
The Behavior Analyst 1998, 21, 111-123 No. 1 (Spring)

On Methods
Visual Inspection of Data Revisited:

Do the Eyes Still Have It?
Gene S. Fisch
Yale University

In behavior analysis, visual inspection of graphic information is the standard by which data are
evaluated. Efforts to supplement visual inspection using inferential statistical procedures to assess
intervention effects (e.g., analysis of variance or time-series analysis) have met with opposition.
However, when serial dependence is present in the data, the use of visual inspection by itself may
prove to be problematic. Previously published reports demonstrate that autocorrelated data influence
trained observers' ability to identify level treatment effects and trends that occur in the intervention
phase of experiments. In this report, four recent studies are presented in which autoregressive
equations were used to produce point-to-point functions to simulate experimental data. In each study,
various parameters were manipulated to assess trained observers' responses to changes in point-to-
point functions from the baseline condition to intervention. Level shifts over baseline behavior
(treatment effect), as well as no change from baseline (no treatment effect or trend), were most
readily identified by observers, but trends were rarely recognized. Furthermore, other factors pre-
viously thought to augment and improve observers' responses had no impact. Results are discussed
in terms of the use of visual inspection and the training of behavior analysts.
Key words: visual inspection, data analysis, statistical analysis

Although classical graphic methods
were developed more than a century ear-
lier (cf. Spence & Lewandowsky, 1990),
visual inspection of data as a technique
applied to behavior-analytic phenomena
has its roots in the concluding chapter of
The Behavior of Organisms (Skinner,
1938). Skinner states that, "Where a rea-
sonable degree of smoothness and repro-
ducibility can be obtained with a few
cases ... there is little reason ... to con-
sider large numbers" (p. 442), and "In
the simple sense of involving large num-
bers of measurements, very little of the
preceding work is statistical" (p. 442).
He states further that
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The statistical approach is characterized by rela-
tively unrefined methods of measurement and a
general neglect of the problem of direct descrip-
tion; [whereas] the non-statistical approach con-
fines itself to specific instances of behavior and to
the development of methods of direct measure-
ment and analysis. (p. 443)

To emphasize his belief that a science
of behavior is about single organisms in
which statistical analysis has no place,
Skinner cites as an example the case of
a physician who is"trying to determine
whether his patient will die before morn-
ing.... [He] make[s] little use of actu-
arial tables. Nor can the student of be-
havior predict what a single organism
can do if his laws only apply to groups"
(1938, p. 443). However, Skinner goes
to say that,

It may be that the differences between the two
approaches [statistical and nonstatistical] are tran-
sitory and that eventually a combination of the two
will give us our best methods, but at the present
time they are . .. different and almost incompatible
conceptions of a science of behavior. (p. 443)

That difference, calculating averages of
noisy group data to represent individuals
as opposed to examining the behavior of
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individual organisms themselves, was
underscored by Sidman (1952). He iden-
tified serious methodological weakness-
es concerning the validity of inferences
derived from averaged data to describe
a functional relationship about individ-
uals, from which Bakan (1954) later pro-
vided a more generalized argument. De-
spite Estes' (1956) contention that a
"valid interpretation of group curves de-
pends on principles in common in all
problems of statistical inference" (p.
139), the rift between statistical and non-
statistical approaches to a science of be-
havior widened.

The contrast between the two ap-
proaches was emphasized by Sidman
(1960):

A statistical judgment of significance or non-sig-
nificance may itself be the product of chance....
[and] what is meant by "chance"? To some ...
chance is simply a name for the combined effect
of uncontrolled variables. If such variables are, in
fact, controllable, then chance is simply an excuse
for sloppy experimentation, and no further com-
ment is required. (p. 45)

Inferential statistics were no longer con-
sidered a research tool for psychologists
but a marker for scientific sloth.
As long as visual inspection of

graphed data was confined to the anal-
ysis of behavior involved primarily
with nonhuman subjects under tight
experimental control, there was little
argument from the increasing ranks of
experimental psychologists engaged in
such research. However, as the princi-
ples of behavioral analysis spread to
areas of investigation beyond the lab-
oratory and involved human subjects
whose histories were largely unknown,
were studied under less-than-ideal ex-
perimental circumstances, and who
presented a broad array of problematic
behavioral repertoires, complications
developed.
One problem arose from the use of

human observers to record data that
had previously been obtained from
electromechanical devices. As measur-
ing instruments, observers differ from
one another in many ways. Among
them are history, training, experience,
and vigilance. Hence, interobserver or

interrater reliability became an impor-
tant issue in applied behavior analysis.
In its 10th anniversary volume, the
Journal of Applied Behavior Analysis
(JABA) included a report by Kelly
(1977) that reviewed 8 years of exper-
imental data from observations of hu-
man behavior published by the journal.
Although 94% of reports contained in-
formation on interrater reliability, the
vast majority of them attained less than
90% agreement between observers.
Also in that issue, several authors il-
lustrated how percentage agreement
was inadequate as a measure of agree-
ment. Yeltman, Wildman, and Erickson
(1977) showed that percentage agree-
ment was affected by behavior fre-
quency and by whether nonoccur-
rences of behavior were included in the
measure. Kratochwill and Wetzel (1977)
noted that percentage agreement may
be insensitive to certain response defi-
nitions. Kazdin (1977) argued further
that, among other factors, observer
drift and complexity of coding could
affect reliability and recommended
measures to improve interobserver
agreement. Hartmann (1977) suggest-
ed other ways to compute interob-
server reliability. Kratochwill and
Wetzel (1977) and Yeltman et al.
(1977) provided additional statistics
for computing interrater agreement
that would correct for chance agree-
ment. Suggestions regarding the use
of such statistical procedures to com-
pute interobserver reliability were
also met with some skepticism (Baer,
1977).
This was not the first attempt to in-

troduce inferential statistics to an ap-
plied behavioral setting. Previously,
Gentile, Roden, and Klein (1972)
proposed the use of analysis of vari-
ance (ANOVA) to evaluate data col-
lected from single-subject studies.
One assumption made by Gentile et
al., that successive observations with-
in treatment conditions be considered
as independent events, is essential in
using ANOVA procedures. Subse-
quent rebuttals of Gentile et al. were
broadly critical of the approach.
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Some were troubled by the particular
ANOVA model (Kratochwill et al.,
1974), whereas others were more
concerned about using ANOVA on
the serially dependent data that com-
monly occur in behavioral analysis
(Keselman & Leventhal, 1974; Tho-
resen & Elashoff, 1974; Toothaker,
Banz, Noble, Camp, & Davis, 1983).
Serially dependent data, which are
also referred to as serially correlated
or autocorrelated data, denote a tem-
porally ordered series of events in
which a measurement ascertained in
one time period is related to (i.e., de-
pends on) a value or values obtained
earlier. Keselman and Leventhal
(1974), Thoresen and Elashoff
(1974), and Toothaker et al. (1983)
suggested using time-series analyses
(TSA) that routinely include the as-
sumption of serial dependence in
their models.' As with interrater
agreement, there was some disquiet
about any use of inferential statistics
(Michael, 1974).

In statistical analysis, serial depen-
dence is problematic, because its oc-
currence violates several important
assumptions. Ordinarily, events are
assumed to be independent from an-
other so that differences from a sam-
ple mean occur in a normally distrib-
uted fashion. When two sample
means are compared, serial correla-
tion will inflate the probability of
falsely rejecting the null hypothesis,
as Crosbie (1987) and Toothaker et
al. (1983) have shown. For visual in-
spection, moderate positive autocor-

' Time-series analyses are statistical procedu-
res adapted from physics by which autocorrelat-
ed components of a function can be identified
and systematically transformed so that data can
be subsequently evaluated using general linear
methods (e.g., regression analysis). In general,
TSA requires many values to analyze data from
baseline and intervention phases, although inter-
rupted TSA (ITSA) procedures attempt to use
fewer points. More detailed discussions of TSA,
ITSA, and alternatives to ITSA can be found in
Glass, Willson, and Gottman (1975), Velicer and
Harrop (1983), Harrop and Velicer (1985),
Greenwood and Matyas (1990), Matyas and
Greenwood (1991), and Crosbie (1993).

relation, as opposed to a level shift in
responding during the intervention
phase, may produce a modest increas-
ing trend. Given session-to-session
response variability, the trend could
be missed and the modest effect ob-
scured. Consequently, a variable
would likely be dropped prematurely
from the study (DeProspero & Cohen,
1979).

It should come as no great surprise
that behavioral data from single-sub-
ject design studies exhibit serial depen-
dence and that responses from one ses-
sion are related to those from the next.
In this science of behavior, there would
otherwise be no prospect of maintain-
ing previously trained responses, dem-
onstrating their extinction, or illustrat-
ing the acquisition of novel behaviors.
Jones, Vaught, and Weinrott (1977)
highlighted the point as they incorpo-
rated TSA into operant research. They
examined both level shifts in respond-
ing and changes in trends from base-
line to intervention as manifested in
single-subject session-to-session data
(point-to-point functions) presented in
previously published studies, thereby
investigating behavioral data along a
dimension different from either visual
inspection or frequentist statistics. By
using TSA, they hoped to supplement
rather than replace visual inspection as
a tool for evaluating data. Hartmann et
al. (1980) suggested that ITSA be used
in studies in which the experimental ef-
fect may be small and serial correlation
is present in the data.

Because serial dependence posed a
serious problem for statistical analysis,
Jones, Weinrott, and Vaught (1978) de-
signed another study to determine
whether serial correlation was also an
obstacle to the visual inspection of
data. Published experiments from
JABA were selected in which signifi-
cant within-phase autocorrelations
were found. Graphs of the data were
shown to 11 judges who were then
asked whether a "meaningful" (i.e.,
reliable) change had been demonstrat-
ed from one phase to the next in the
graphs shown. The extent to which ob-
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servers agreed that a significant treat-
ment effect was present was inversely
related to the degree of autocorrelation
in the point-to-point functions present-
ed. Moreover, except for cases in
which both statistical significance and
serial dependence were low, average
agreement among judges was modest,
ranging from .48 to .60. In a similar
study, DeProspero and Cohen (1979)
constructed 36 ABAB reversal design
graphs using 10 points per phase and
asked raters to indicate the degree to
which experimental control had been
demonstrated. Mean correlation among
observers was .61, comparable to the
level of agreement obtained by Jones
et al. (1978). Later, Wampold and Fur-
long (1981) and Furlong and Wampold
(1982) found that not only do observ-
ers focus primarily on the size of the
treatment effect, but they are unable to
differentiate the treatment effect clear-
ly and consistently from the trend.
Thus, serial dependence also posed a
serious problem for visual inspection.
The twin issues of autocorrelation

and the application of TSA to tempo-
rally based single-subject data were ex-
amined in detail by Huitema (1986).
Using an elegant example, Huitema ar-
gued that the conceptualization of au-
tocorrelation with raw data, as opposed
to the residuals (i.e., the difference be-
tween observed values and their esti-
mates obtained from regression analy-
sis) described by Jones et al. (1977),
was logically flawed. Moreover, cal-
culation of autocorrelation in residuals
must be executed on separate design
phases. Otherwise, autocorrelation
would be detected where none in fact
existed. Huitema also presented results
he had evaluated previously (Huitema,
1985) in which the average autocorre-
lation coefficent from 441 data sets
was nearly zero, and concluded that se-
rial dependence in applied behavior
analysis was a myth.

Huitema's (1986) conclusions re-
garding the existence (or lack there-
of) of autocorrelation in applied be-
havioral studies were taken to task by
several investigators. Busk and Mar-

ascuilo (1988) reevaluated the studies
examined by Huitema (1985) and, af-
ter correcting for sample-size differ-
ences, found that 40% of baseline
phases and 59% of intervention
phases displayed autocorrelation co-
efficients greater than .25. These au-
thors calculated that autocorrelation
coefficients of that magnitude would
inflate Type I errors by more than
100%. Sharpley and Alavosius (1988)
noted further that examining residuals
or raw data was irrelevant regarding
the effect of autocorrelation on statis-
tical inference. (For a more complete
discussion of autocorrelation calcu-
lated from raw data compared to re-
siduals, see Busk & Marascuilo,
1988; Huitema, 1986; Matyas &
Greenwood, 1991.) Matyas and
Greenwood demonstrated that Lag 1
autocorrelations exist in applied be-
havior analysis studies but statistical
procedures used to assess them would
be problematic when the number of
points per phase was small.

These findings indicate that serial
dependence in applied behavior anal-
ysis is not of minor significance.
More important, when autocorrela-
tion occurs, can it be identified with,
and possibly managed by, statistical
techniques? Or, perhaps more mean-
ingfully to traditional behavior ana-
lysts, when it occurs, how does it af-
fect the visual inspection of graphic
data?

THE USE OF LAG 1
AUTOCORRELATION

EQUATIONS TO
DETERMINE THE EFFECT
OF SERIAL CORRELATION
ON VISUAL INSPECTION

Matyas and Greenwood (1990)
generated graphs constructed from
Lag 1 autocorrelated equations to ex-
amine trained observers' abilities to
detect level treatment effects or
trends manifested in point-to-point
functions. They used the following
equation:

Y,= aY, + b + d + e, (1)
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where Y, is the ordinate at session t, Y,
is the ordinate at session t - 1, a is the
autoregressive component used to in-
troduce a trend, b is the ordinate at t =
0, d is the size of the treatment effect,
and e introduces variability into the
function using randomly selected val-
ues from a normal distribution.2 Ma-
tyas and Greenwood (1990) asked sub-
jects to identify the response that best
described the function in the interven-
tion condition only: If they observed a
level change only from the baseline
value in the intervention phase (i.e., a
level treatment effect); if they observed
a change in trend only from the base-
line to intervention phase (i.e., trend
alone); if they observed a level treat-
ment effect and a change in trend; if
they observed neither a level treatment
effect nor trend; or if they observed
some other systematic change from
baseline to treatment. In studies that
examine the effects of different types
of intervention, change in trend has
been defined generally as a change in
the angle or pitch in slope (usually pos-
itive) from a baseline with zero slope
(Hartmann et al., 1980; Ottenbacher,
1986; Wampold & Furlong, 1981). Al-
though a trend implies positive auto-
correlation, the reverse may not be true
(Crosbie, 1989). However, positive au-
tocorrelation with moderate variability
will create a point-to-point function
that appears as a trend or change in
trend (Matyas & Greenwood, 1990).

Matyas and Greenwood (1990) were
interested in evaluating the impact of

2 Lag 1 autocorrelated functions can be parti-
tioned into three basic types, according to the
value of the autoregressive component a. When
a = 0, there is no autocorrelation and Y, is a
function of its initial value, b, and the variability
produced by e. When e is small, the function
appears much like a horizontal line. When a <
0, negative values of a produce altemating neg-
ative and positive values for Y,-,. If a = -1, the
autoregressive function appears as a sawtooth
pattern. When a > 0, positive values produce a
possibly increasing trend in the autocorrelated
function, depending on the magnitiude of a and
the initial value, b. A more complete description
of autocorrelation in behavioral research can be
found in Huitema (1986).

autocorrelation on Type I and Type II
errors. In statistics, a Type I error oc-
curs when the null hypothesis is re-
jected but is true. A Type II error oc-
curs when the alternate hypothesis is
rejected but is true. More commonly in
psychology and in signal-detection the-
ory in particular, Type I errors refer to
false alarms, and Type II errors refer to
misses.
To assess the influence of autocor-

relation on errors, Matyas and Green-
wood (1990) manipulated several pa-
rameters; specifically, the value of the
autoregression component (a = 0.0,
0.3, 0.6), the magnitude of the inter-
vention effect (d = 0, 5, 10), and the
amount of variability (s = 1, 3, 5). The
value of e was calculated by selecting
numbers from a table of random digits,
the relative frequencies of which fol-
low a normal distribution with mean
and standard deviation (0, 1), then
multiplied by a constant (s) to magnify
variability. Not surprisingly, results in-
dicated that treatment effects were eas-
ier to detect when variability was low
and effect magnitude was large. On the
other hand, when serial correlation was
present, subjects often identified the
trend produced by the autoregressive
component as if it were a treatment ef-
fect.

Their results, along with those ob-
tained by Cleveland and McGill
(1984, 1985, 1987), Lewandowsky
and Spence (1989), Spence (1990),
and Spence and Lewandowsky
(1990), have important implications
for the visual inspection of graphed
data. Consequently, Fisch and his col-
leagues attempted a systematic repli-
cation of the results obtained by Ma-
tyas and Greenwood (1990). Contin-
gent upon replicating their results,
Fisch sought to explore additional pa-
rameters that might affect visual in-
spection.

Procedurally, the studies by Fisch
grew out of the methodology employed
by Matyas and Greenwood (1990).
Subjects were presented with a set of
graphs constructed from a first order
autoregression equation, as in Equation
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Figure 1. Sample graph of point-to-point functions generated by an autoregressive equation.

1. Each graph contained at least a base-
line and an intervention phase. Sub-
jects were given response sheets con-
taining the letters A, B, C, D, and E
for each graph and were asked to ex-
amine the figures one at a time. They
were told to circle one of the letters: A
if they saw a level shift from the base-
line to intervention phase, B if they ob-
served a change in trend from baseline
to intervention, C if they noted both a
level shift and a trend, D if they saw
no change from baseline to interven-
tion, and E if there was some other sys-
tematic change. No time constraints
were imposed, but subjects were asked
to work as quickly as possible. An ex-
ample of the type of graphs is shown
in Figure 1.

Study 1: The Role of Design and
Number of Points per Phase

One criticism of the study by Matyas
and Greenwood (1990) and voiced
against other studies of visual inspec-
tion is that they presented only AB
(baseline and intervention) design

graphs. Therefore, Greenspan and
Fisch (1992) generated point-to-point
functions to construct AB and ABA
(baseline, intervention, and return to
baseline) design graphs similar to those
in Figure 1 and asked graduate stu-
dents trained in behavior analysis to
identify treatments or trends in 48
graphs. To obtain a systematic repli-
cation their results, Greenspan and
Fisch employed many of the same val-
ues used by Matyas and Greenwood
(1990) to generate level shifts, trends,
and variability. Level shift was based
on effect size. According to Cohen
(1988), effect size between two sample
means is a ratio of their difference to
the common standard deviation, or
A/a. An effect size of 1.0 is considered
large, producing a power estimate of
84%. The maximum effect size used
by Greenspan and Fisch was 2.0,
which produced power of 95%.

Greenspan and Fisch (1992) also ex-
amined the number of points per phase
(5 or 10) to determine whether they af-
fected subjects' responses. According
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TABLE 1

Contingent probabilities of responses given the presentation of a particular
graph type

Response

A B C D E

Graph A p(A,/A,) ... II
B p(Br/Bs) II

Type C P(Cr/Cs) II
D I I I p(Dr/Ds) I

A = Level treatment effect only.
B = Trend only.
C 8 Both treatment effect and trend.
D Neither treatment effect nor trend.
E Other systematic change.
I Type I error (false alarm).
II Type H error (miss).

to Huitema's (1985) survey, the num-
ber of points per phase in most behav-
ioral experiments is frequently small.
Matyas and Greenwood (1990) and
DeProspero and Cohen (1979) used 10
points per phase. Greenspan and Fisch
wanted to assess whether fewer points
would increase the Type I error. To
evaluate the data, they employed an in-
put-output matrix of contingent prob-
abilities, as shown in Table 1.

Although there were some individ-
ual differences, as a group subjects
were better able to identify treatment
effects only (37%) than trends only
(2%), whereas identification of treat-
ment-plus-trend functions fell some-
where in between (17%). As might be
expected among trained behavior ana-
lysts, when neither treatment effects
nor trends were generated, subjects
were able to identify 70% of those
graphs. Other interesting data were
found off the main diagonal of the
probability matrix. Type II error rates
were high for treatment effects alone
and trends alone compared to their re-
spective Type I error rates, but not for
treatment-plus-trend graphs. The Type
II error rate for those graphs was 3%.
Subjects generally identified treatment-
plus-trend graphs as treatment only
(72%).

Six months later, the study was rep-
licated with a second group. Identifi-

cation of treatment effects was some-
what lower (23%), trend detection was
moderately higher (21%), and identifi-
cation of treatment-plus-trend graphs
was higher still (31%). Consistent with
the first analysis, Type II error rates for
treatment-plus-trend graphs remained
low (6%) and were frequently mistak-
en as treatment only (60%). Problems
in detecting trends confirm results ob-
tained by Matyas and Greenwood
(1990), Wampold and Furlong (1981),
and Furlong and Wampold (1982) and
are consistent with the findings of
Cleveland and McGill (1984, 1985),
who found that angle discriminations
were more difficult to make than either
position or length discriminations.
To examine responses to ABA com-

pared to AB design graphs, Greenspan
and Fisch (1992) pooled the data for
the two groups tested. Subjects were
better able to identify level treatment
effects alone in ABA designs (37% vs.
26%). However, detection of trends
alone or treatment-plus-trend graphs
was about the same for AB as for ABA
designs. As regards numbers of points
per phase, more seemed to be less.
Subjects were least successful recog-
nizing treatment effects or trends from
ABA graphs with 10 points per phase.
Mastery was greater when there were
differing numbers of points in adjacent
phases (10 and 5, or 5 and 10).
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Study 2: The Role of Labeling and
Function Placement

Another obstacle in recognizing
treatments or trends is that essential in-
formation that may have affected judg-
ments of graphs was omitted from ear-
lier studies of visual inspection, as Par-
sonson and Baer (1992) noted. Fisch
and Schneider (1993) thought that one
such factor might be the type of re-
sponse measure depicted. Concurrent
with Study 1, they examined the effect
of labeling the y axis either "Response
Rate" or "Proportion of Responses."
Fisch and Schneider (1993) also inves-
tigated placement of point-to-point
functions in the graph: near the top of
the figure, in the middle, or near the x
axis. As in Study 1, Study 2 was rep-
licated with another group of subjects
6 months later. Unlike Study 1, the
contingent probabilities computed for
the matrices of the two groups in Study
2 showed little difference between
them.

Responses from the two groups were
pooled and showed once again that
level treatment effects were most
readily detected (35%), trends were
less well recognized (19%), and treat-
ment-plus-trend graphs were interpret-
ed least well (10%). The ability to
identify graphs in which neither treat-
ment effects nor trends were present
remained high (62%). On the other
hand, failure to detect the trend com-
ponent in treatment-plus-trend graphs
was also high (48%).
When Fisch and Schneider (1993)

compared subjects' responses to graphs
whose y axes were labeled "Proportion
of Responses" with those labeled "Re-
sponse Rates," they found that contin-
gent probabilities were nearly identical
in all cells of both matrices. On the
other hand, function placement had a
significant impact on the accurate iden-
tification of treatment effects or trends.
Specifically, point-to-point functions
placed near the top or bottom of the
graph elicited a substantially higher
proportion of correct responses to
treatment effects than those placed in

the middle. As a group, functions
placed close to the x axis generated a
higher proportion of correct responses
than did those placed elsewhere. Fisch
and Schneider (1993) suggested that
perhaps the frame of the graph at the
top or bottom of the figure provided a
visual anchor that enabled the observer
to detect changes from baseline more
readily than when functions were
placed in the middle. Previously, Ot-
tenbacher (1986) attempted to improve
detection of treatment effects and
trends by displaying celeration lines
calculated from the split-middle meth-
od of trend estimation. Earlier, Bailey
(1984) found that lines of progress im-
proved correct identification of treat-
ment effects and trends, although Cros-
bie (1987) has argued that the use of
trend lines may be problematic when
error variance is systematically changed.
More recently, Pfadt, Cohen, Sudhalter,
Romanczyk, and Wheeler (1992) ap-
plied the techniques of statistical pro-
cess control, developed by Shewhart
(1931), to identify outliers by placing
upper and lower limits ± 3 SDs from
the moving average to bracket point-
to-point functions of a temporal pro-
cess.

Study 3: The Role of Visual
Aids and Experience

Given the results in Study 2 and
findings by Bailey (1984), Ottenbacher
(1986), and Pfadt et al. (1992), Lee and
Fisch (unpublished data) decided to ex-
amine the effect of additional guide-
lines in detecting level treatment ef-
fects and trends. They selected 24
graphs from Greenspan and Fisch
(1992) along with 24 graphs from
Fisch and Schneider (1993), and then
drew upper and lower limits (±3 SD)
on either side of the point-to-point
functions in each of the 48 graphs.
These, along with the original 48
graphs without upper and lower bound-
aries, were presented to 5 university
faculty members trained as behavior
analysts who had many years' experi-
ence using visual inspection.
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Practiced observers detected a high
proportion of level treatment effects
(57%) and an extremely high percent-
age of graphs in which neither treat-
ment effects nor trends were present
(91%). However, experienced raters
rarely identified trends (1%) or treat-
ment effects-plus-trends (6%); rather,
they recognized the treatment effect
component only on 63% of the treat-
ment-plus-trend graphs (Lee & Fisch,
unpublished data). Where applicable,
earlier responses to equivalent graphs
from Greenspan and Fisch (1992) were
compared with outcomes from Study
3. Seasoned faculty members identified
a higher proportion of treatment effects
than did graduate students in Study 1
(52% vs. 37%). Faculty members also
recognized a higher percentage of
graphs in which neither treatment ef-
fects nor trends were present (90% vs.
67%). Likewise, responses to equiva-
lent graphs from Fisch and Schneider
(1993) compared to those from Study
3 indicated that experienced faculty
members identified a higher proportion
of treatment effects than did graduate
students (52% vs. 32%), and recog-
nized a higher percentage of graphs in
which neither treatment effects nor
trends were present (90% vs. 57%).
These results are in accord with those
obtained by Austin and Mawhinney
(1996), who found that skilled observ-
ers examine graphic data more care-
fully than novices do.

Responses to graphs with and with-
out guidelines were compared to deter-
mine whether visual aids helped ob-
servers to interpret functions more ac-
curately. Contingent probability matri-
ces for responses to graphs with
guidelines were nearly identical to
those without. Thus, experience ap-
pears to be more salient than visual
guidelines in detecting either treatment
effects or the absence of treatment ef-
fects and trends. This would explain
the results of Bailey (1984), who found
that, among graduate students, progress
lines produced small increases in per-
centage of correct responses, whereas
Ottenbacher (1986) found that celera-

tion lines were ineffective for many ex-
perienced therapists.

Study 4: The Effect of Plotting Trends
As an Aid to Visual Inspection

Given the results from Study 3,
Fisch and Porto (1994) examined
whether the effect of constructing trend
lines themselves would influence the
way in which observers responded to
point-to-point autoregressive functions.
To reduce the error rate in detecting
trends, these researchers increased the
autoregressive coefficent from .30 to
.35. They also manipulated the fre-
quency of occurrence of the nonzero
autoregressive component, introducing
it into one, two, or all three phases of
the graphs presented. Subjects were
asked first to draw the best fitting line
by eye to each of the point-to-point
functions in the graph. Then, as in the
previous studies, they were asked to
circle the response that best described
the point-to-point function in the treat-
ment component. To determine reli-
ability, they tested subjects (7 graduate
students plus instructor) at the begin-
ning and at the end of a one-semester
course on single-subject design.

Best fitting lines drawn by subjects
were compared to ordinary least
squares regression lines fitted to the
point-to-point functions. Two types of
errors were identified: (a) a rotational
error (R), defined as an angle between
the regression line and the eyeball es-
timate greater than 100; and (b) a trans-
lational error (T), defined as an orthog-
onal distance between the regression
line and the eyeball estimate greater
than 0.5 cm. In addition to the usual
probability matrices, proportion of cor-
rect best fitting line responses as well
as proportion of correctly circled re-
sponses for test and retest graphs were
calculated.

All subjects were better at construct-
ing trend lines than identifying trends.
Initially, subjects' correct best fitting
line responses averaged 60% (±8%).
On retest, all but 1 subject showed im-
provement. Mean correct line-fitting
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response was 71% (±7%). Correctly
circled responses were much lower, av-
eraging 36% (±5%) initially and 34%
(±4%) on retest.

Contingent probability matrices for
initial and retest trials were not very
different from one another and were
very similar to the patterns observed
among graduate students in Studies 1
and 2.

SUMMARY AND
DISCUSSION

The identification of level treatment
effects-a primary consideration for be-
havior analysts who use visual inspec-
tion to interpret graphic data-is the
principal focus of trained observers
(Fisch & Schneider, 1993; Furlong &
Wampold, 1982; Greenspan & Fisch,
1992; Wampold & Furlong, 1981),
whatever their level of experience.
However, its detection will be affected
by moderately noisy data (Greenspan &
Fisch, 1992; Matyas & Greenwood,
1990). Therefore, when circumstances
limit the degree of experimental con-
trol, recognition of treatment effects
may be problematic. Practiced observ-
ers appear to surmount some obstacles
associated with variability by virtue of
their own experience. However, they
encounter difficulties in detecting
trends, whether trends occur by them-
selves or in combination with treatment
effects. In this respect, experienced in-
vestigators fare no better than their less
well-seasoned counterparts (Fisch &
Schneider, 1993; Furlong & Wampold,
1982; Greenspan & Fisch, 1992; Wam-
pold & Furlong, 1981). Spence (1990)
and Parsonson and Baer (1992) have
conjectured that the problem of trend
recognition is a psychophysical matter.
If so, the psychophysical parameters of
trend detection need to be examined
more systematically, as Cleveland and
McGill (1987) and McEwan (1994)
have attempted recently.

For less experienced observers,
guidelines such as the upper and lower
limits employed in statistical process
control may improve detection of treat-

ment effects or trends. However, there
are computational problems when us-
ing statistical process control with au-
toregressive processes (Wetherill &
Brown, 1991). Trend lines may be use-
ful as heuristic devices for less expe-
rienced observers. But trend line con-
struction does not appear to facilitate
trend detection. Where appropriate, it
may be more valuable to graph point-
to-point functions as near to the x axis
as possible in order to exploit the fram-
ing features provided by the horizontal
and vertical axes.

Parsonson and Baer (1992) have ar-
gued that graphs used in earlier studies
were not evaluated under the normal
conditions of research, in that contex-
tual information was absent (e.g., in-
formation regarding the independent
and dependent variables). However,
Fisch and Schneider (1993) show that
at least one of those contextual factors,
the type of dependent variable em-
ployed, had no effect on detection of
trend or treatment effect. That is not to
say that contextual information per se
is useless. One would hope that the
factors cited by Parsonson and Baer
(1992) could be investigated system-
atically to determine which were effec-
tive.
Type II errors, which continue as a

hallmark of visual inspection for be-
havioral analysis, remain high for all
observers. However, contrary to re-
marks made by Sidman (1960), behav-
ior analysts who rely solely on visual
inspection will not be sensitive to small
but conceivably important differences,
especially those that may arise from at-
tempting to shape onerous daily living
skills or complex behaviors in humans.
Applied behavior analysts would thus
be unable to capitalize on the modest
but meaningful successes that may
have transpired.

To determine changes between
phases, one could estimate effect size
based on obtained differences among
baseline, intervention, and return-to-
baseline phases. Cohen (1988) has
written extensively and imploringly on
the use of effect size and power anal-
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ysis in conjunction with significance
testing, although effect size may be
more appropriate in computing level
shifts than autocorrelated trends. Oth-
ers (e.g., Hahn & Meeker, 1991) have
argued for the use of confidence inter-
vals to quantify uncertainty associated
with point estimates. There is some
difference of opinion regarding the
utility of statistical intervals on data
that evolve from temporal processes as
opposed to well-defined populations,
but practictioners of statistical process
control have long and successfully ar-
gued for their implementation (Dem-
ing, 1953).

Despite its air of simplicity, the vi-
sual inspection of graphic data is a
more complex and subtle process than
thought originally. If behavior analysts
are to optimize the utility of their tools
for data analysis, they will have to con-
sider methods in addition to those cur-
rently deemed useful. One such tech-
nique may be to employ observers'
verbal reports as data to modify the ob-
servers' performance on visual inspec-
tion tasks (Austin & Mawhinney,
1996; Ericsson & Simon, 1980). An-
other is the use of feedback, suggested
by Grote and Baer (1996). A third may
be the use of signal-detection analysis
to identify sources of error, as noted by
Karp and Fisch (1996).
One is also tempted to suggest, as

others have over the past several de-
cades, that perhaps the time has come
to reappraise statistical procedures for
use in behavior analysis, particularly
those that have been developed recent-
ly (e.g., Haccou & Meelis, 1992; Mag-
nusson, Bergman, Rudinger, & Tores-
tad, 1991). Problems associated with
the application of frequentist statistics
and conventional time series analysis
have been addressed previously in the
literature, and arguments for and
against significance testing have reap-
peared recently (e.g., Shrout, 1997).
Formal arguments notwithstanding, the
case against the use of statistics by be-
havior analysts can be reduced to one
of effect magnitude and whether a sta-
tistically significant difference trans-

lates into a clinically or experimentally
meaningful one (Baer, 1977; Kazdin,
1978). This would have greater valid-
ity if identification of level treatment
effects were not the primary but sole
objective of visual inspection. How-
ever, trends, which are also an impor-
tant characteristic of behavioral data,
have not been easily detected by visual
inspection and need to be ascertained
more readily.
One solution to trend detection may

be to analyze temporal responses by
means of time-structured Markov
chains (Haccou & Meelis, 1992). A
Markov chain is a sequence of two-di-
mensional arrays (matrices) that con-
tain the probabilities of changing from
one set of conditions to another, from
one time period to the next. It is a
model often used to evaluate behavior
that occurs in naturalistic settings,
when variability and duration of spe-
cific behaviors make a deterministic
model infeasible. The "state" of the
system at a given moment, along with
the transition probability matrix, con-
tain all the information necessary
about the system to calculate probabil-
ities of future changes. Another solu-
tion may be to estimate serial correla-
tion using both visual inspection and
statistical techniques, as described by
Stigler (1986). As with similar issues,
this question can be answered empiri-
cally. One should also bear in mind the
remarks made by Skinner (1938) and
alluded to earlier, that perhaps the time
has come to reevaluate the current state
of statistical and nonstatistical concep-
tions of science and whether they are
truly at variance with one another.
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