. Biophys J 65:1101–1107

    Google Scholar 

  • Sachs F, Lecar H (1991) Stochastic models for mechanical transduction (letter). Biophys J 59:1143–1145

    Google Scholar 

  • Sachs F, Qin F, Palade P (1995) Models of Ca2+ release adaptation. Science 267:2010–2011

    Google Scholar 

  • Sackin H (1989) A stretch-activated K+ channel sensitive to cell volume. Proc Natl Acad Sci USA 86:1731–1735

    Google Scholar 

  • Sackin H (1995) Mechanosensitive channels. Ann Rev Physiol 57:333–353

    Google Scholar 

  • Sadoshima J, Takahashi T, Jahn L, Izumo S (1992) Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proc Natl Acad Sci USA 89:9905–9909

    Google Scholar 

  • Saimi Y, Martinac B, Delcour AH, Minorsky PV, Gustin MC, Culbertson MR, Adler J Kung C (1993) Patch clamp studies of microbial ion channels. Methods Enzymol 207:681–691

    Google Scholar 

  • Sakmann B, Neher E (1983) Geometric parameters of pipettes and membrane patches. In: Sakmann B, Neher E (eds) Single-channel recording. Plenum, New York, pp 37–51

    Google Scholar 

  • Sasaki N, Mitsuiye T, Noma A (1992) Effects of mechanical stretch on membrane currents of single ventricular myocytes of guinea-pig heart. Jpn J Physiol 42:957–970

    Google Scholar 

  • Schwiebert EM, Mills JW, Stanton BA (1994) Actin-based cytoskeleton regulates a chloride channel and cell volume in a renal cortical collecting duct cell line. J Biol Chem 269:7081–7089

    Google Scholar 

  • Sharma RV, Chapleau MW, Hajduczok G, Wachtel RE, Waite LJ, Bhalla RC, Abboud FM (1995) Mechanical stimulation increases intracellular calcium concentration in nodose sensory neurons. Neurosci 66:433–441

    Google Scholar 

  • Sheetz MP, Dai J (1996) Modulation of membrane dynamics and cell motility by membrane tension. Trends Cell Biol 6:85–89

    Google Scholar 

  • Sigurdson WJ, Morris CE, Brezden BL, Gardner DR (1987) Stretch activation of a K+ channel in molluscan heart cells. J Exp Biol 127:191–209

    Google Scholar 

  • Sigurdson WJ, Ruknudin A, Sachs F (1992) Calcium imaging of mechanically induced fluxes in tissue-cultured chick heart: role of stretch-activated ion channels. Am J Physiol 262:H1110–H1115

    Google Scholar 

  • Sigurdson WJ, Sachs F, Diamond SL (1993) Mechanical perturbation of cultured human endothelial cells causes rapid increases of intracellular calcium. Am J Physiol 264:H1745–H1752

    Google Scholar 

  • Small DL, Morris CE (1994) Delayed activation of single mechanosensitive channels in Lymnaea neurons. Am J Physiol 267:C598–606

    Google Scholar 

  • Small DL, Morris CE (1995) Pharmacology of stretch-activated K+ channels in Lymnaea neurones. Br J Pharmacol 114:180–186

    Google Scholar 

  • Small DL, Morris CE, (1995a) Pore properties of Lymnaea neuron SA K+ channels. J Exp Biol 198:1919–1929

    Google Scholar 

  • Snowdowne KW (1986) The effects of stretch on sarcoplasmic free calcium of frog skeletal muscle at rest. Biochim Biophys Acta 862:441–444

    Google Scholar 

  • Sokabe M, Hasegawa N, Yamamori K (1993a) Blockers and activators for stretch activated ion channels of chick skeletal muscle. NY Acad Sci 707:417–420

    Google Scholar 

  • Sokabe M, Nunogaki K, Naruse K, Soga H (1993b) Mechanics of patch clamped and intact cell-membranes in relation to SA channel activation. Jpn J Physiol 43 [Suppl]1:S197–S204

    Google Scholar 

  • Sokabe M, Nunogaki K, Naruse K, Soga H (1993c) Mechanics of patch clamped and intact cell-membranes in relation to SA channel activation. Jpn J Physiol 43:71–78

    Google Scholar 

  • Sokabe M, Sachs F, Jing Z (1991) Quantitative video microscopy of patch clamped membranes — stress, strain, capacitance and stretch channel activation. Biophys J 59:722–728

    Google Scholar 

  • Stacy GP Jr, Jobe RL, Taylor LK, Hansen DE (1992) Stretch-induced depolarizations as a trigger of arrhythmias in isolated canine left ventricles. Am J Physiol 263:H613–H621

    Google Scholar 

  • Steffensen I, Bates WR, Morris CE (1991) Embryogenesis in the presence of blockers of mechanosensitive ion channels. Dev Growth Differ 5:437–442

    Google Scholar 

  • Sukharev SI, Martinac B, Arshavsky VY, Kung C (1993) Two types of mechanosensitive channels in the E.Coli envelope: solublization and functional reconstitution. Biophys J 65:177–183

    Google Scholar 

  • Sukharev S, Blount P, Schroeder M, Kung C (1996) Multimeric structure of bacterial mechanosensitive channel MscL. Biophys J 70:A366

    Google Scholar 

  • Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994a) A large conductance mechanosensitive channel in E. coli encoded by MscL alone. Nature 368:265–268

    Google Scholar 

  • Sukharev SI, Blount P, Martinac B, Kung C (1997) Mechanosensitive channels of Escherichia coli: the MscL gene, protein and activities. Ann Rev Physiol 59:633–657

    Google Scholar 

  • Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1995) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721–727

    Google Scholar 

  • Swerup C (1983) On the ionic mechanisms of adaptation in an isolated mechanoreceptor — an electrophysiological study. Acta Physiol Scand [Suppl] 520:1–43

    Google Scholar 

  • Takano H, Glantz SA (1995) Gadolinium attenuates the upward shift of the left ventricular diastolic pressure-volume relation during pacing-induced ischemia in dogs. Circulation 91:1575–1587

    Google Scholar 

  • Taniguchi J, Guggio WB (1989) Membrane stetch: a physiological stimulator of Ca2+-activated K+ channels in thick ascending limb. Am J Physiol 257:F347–F352

    Google Scholar 

  • Tank DW, Wu ES, Webb WW (1982) Enchanced molecular diffusibility in muscle blebs. J Cell Biol 92:207–219

    Google Scholar 

  • Tung L, Parikh SS (1993) Cardiac mechanics at the cellular level. J Biomech Eng 113:492–495

    Google Scholar 

  • Tung L, Zou S (1995) Influence of stretch on excitation threshold of single frog ventricular cells. Exp Physiol 80:221–235

    Google Scholar 

  • Ubl J, Murer H, Kolb H-A (1988) Hypotonic shock evokes opening of Ca2+-activated K channels in opossum kidney cells. Pflugers Arch 412:551–553

    Google Scholar 

  • Van Wagoner DR (1993) Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circ Res 72:973–983

    Google Scholar 

  • Vandorpe DH, Morris CE (1992) Stretch activation of the Aplysia S-channel. J Membr Biol 127:205–214

    Google Scholar 

  • Vandorpe DH, Small DL, Dabrowski AR, Morris CE (1994) FMRFamide and membrane stretch as activators of the Aplysia S-channel. Biophys J 66:46–58

    Google Scholar 

  • Verrey F, Groscurth P, Bolliger U (1995) Cytoskeletal disruption in A6 kidney cells: impact on endo/exocytosis and NaCl transport regulation by antidiuretic hormone. J Membr Biol 145:193–204

    Google Scholar 

  • Wan X, Harris JA, Morris CE (1995) Responses of neurons to extreme osmo-mechanical stress. J Membr Biol 145:21–31

    Google Scholar 

  • Watson PA (1990) Direct stimulation of adenylate cyclase by mechanical forces in S49 mouse lymphoma cells during hyposmotic swelling. J Biol Chem 265(12):6569–6575

    Google Scholar 

  • Wellner MC, Isenberg G (1994) Stretch effects on whole-cell currents of guinea-pig urinary bladder myocytes. J Physiol (Lond) 480:439–448

    Google Scholar 

  • Wellner MC, Isenberg G (1995) cAMP accelerates the decay of stretch-activated inward currents in guinea-pig urinary bladder myocytes. J Physiol (Lond) 482:141–156

    Google Scholar 

  • White E, Le Guennec JY, Nigretto JM, Gannier F, Argibay JA, Garnier D (1993) The effects of increasing cell length on auxotonic contractions: membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes. Exp Physiol 78:65–78

    Google Scholar 

  • Widdicombe JH, Kondo M, Mochizuki H (1991) Regulation of airway mucosal ion transport. Int Arch Allergy Appl Immunol 94:56–61

    Google Scholar 

  • Wilkinson NC, McBride DW, Hamill OP (1996) Testing the putative role of a mechanogated channel in testing Xenopus oocyte maturation, fertilization and tadpole development. Biophys J 70:A349

    Google Scholar 

  • Winegar BD, Haws CM, Lansman JB (1996) Subconductance block of single mechanosensitive ion channels in skeletal muscle fibers by aminoglycoside antibiotics. J Gen Physiol 107:433–443

    Google Scholar 

  • Wirtz HRW, Dobbs LG (1990) Calcium mobilization and exocytosis after one mechanical stretch of lung epithelial cells. Science 250:1266–1269

    Google Scholar 

  • Xia SL, Ferrier J (1995) A calcium signal induced by mechanical pertubation of osteoclasts. J Cellular Physiol 167:148–155

    Google Scholar 

  • Yang XC, Sachs F (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243:1068–1071

    Google Scholar 

  • Yang XC, Sachs F (1990) Characterization of stretch-activated ion channels in Xenopus oocytes. J Physiol (Lond) 431:103–122

    Google Scholar 

  • Yeung A (1994) Mechanics of intermonolayer coupling in fluid surfactant bilayers. Thesis, University of British Columbia

    Google Scholar 

  • Zabel M, Koller BS, Sachs F, Franz MR (1996) Stretch-induced changes in the monophasic action potential: importance of the timing of stretch and implications for stretch-activated ion channels. Cardiovascular Res 32:120130

    Google Scholar 

  • Zagotta WN, Brainard MS, Aldrich RW (1988) Single-channel analysis of four distinct classes of potassium channels in Drosophila muscle. J Neurosci 8(12) 4765–4779

    Google Scholar 

  • Zhang Y, McBride DW, Hamill OP (1996) On the nature of mechano-gated channel activity in cytoskeleton deficient vesicles shed from Xenopus oocytes. Biophys J 70:A349

    Google Scholar 

  • Zhou XL, Stumpf MA, Hoch HC, Kung C (1991) A mechanosensitive channel in whole cells and in membrane patches of the fungus Uromyces. Science 253:1415–1417

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We dedicate this review to Dr. Harold Lecar, our insightful teacher

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this chapter

Cite this chapter

Sachs, F., Morris, C.E. (1998). Mechanosensitive ion channels in nonspecialized cells. In: Reviews of Physiology Biochemistry and Pharmacology, Volume 132. Reviews of Physiology, Biochemistry and Pharmacology, vol 132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0004985

Download citation

  • DOI: https://doi.org/10.1007/BFb0004985

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63492-8

  • Online ISBN: 978-3-540-69581-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics