Skip to main content
Log in

The molecular basis of thyroid hormone action

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hoch F.L. Thyrotoxicosis as a disease of mitochondria. N. Engl.J. Med. 266: 446, 1962.

    PubMed  CAS  Google Scholar 

  2. Lardy H.A. In: Kinsell L.W. (Ed.), Hormonal regulation of energy metabolism. Charles C. Thomas, Springfield, 1957, p. 54.

  3. Stocker W.W., Samaha F.J., DeGroot L.J. Coupled oxidative phosphorylation in muscle of thyrotoxic patients. Am.J. Med. 44: 900, 1968.

    PubMed  CAS  Google Scholar 

  4. Tata J.R., Williams-Ashman H.G. Effects of growth hormone and triiodothyronine on amino acid incorporation by microsomal subfractions from rat liver. Eur. J. Biochem. 2: 366, 1967.

    PubMed  CAS  Google Scholar 

  5. Jensen E.V., DeSombre E.R. Estrogen-receptor interaction. Science 182: 126, 1973.

    PubMed  CAS  Google Scholar 

  6. Rousseau G.G., Baxter J.D., Tomkins G.M. Glucocorticoid receptors: relation between steroid binding and biological effects. J. Mol. Biol. 67: 99, 1972.

    PubMed  CAS  Google Scholar 

  7. Schadlow A.R., Surks M.I., Schwartz H.L., Oppenheimer J.H. Specific triiodothyronine binding sites in the anterior pituitary of the rat. Science 176: 1252, 1972.

    PubMed  CAS  Google Scholar 

  8. Oppenheimer J.H., Koerner D., Schwartz H.L., Surks M.I. Specific nuclear triiodothyronine binding sites in rat liver and kidney. J. Clin. Endocrinol. Metab. 35: 330, 1972.

    PubMed  CAS  Google Scholar 

  9. Segal J., Schwartz H., Gordon A. The effect of triiodothyronine on 2-deoxy-D [I-3H] glucose uptake in cultured chick embryo heart cells. Endocrinology 101: 143, 1977.

    PubMed  CAS  Google Scholar 

  10. Sterling K., Milch P.O. Thyroid hormone binding by a component of mito-chondrial membrane. Proc. Natl. Acad. Sci. USA 72: 3225, 1975.

    PubMed Central  PubMed  CAS  Google Scholar 

  11. DeGroot L.J., Refetoff S., Strausser J.L., Barsano C. Nuclear triiodothyronine binding protein: partial characterization and binding to chromatin. Proc. Natl. Acad. Sci. USA 72: 4042, 1974.

    Google Scholar 

  12. DeGroot L.J., Torresani J. Triiodothyronine binding to isolated liver cell nuclei. Endocrinology 96: 357, 1975.

    PubMed  CAS  Google Scholar 

  13. Casanova J., Horowitz Z.D., Copp R.P., Mclntyre W.R., Pascual A., Samuels H.H. Photoaffinity labeling of thyroid hormone nuclear receptors: influence of n-butyrate and analysis of the half-lives of the 57,000 and 47,000 molecular weight receptor forms. J. Biol. Chem. 259: 12084, 1984.

    PubMed  CAS  Google Scholar 

  14. Latham K.R., Ring J.C., Baxter J.D. Solubilized nuclear “receptors” for thyroid hormones: physical properties and binding properties, evidence for multiple forms. J. Biol. Chem. 251: 7388, 1976.

    PubMed  CAS  Google Scholar 

  15. Pascual A., Casanova J., Samuels H.H. Photoaffinity labeling of thyroid hormone nuclear receptors in intact cells. J. Biol. Chem. 257: 9640, 1982.

    PubMed  CAS  Google Scholar 

  16. David-Inouye Y., Somack R., Nordeen S.K., Apriletti J.W., Baxter J.D., Eberhardt N.L. Photoaffinity labelling of the rat liver nuclear thyroid hormone receptor with [125I]triiodothyronine. Endocrinology 111: 1758, 1982.

    PubMed  CAS  Google Scholar 

  17. Ichikawa K., DeGroot L.J. Purification and characterization of rat liver, nuclear thyroid hormone receptors. Proc. Natl. Acad. Sci. USA 84: 3420, 1987.

    PubMed Central  PubMed  CAS  Google Scholar 

  18. Apriletti J.W., Baxter J.D., Lavin T.N. Large scale purification of the nuclearthyroid hormone receptor. J. Biol. Chem. 263: 9409, 1988.

    PubMed  CAS  Google Scholar 

  19. Green S., Chambon P. A superfamily of potentially oncogenic hormone receptors. Nature 324: 615, 1986.

    PubMed  CAS  Google Scholar 

  20. Krust A., Green S., Argos P., Kumar V., Walter P., Bornert J.-M., Chambon P. The chicken estrogen receptor sequence: homology with v-erbA and the human estrogen and glucocorticoid receptors. EMBO J. 5: 891, 1986.

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Weinberger C., Hollenberg S.M., Rosenfeld M.G., Evans R.M. Domain structure of human glucocorticoid receptor and its relationship to the v-erbA oncogene product. Nature 318: 670, 1985.

    PubMed  CAS  Google Scholar 

  22. Weinberger C., Thompson C.C., Ong E.S., Lebo R., Gruol D.J., Evans R.M. The c-erbA gene encodes a thyroid hormone receptor. Nature 324: 641, 1986.

    PubMed  CAS  Google Scholar 

  23. Sap J., Munoz A., Damm K., Goldberg Y., Ghysdael J., Leutz A., Beug H., Vennstrom B. The c-erbA protein is a high-affinity receptor for thyroid hormone. Nature 324: 635, 1986.

    PubMed  CAS  Google Scholar 

  24. Debuire B., Henry C., Benaissa M., Giserte G., Claverie J.M., Saule S., Martin P., Stehelin D. Sequencing the erbA gene of avian erythroblastosis virus reveals a new type of oncogene. Science 224: 1456, 1984.

    PubMed  CAS  Google Scholar 

  25. Zenke M., Kahn P., Disela C., Vennstrom B., Leutz A., Keegan K., Hayman M.J., Choi H.-R., Yew N., Engel J.D., Beug H. v-erbA specifically suppresses transcription of the avian erythrocyte anion transporter (band 3) gene. Cell 52: 107, 1988.

    PubMed  CAS  Google Scholar 

  26. Nakai A., Sakurai A., Bell G.I., DeGroot L.J. Characterization of a third human thyroid hormone receptor coexpressed with other thyroid hormone receptors in several tissues. Mol. Endocrinol. 2: 1087, 1988.

    PubMed  CAS  Google Scholar 

  27. Nakai A., Seino S., Sakurai A., Szilak I., Bell G.I., DeGroot L.J. Characterization of a thyroid hormone receptor expressed in human kidney and other tissues. Proc. Natl. Acad. Sci. USA 85: 2781, 1988.

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Pfahl M., Benbrook D. Nucleotide sequence of cDNA encoding a novel human thyroid hormone receptor. Nucleic Acids Res. 15: 9613, 1987.

    PubMed Central  PubMed  CAS  Google Scholar 

  29. Benbrook D., Pfahl M. A novel thyroid hormone receptor encoded by a cDNA clone from a human testis library. Science 238: 788, 1987.

    PubMed  CAS  Google Scholar 

  30. Mitsuhashi T., Tennyson G.E, Nikodem V.M. Alternative splicing generates messages encoding rat c-erbA proteins that do not bind thyroid hormone. Proc. Natl. Acad. Sci. USA 85: 5804, 1988.

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Thompson C.C., Weinberger C., Lebo R., Evans R.M. Identification of a novel thyroid hormone receptors expressed in the mammalian central nervous system. Science 237: 1610, 1987.

    PubMed  CAS  Google Scholar 

  32. Lazar M.A., Hodin R.A., Darling D.S., Chin W.W. Identification of a rat c-erbA [alpha]-related protein which binds deoxyribonucleic acid but does not bind thyroid hormone. Mol. Endocrinol. 2: 893, 1988.

    PubMed  CAS  Google Scholar 

  33. Murray M.B., Zilz N.D., McCreary N.L., MacDonald M.J., Towle H.C. Isolation and characterization of rat cDNA clones for two distinct thyroid hormone receptors. J. Biol. Chem. 263: 12770, 1988.

    PubMed  CAS  Google Scholar 

  34. Nakai A., Sakurai A., Macchia E., DeGroot L.J. Effect of alpha and beta forms of TH receptors on rat GH gene expression. Proc. Annual Meeting Endocrine Society, Seattle, WA, 1989, p. 31.

  35. Lazar M.A., Hodin R.A., Darling D.S., Chin W.W. A novel member of the thyroid/steroid hormone receptor family is encoded by the opposite strand of the rat c-erbA alpha transcriptional unit. Mol. Cell. Biol. 9: 1128, 1989.

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Miyajima N., Horinchi R., Shibuya Y., Fukushige S.-i., Mastubaya K.-L., Toyoshima K., Yamamoto T. Two erbA homologs encoding proteins with different T3 binding capacities are transcribed from opposite DNA strands of the same genetic locus. Cell 57: 31, 1989.

    PubMed  CAS  Google Scholar 

  37. Evans R.M. The steroid and thyroid hormone receptor super-family. Science 240: 889, 1988.

    PubMed  CAS  Google Scholar 

  38. Tora L., Gronemeyer H., Turcotte B., Gaub M.-P., Chambon P. The N-terminal region of the chicken progesterone receptor specifies target gene activation. Nature 333: 185, 1988.

    PubMed  CAS  Google Scholar 

  39. Horowitz Z.D., Yang C.-R., Forman B.M., Casanova J., Samuels H.H. Characterization of the domain structure of chick c-erbA by deletion mutation: in vitro translation and cell transfection studies. Mol. Endocrinol. 3: 148, 1989.

    PubMed  CAS  Google Scholar 

  40. Evans R.M., Hollenberg S.M. Zinc fingers: gilt by association. Cell 52: 1, 1988.

    PubMed  CAS  Google Scholar 

  41. Schleif R. DNA binding by proteins. Science 241: 1182, 1988.

    PubMed  CAS  Google Scholar 

  42. Berg J.M. Proposed structure for the zinc-binding domains from transcription factor MIA and related proteins. Proc. Natl. Acad. Sci. USA 85: 99, 1988.

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Hollenberg S.M;, Giuere V., Segui P., Evans R.M. Colocalization of DNA-binding and transcriptional activation functions in the human glucocorticoid receptor. Cell 49: 39, 1987.

    PubMed  CAS  Google Scholar 

  44. Danielsen M., Northrop J.P., Jonklaas J., Ringold G.M. Domains of the glucocorticoid receptor involved in specific and nonspecific deoxyribonucleic acid binding, hormone activation, and transcriptional enhancement. Mol. Endocrinol. 1: 816, 1987.

    PubMed  CAS  Google Scholar 

  45. Carson M.A., Tsai M.-J., Conneely C.M., Maxwell B.L., Clark J.H., Dobson A.D.W., Elbrecht A., Toft D.O., Schrader W.T., O’Malley B.W. Structure-function properties of the chicken progesterone receptor A synthesized from complementary deoxyribonucleic acid. Mol. Endocrinol. 1: 791, 1987.

    PubMed  CAS  Google Scholar 

  46. Giguere V., Hollenberg S.M., Rosenfeld M.G., Evans R.M. Functional domains of the human glucocorticoid receptor. Cell 46: 645, 1986.

    PubMed  CAS  Google Scholar 

  47. Godowski P.J., Rusconi S., Miesfeld R., Yamamoto K.R. Glucocorticoid receptor mutants that are constitutive activators of transcriptional enhancement. Nature 325: 365, 1987.

    PubMed  CAS  Google Scholar 

  48. Damm K., Thompson C.C., Evans R.M. Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature 339: 593, 1989.

    PubMed  CAS  Google Scholar 

  49. Lavin T.N., Baxter J.D., Horita S. The thyroid hormone receptor binds to multiple domains of the rat growth hormone 5′-flanking sequence. J. Biol. Chem. 263: 9418, 1988.

    PubMed  CAS  Google Scholar 

  50. Adler S., Waterman M.L., He X., Rosenfeld M.G. Steroid receptor-mediated inhibition of rat prolactin gene expression does not require the receptor DNA-binding domain. Cell 52: 685, 1988.

    PubMed  CAS  Google Scholar 

  51. Flink I.L., Baily T.J., Gustafson T.A. Complete amino acid sequence of human thyroxine-binding globulin deduced from cloned DNA; close homology to the serine antiproteases. Proc. Natl. Acad. Sci. USA 83: 7708, 1986.

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Cheng S., Gong Q., Parkison C., Robinson E.A., Appella E., Merlino G.T., Pastan I. The nucleotide sequence of a human cellular thyroid hormone binding protein present in endoplasmic reticulum. J. Biol. Chem. 262: 11221, 1987.

    PubMed  CAS  Google Scholar 

  53. Hashizume K., Miyamoto T., Ichikawa K., Yamauchi K., Kobayashi M., Sakurai A., Ohtsuka H., Nishii Y., Yamada T. Purification and characterization of NADPH-dependent cytosolic 3,5,3′-triiodo-L-thyronine binding protein in rat kidney. J. Biol. Chem. 264: 4857, 1989.

    PubMed  CAS  Google Scholar 

  54. Jansson M., Philipson L., Bennstrom B. Isolation and characterization of multiple human genes homologous to the oncogenes of avian erythroblastosis virus. EMBO J. 2: 561, 1983.

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Sakurai A., Nakai A., DeGroot L.J. Expression of three forms of thyroid hormone receptor in human tissues. Mol. Endocrinol. 3: 392, 1989.

    PubMed  CAS  Google Scholar 

  56. Conneely C.M., Dobson A.D.W., Tsai M.-J., Beattie W.G., Toft D.O., Huckaby C.S., Zarucki T., Schrader W.T., O’Malley B.W. Sequence and expression of a functional chicken progesterone receptor. Mol. Endocrinol. 1: 517, 1987.

    PubMed  CAS  Google Scholar 

  57. Wei L.L., Krett N.L., Francis M.D., Gordon D.F., Wood W.M., O’Malley B.W., Horwitz K.B. Multiple human progesterone receptor messenger ribonucleic acids and their autoregulation by progestin agonists and antagonists in breast cancer cells. Mol. Endocrinol. 2: 62, 1988.

    PubMed  CAS  Google Scholar 

  58. Conneely O.M., Sullivan W.P., Toft D.O., Birnbaumer M., Cook R.G., Maxwell B.L., Zarucki-Schulz T., Greene G.L., Schrader W.T., O’Malley B.W. Molecular cloning of the chicken progesterone receptor. Science 233: 767, 1986.

    PubMed  CAS  Google Scholar 

  59. Hodin R.A., Lazar M.A., Wintman B.I., Darling D.S., Koenig R.J., Larsen P.R., Moore D.D., Chin W.W. Identification of a thyroid hormone receptor that is pituitary-specific. Science 244: 76, 1989.

    PubMed  CAS  Google Scholar 

  60. Freake H.C., Santos A., Goldberg Y., Ghysdael J., Oppenheimer J.H. Differences in antibody recognition of the triiodothyronine nuclear receptor and c-erbA products. Mol. Endocrinol. 2: 986, 1988.

    PubMed  CAS  Google Scholar 

  61. Luo M., Faure R., Ruel J., Dussault J.H. A monoclonal antibody to the rat nuclear triiodothyronine receptor: production and characterization. Endocrinology 123: 180, 1988.

    PubMed  CAS  Google Scholar 

  62. Mardavi V., Izumo S., Koren G., Tzika R., Nadal-Girard B. Thyroid hormone receptors regulate myosin heavy chain gene expression. Proceedings 70th Annual Meeting Endocrine Society, New Orleans, LA, 1988, p. 7.

  63. Koenig R.J., Lazar M.A., Hodin R.A., Brent G.A., Larsen P.R., Chin W.W., Moore D.D. Inhibition of thyroid hormone action by a non-hormone binding c-erbA protein generated by alternative mRNA splicing. Nature 337: 659, 1989.

    PubMed  CAS  Google Scholar 

  64. Glass C.K., Holloway J.M., Devary O.V., Rosenfeld M.G. The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell 54: 313, 1988.

    PubMed  CAS  Google Scholar 

  65. Umesono K., Giguere V., Glass C.K., Rosenfeld M.G., Evans R.M. Retinoic acid and thyroid hormone induce gene expression through a common responsive element. Nature 336: 262, 1988.

    PubMed  CAS  Google Scholar 

  66. Fukuda T., Willingham M.C., Cheng S.-Y. Antipeptide antibodies recognize c-erbA and a related protein in human A431 carcinoma cells. Endocrinology 123: 2646, 1988.

    PubMed  CAS  Google Scholar 

  67. DeGroot L.J., Torresani J., Carayon P., Tirard A. Factors influencing T3 binding properties of liver nuclear receptors. Acta Endocrinol. (Copenh.) 83: 293, 1976.

    CAS  Google Scholar 

  68. Hamada S., Nakamura H., Nanno M., Imura H. Triiodothyronine-induced increase in rat liver nuclear thyroid-hormone receptors associated with increased mitochondrial alpha-glycerophosphate dehydrogenase activity. Biochem. J. 182: 371, 1979.

    PubMed Central  PubMed  CAS  Google Scholar 

  69. Dillmann W.H., Oppenheimer J.H. Glucagon influences the expression of thyroid hormone action: discrepancy between nuclear iriiodothyronine receptor number and enzyme responses. Endocrinology 105: 74, 1979.

    PubMed  CAS  Google Scholar 

  70. DeGroot L.J., Coleoni A.H., Rue P.A., Seo H., Martino E., Refetoff S. Reduced nuclear triiodothyronine receptors in starvation-induced hypothyroidism. Biochem. Biophys. Res. Commun. 79: 173, 1977.

    PubMed  CAS  Google Scholar 

  71. Bahn R.S., Zeller J.C., Smith T.J. n-Butyrate increases c-erbA oncogene expression in human colon fibroblasts. Biochem. Biophys. Res. Commun. 150: 259, 1988.

    PubMed  CAS  Google Scholar 

  72. Goldberg Y., Glineur C., Gesquiere J.-C., Ricouart A., Sap J., Vennstrom B., Ghysdael J. Activation of protein kinase C or cAMP-dependent protein kinase increases phosphorylation of the c-erbA-encoded thyroid hormone receptor and of the v-erbA-encoded protein. EMBO J. 7: 2425, 1988.

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Wight P.A., Crew M.D., Spindler S.R. Discrete positive and negative thyroid hormone-responsive transcription regulatory elements of the rat growth hormone gene. J. Biol. Chem. 262: 5659, 1987.

    PubMed  CAS  Google Scholar 

  74. Wight P.A., Crew M.D., Spindler S.R. Sequences essential for activity of the thyroid hormone responsive transcription stimulatory element of the rat growth hormone gene. Mol. Endocrinol. 2: 536, 1988.

    PubMed  CAS  Google Scholar 

  75. Larsen P.R., Harney J.W., Moore D.D. Sequences required for cell-type specific thyroid hormone regulation of rat growth hormone promoter activity. J. Biol. Chem. 261: 14373, 1986.

    PubMed  CAS  Google Scholar 

  76. Koenig R.J., Brent G.A., Warne R.L., Larsen P.R., Moore D.D. Thyroid hormone receptor binds to a site in the rat growth hormone promoter required for induction by thyroid hormone. Proc. Natl. Acad. Sci. USA 84: 5670, 1987.

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Flug F., Copp R.P., Casanova J., Horowitz Z.D., Janocko L., Plotnick M., Samuels H.H. Cis-acting elements of the rat growth hormone gene which mediate basal and regulated expression by thyroid hormone. J. Biol. Chem. 262: 6373, 1987.

    PubMed  CAS  Google Scholar 

  78. Ye Z.-S., Samuels H.H. Cell- and sequence-specific binding of nuclear proteins to 5′-flanking DNA of the rat growth hormone gene. J. Biol. Chem. 262: 6313, 1987.

    PubMed  CAS  Google Scholar 

  79. Glass C.K., Franco R., Weinberger C., Albert V.R., Evans R.M., Rosenfeld M.G. A c-erbA binding site in rat growth hormone gene mediates trans-activation by thyroid hormone. Nature 329: 738, 1987.

    PubMed  CAS  Google Scholar 

  80. Brent G.A., Larsen P.R., Harney J.W., Koenig R.J., Moore D.D. Functional characterization of the rat growth hormone promoter elements required for induction by thyroid hormone with and without a co-transfected beta type thyroid hormone receptor. J. Biol. Chem. 264: 178, 1989.

    PubMed  CAS  Google Scholar 

  81. Martinez E., Givel F., Wahli W. The estrogen-responsive element as in inducible enhancer: DNA sequence requirements and conversion to a glucocorticoid-responsive element. EMBO J. 6: 3719, 1987.

    PubMed Central  PubMed  CAS  Google Scholar 

  82. Klock G., Strahle U., Schutz G. Estrogen and glucocorticoid responsive elements are closely related but distinct. Nature 329: 734, 1987.

    PubMed  CAS  Google Scholar 

  83. Tora L., Gaub M.-P., Mader S., Dierich A., Bellard M., Chambon P. Cell-specific activity of a GGTCA half-palindromic estrogen-responsive element in the chicken ovalbumin gene promoter. EMBO J. 7: 3771, 1988.

    PubMed Central  PubMed  CAS  Google Scholar 

  84. Ye Z.-S., Forman B.M., Aranda A., Pascual A., Park H.-Y., Casanova J., Samuels H.H. Rat growth hormone gene expression. Both cell-specific and thyroid hormone response elements are required for thyroid hormone regulation. J. Biol. Chem. 263: 7821, 1988.

    PubMed  CAS  Google Scholar 

  85. Schauer M., Chalepakis G., Willmann T., Beato M. Binding of hormone accelerates the kinetics of glucocorticoid and progesterone receptor binding to DNA. Proc. Natl. Acad. Sci. USA 86: 1123, 1989.

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Kumar V., Chambon P. The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell 55: 145, 1988.

    PubMed  CAS  Google Scholar 

  87. Lanningan D.A., Notides A.C. Estrogen receptor selectively binds the “coding strand” of an estrogen responsive element. Proc. Natl. Acad. Sci. USA 86: 863, 1989.

    Google Scholar 

  88. Izumo S., Mahadavi V. Thyroid hormone receptor alpha isoforms generated by alternative splicing differentially activate myosin HC gene transcription. Nature 334: 539, 1988.

    PubMed  CAS  Google Scholar 

  89. Bumside J., Chin W.W. Thyroid hormone receptor binds to a region of the rat alpha subunit gene. Proceedings Annual Meeting of The American Thyroid Association, Montreal, Quebec, Canada, 1988, Abstract No. 112.

  90. Darling D.S., Bumside J. Binding of thyroid hormone receptors to the rat thyrotropin beta gene. Mol. Endocrinol. 3: 1359, 1989.

    PubMed  CAS  Google Scholar 

  91. Nelson C., Albert V.R., Elsholtz H.P., Lu L. I.-W., Rosenfeld M.G. Activation of cell-specific expression of rat growth hormone and prolactin genes by a common transcription factor. Science 239: 1400, 1988.

    PubMed  CAS  Google Scholar 

  92. Blake C.C.F., Oatley S.J. Protein-DNA and protein-hormone interactions in prealbumin: A model of the thyroid hormone receptor? Nature 268: 115, 1977.

    PubMed  CAS  Google Scholar 

  93. Hollenberg S.M., Evans R.M. Multiple and cooperative transactivation domains of the human glucocorticoid receptor. Cell 55: 899, 1988.

    PubMed  CAS  Google Scholar 

  94. Hughes M.R., Malloy P.J., Kieback D.G., Kesterson R.A., Pike J.W., Feldman D., O’Malley B.W. Point mutations in the human Vitamin D receptor gene associated with hypocalcemic rickets. Science 242: 1702, 1988.

    PubMed  CAS  Google Scholar 

  95. Green S., Kumar V., Theulaz I., Wahli W., Chambon P. The N-terminal DNA-binding “zinc finger” of the estrogen and glucocorticoid receptors determines target gene specificity. EMBO J. 7: 3037, 1988.

    PubMed Central  PubMed  CAS  Google Scholar 

  96. (Personal communication from Ronald M. Evans, M.D.).

  97. Strahle U., Schmid W., Schutz G. Synergic action of the glucocorticoid receptor with transcription factors. EMBO J. 7: 3389, 1988.

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Ptashne M. Gene regulation by proteins acting nearby and at a distance. Nature 322: 697, 1986.

    PubMed  CAS  Google Scholar 

  99. Schule R., Muller M., Otsuka-Murakami H., Renkawitz R. Cooperativity of the glucocorticoid receptor and the CACCC-box binding factor. Nature 332: 87, 1988.

    PubMed  CAS  Google Scholar 

  100. Schule R., Muller M., Kaltschmidt C., Renkawitz R. Many transcription factors interact synergistically with steroid receptors. Science 242: 1418, 1988.

    PubMed  CAS  Google Scholar 

  101. Dorn A., Bollekens J., Staub A., Benoist C., Mathis D. A multiplicity of CCAAT box-binding proteins. Cell 50: 863, 1987.

    PubMed  CAS  Google Scholar 

  102. Lefevre C., Imagawa M., Dana S., Grindlay J., Bodner M., Karin M. Tissue-specific expression of the human growth hormone gene is conferred in part by the binding of a specific trans-acting factor. EMBO J. 6: 971, 1987.

    PubMed Central  PubMed  CAS  Google Scholar 

  103. Catanzaro D.F., West B.L., Baxter J.D., Reudelhuber T.L. A pituitary-specific factor interacts with an upstream promoter element in the rat growth hormone gene. Mol. Endocrinol. 1: 90, 1987.

    PubMed  CAS  Google Scholar 

  104. Nelson C., Crenshaw III E.B., Franco R., Lira S.A., Albert V.R., Evans R.M., Rosenfeld M.G. Discrete cis-active genomic sequences dictate the pituitary cell type-specific expression of rat prolactin and growth hormone genes. Nature 322: 557, 1986.

    PubMed  CAS  Google Scholar 

  105. Robertson M. Towards a biochemistry of morphogenesis. Nature 330: 420, 1987.

    PubMed  CAS  Google Scholar 

  106. Petkovich M., Brand N.J., Krust A., Chambon P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330: 444, 1987.

    PubMed  CAS  Google Scholar 

  107. Giguere V., Ong E.S., Segui P., Evans R.M. Identification of a receptor for the morphogen retinoic acid. Nature 330: 624, 1987.

    PubMed  CAS  Google Scholar 

  108. Curran T., Bravo R., Muller R. Transient induction of c-fos and c-myc is an immediate consequence of growth factor stimulation. Cancer Surveys 4: 655, 1985.

    PubMed  CAS  Google Scholar 

  109. Milbrandt J. Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene. Neuron 1: 183, 1988.

    PubMed  CAS  Google Scholar 

  110. Hazel T.G., Nathans D., Lau L.F. A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily. Proc. Natl. Acad. Sci. USA 85: 8444, 1988.

    PubMed Central  PubMed  CAS  Google Scholar 

  111. Miyajima N., Kadowaki Y., Fukushige S.-I., Shimizu S.-I., Semba K., Yamanashi Y., Matsubara K.-I., Toyoshima K., Yamamoto T. Identification of two novel members of erbA superfamily by molecular cloning: the gene products of the two are highly related to each other. Nucleic Acids Res. 16: 11057, 1988.

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Nauber U., Pankratz M.J., Kienlin A., Seifert E., Klemm U., Jackie H. Abdominal segmentation of the Drosophila embryo requires a hormone receptor-like protein encoded by the gap gene knirps. Nature 336: 489, 1988.

    PubMed  CAS  Google Scholar 

  113. Oro A.E., Ong E.S., Margolis J.S., Posakony J.W., McKeown M., Evans R.M. The Drosophila gene knirps-related is a member of the steroid-receptor gene superfamily. Nature 336: 493, 1988.

    PubMed  CAS  Google Scholar 

  114. Sukhatme V.P., Cao X., Chang L.C., Tsai-Morris C.-H., Stamenkovich D., Ferreira P.C.P., Cohen D.R., Edwards S.A., Shows T.B., Curran T., LeBeau M.M., Adamson E.D. A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 53: 37, 1988.

    PubMed  CAS  Google Scholar 

  115. Underwood A.H., Emmett J.C., Ellis D., Flynn S.B., Leeson P.D., Benson G.M., Novelli R., Pearce N.J., Shah V.P. A thyromimetic that decreases plasma cholesterol levels without increasing cardiac activity. Nature 324: 425, 1986.

    PubMed  CAS  Google Scholar 

  116. de The H., Marchio A., Tiollais P., Dejean A. A novel steroid thyroid hormone receptor-related gene inappropriately expressed in human hepatocellular carcinoma. Nature 330: 667, 1987.

    PubMed  Google Scholar 

  117. Dejan A., Bougueleret L., Grzeschik K.-H., Tiollais P. Hepatitis B virus DNA integration in a sequence homologous to v-erbA and steroid receptor genes in a hepatocellular carcinoma. Nature 322: 70, 1986.

    Google Scholar 

  118. Dayton A.I., Seiden J.R., Laws G., Dorney DJ., Finan J., Tripputi P., Emanuel B.S., Rovera G., Nowell P.C., Croce C.M. A human c-erbA oncogene homologous is closely proximal to the chromosome 17 breakpoint in acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 81: 4495, 1984.

    PubMed Central  PubMed  CAS  Google Scholar 

  119. Refetoff S., DeWind L.T., DeGroot L.J. Familial syndrome combining deaf-mutism, stippled epiphyses, goiter, and abnormally high PBI: possible target organ refractoriness to thyroid hormone. J. Clin. Endocrinol. Metab. 27: 279, 1967.

    PubMed  CAS  Google Scholar 

  120. Refetoff S., DeGroot L.J., Benard B., DeWind L.T. Studies of a sibship with apparent hereditary resistance to the intracellular action of thyroid hormone. Metabolism 21: 723, 1972.

    PubMed  CAS  Google Scholar 

  121. Gershengorn M.C., Weintraub B.D. Thyrotropin-induced hyperthyroidism caused by selective pituitary resistance to thyroid hormone: A new syndrome of “inappropriate secretion of TSH”. J. Clin. Invest. 56: 633, 1975.

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Bemal J., Refetoff S., DeGroot L.J. Abnormalities of triiodothyronine binding to lymphocyte and fibroblast nuclei from a patient with peripheral tissue resistance to thyroid hormone action. J. Clin. Endocrinol. Metab. 47: 1266, 1978.

    Google Scholar 

  123. Ichikawa K., Hughes I.A., Horwitz A.L., DeGroot L.J. Characterization of nuclear thyroid hormone receptors of cultured skin fibroblasts from patients with resistance to thyroid hormone. Metabolism 36: 392, 1987.

    PubMed  CAS  Google Scholar 

  124. Magner J.A., Petrick P., Menezes-Ferreira M.M., Stelling M., Weintraub B.D. Familial generalized resistance to thyroid hormones: report of three kindreds and correlation of patterns of affected tissues with the binding of [125I]triiodothyronine to fibroblast nuclei. J. Endocrinol. Invest. 9: 459, 1986.

    PubMed  CAS  Google Scholar 

  125. Usala S.I., Bale A.E., Gesundheit N., Weinberger C., Lash R.W., Wondisford F.E., McBride O.W., Weintraub B.D. Tight linkage between the syndrome of generalized thyroid hormone resistance and the human c-erbA beta gene. Mol. Endocrinol. 2: 1217, 1988.

    PubMed  CAS  Google Scholar 

  126. Sakurai A., Takeda K., Ain K., Ceccarelli P., Nakai A., Seino S., Bell G.I., Refetoff S., DeGroot L.J. Generalized resistance to thyroid hormone associated with a mutation in the ligand binding domain of the human thyroid hormone receptor beta. Proc. Natl. Acad. Sci. USA, 1989, in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by United States Public Health Service Grants DK13377 and DK27384, and the David Wiener Research Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeGroot, L.J., Nakai, A., Sakurai, A. et al. The molecular basis of thyroid hormone action. J Endocrinol Invest 12, 843–861 (1989). https://doi.org/10.1007/BF03350080

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03350080

Key-words

Navigation