Skip to main content
Log in

Endogenous ghrelin increases in adriamycin-induced heart failure rats

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Evidence has indicated that plasma ghrelin was elevated in chronic heart failure (CHF) patients with cachexia. The present report studied whether pathophysiologic increment of endogenous ghrelin levels was existed in the progression of adriamycin (ADR)-induced CHF, then the possible compensatory mechanism by which the changes were induced and the relationship between active ghrelin, cardiac function and energy reserve in heart failure (HF) rats were explored. Cardiac function, high energy phosphates(HEP) content, and ghrelin levels in plasma and myocardium were measured at 4 days, 1, 2 and 3 weeks after the last injection of ADR, after which correlation analysis was performed between these markers in HF rats. Results showed that cardiac function decreased early, then was significantly restored and worsened at 3 weeks accompanied by the decrease of myocardial ATP content. Plasma ghrelin level increased significantly at each time point while myocardial ghrelin level increased transiently, then was restored followed by increased oxidative stress status and apoptosis in the weakening heart. Moreover, correlation analysis indicated that the markers of cardiac function and HEP were positively correlated to the endogenous ghrelin levels at the HF stage. This study indicated that the increase of endogenous ghrelin levels during the progression of the HF induced by ADR represent a compensatory self-protective effect by improving cardiac function and retaining myocardial energy reserve; this may be closely linked to anti-oxidative and anti-apoptosis mechanisms through regulating myocardial mitochondria function by ghrelin; but further investigations are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bleyer WA. The impact of childhood cancer on the United States and the world. CA Cancer J Clin 1990, 40: 355–67.

    Article  PubMed  CAS  Google Scholar 

  2. Nagaya N, Uematsu M, Kojima M, et al. Elevated circulating level of ghrelin in cachexia associated with chronic heart failure: relationships between ghrelin and anabolic/catabolic factors. Circulation 2001, 104: 2034–8.

    Article  PubMed  CAS  Google Scholar 

  3. Nagaya N, Uematsu M, Kojima M, et al. Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation 2001, 104: 1430–5.

    Article  PubMed  CAS  Google Scholar 

  4. Zhao M, Wu W, Duan X, et al. The protective effects of sini decoction on mitochondrial function in adriamycin-induced heart failure rats. Zhong Yao Cai 2005, 28: 486–9.

    PubMed  Google Scholar 

  5. Yang S, Zheng R, Hu S, et al. Mechanism of cardiac depression after trauma-hemorrhage: increased ardiomyocyte IL-6 and effect of sex steroids on IL-6 regulation and cardiac function. Am J Physiol Heart Circ Physiol 2004, 287: H2183–91.

    Article  PubMed  CAS  Google Scholar 

  6. Hallstrom S, Gasser H, Neumayer C, et al. S-nitroso human serum albumin treatment reduces ischemia/reperfusion injury in skeletal muscle via nitric oxide release. Circulation 2002, 105: 3032–8.

    Article  PubMed  CAS  Google Scholar 

  7. Murfitt RR, Stiles JW, Powell WJ Jr, Sanadi DR. Experimental myocardial ischemia characteristics of isolated mitochiondrial subpopulations. J Mol Cell Cardiol 1978, 10: 109–23.

    Article  PubMed  CAS  Google Scholar 

  8. Marklund SL. Pyrogallol autooxidation. In: Greenwald RA ed. Handbook of methods for oxygen radical research. Boca Raton, Fla: CRC Press. 1985, 243–7.

    Google Scholar 

  9. Geller BL, Winge DR. A method for distinguishing Cu, Zn-and Mn-containing superoxide dismutases. Anal Biochem 1983, 128: 86–92.

    Article  PubMed  CAS  Google Scholar 

  10. Singal PK, Pierce GN. Adriamycin stimulates low-affinity Ca21 binding and lipid peroxidation but depresses myocardial function. Am J Physiol 1986, 250: H 41925.

    Google Scholar 

  11. Flameng W, Borgers M, Daenen W, Stalpaert G. Ultrastructural and cytochemical correlates of myocardial protection by cardiac hypothermia in man. J Thorac Cardiovasc Surg 1980, 79: 413–24.

    PubMed  CAS  Google Scholar 

  12. Tong J, Ganguly PK, Singal PK. Myocardial adrenergic changes at two stages of heart failure due to adriamycin treatment in rats. Am J Physiol 1991, 260: H909–16.

    PubMed  CAS  Google Scholar 

  13. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402: 656–60.

    Article  PubMed  CAS  Google Scholar 

  14. Garcia EA, Korbonits M. Ghrelin and cardiovascular health. Curr Opin Pharmacol 2006, 6: 142–7.

    Article  PubMed  CAS  Google Scholar 

  15. Akashi YJ, Springer J, Anker SD. Cachexia in chronic heart failure: prognostic implications and novel therapeutic approaches. Curr Heart Fail Rep 2005, 2: 198–203.

    Article  PubMed  Google Scholar 

  16. Nagaya N, Kangawa K. Ghrelin, a novel growth hormone-releasing peptide, in the treatment of chronic heart failure. Regul Pept 2003, 14: 71–7.

    Article  CAS  Google Scholar 

  17. Nagaya N, Moriya J, Yasumura Y, et al. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation 2004, 110: 3674–9.

    Article  PubMed  CAS  Google Scholar 

  18. Nagaya N, Miyatake K, Uematsu M, et al. Hemodynamic, renal, and hormonal effects of ghrelin infusion in patients with chronic heart failure. J Clin Endocrinol Metab 2001, 86: 5854–9.

    Article  PubMed  CAS  Google Scholar 

  19. Broglio F, Prodam F, Riganti F, Muccioli G, Ghigo E. Ghrelin: from somatotrope secretion to new perspectives in the regulation of peripheral metabolic functions. Front Horm Res 2006, 35: 102–14.

    Article  PubMed  CAS  Google Scholar 

  20. Iglesias MJ, Pineiro R, Blanco M, et al. Growth hormone releasing peptide (ghrelin) is synthesized and secreted by cardiomyocytes. Cardiovasc Res 2004, 62: 481–8.

    Article  PubMed  CAS  Google Scholar 

  21. Garcia JM, Garcia-Touza M, Hijazi RA, et al. Active ghrelin levels and active to total ghrelin ratio in cancer-induced cachexia. J Clin Endocrinol Metab 2005, 90: 2920–6.

    Article  PubMed  CAS  Google Scholar 

  22. Akashi YJ, Springer J, Anker SD. Cachexia in chronic heart failure: prognostic implications and novel therapeutic approaches. Curr Heart Fail Rep 2005, 2: 198–203.

    Article  PubMed  Google Scholar 

  23. Filippatos GS, Anker SD, Kremastinos DT. Pathophysiology of peripheral muscle wasting in cardiac cachexia. Curr Opin Clin Nutr Metab Care 2005, 8: 249–54.

    Article  PubMed  Google Scholar 

  24. Barazzoni R, Bosutti A, Stebel M, et al. Ghrelin regulates mitochondrial-lipid metabolism gene expression and tissue fat distribution in liver and skeletal muscle. Am J Physiol Endocrinol Metab 2005, 288: E228–35.

    Article  PubMed  CAS  Google Scholar 

  25. Omerovic E, Bollano E, Basetti M, et al. Bioenergetic, functional and morphological consequences of postinfarct cardiac remodeling in the rat. J Mol Cell Cardiol 1999, 31: 1685–95.

    Article  PubMed  CAS  Google Scholar 

  26. Beer M, Seyfarth T, Sandstede J, et al. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol 2002, 40: 1267–74.

    Article  PubMed  CAS  Google Scholar 

  27. Kawasaki N, Lee JD, Shimizu H, Ueda T. Long-term 1-carnitine treatment prolongs the survival in rats with adriamycin-induced heart failure. J Card Fail 1996, 2: 293–9.

    Article  PubMed  CAS  Google Scholar 

  28. Vogt AM, Kubler W. Heart failure: is there an energy deficit contributing to contractile dysfunction? Basic Res Cardiol 1998, 93: 1–10.

    Article  PubMed  CAS  Google Scholar 

  29. McMurray JJ, Pfeffer MA. Heart failure. Lancet 2005, 365: 1877–89.

    Article  PubMed  Google Scholar 

  30. Li T, Danelisen I, Bello-Klein A, Singal PK. Effects of probucol on changes of antioxidant enzymes in adriamycin-induced cardiomyopathy in rats. Cardiovasc Res 2000, 46: 523–30.

    Article  PubMed  CAS  Google Scholar 

  31. Choi KS, Tappel AL. Inactivation of ribonuclease and other enzymes by peroxidizing lipids and by malonaldehyde. Biochemistry 1969, 8: 2827–32.

    Article  Google Scholar 

  32. Asimakis GK, Lick S, Patterson C. Postischemic recovery of contractile function is impaired in SOD2(+/-) but not SOD1(+/-) mouse hearts. Circulation 2002, 105: 981–6.

    Article  PubMed  CAS  Google Scholar 

  33. Chang L, Ren Y, Liu X, et al. Protective effects of ghrelin on ischemia/reperfusion injury in the isolated rat heart. J Cardiovasc Pharmacol 2004, 43: 165–70.

    Article  PubMed  CAS  Google Scholar 

  34. Li WG, Gavrila D, Liu X, et al. Ghrelin inhibits proinflammatory responses and nuclear factor-kappaB activation in human endothelial cells. Circulation 2004, 109: 2221–6.

    Article  PubMed  CAS  Google Scholar 

  35. Taegtmeyer H. Genetics of energetics: transcriptional responses in cardiac metabolism. Ann Biomed Eng 2000, 28: 871–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Wu, W., Zhang, X. et al. Endogenous ghrelin increases in adriamycin-induced heart failure rats. J Endocrinol Invest 30, 117–125 (2007). https://doi.org/10.1007/BF03347409

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03347409

Keywords

Navigation