Skip to main content
Log in

Kinetics of red blood cell T3 uptake in hypothyroidism with or without hormonal replacement, in the rat

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

L-triiodothyronine (L-T3) is taken up and accumulated into red blood cells (RBC) by means of a specific carrier-mediated system. The aim of this study was to evaluate the reactivity of this system in relation to induced alterations in thyroid hormone (TH) supply. We investigated the kinetic parameters (Vmax, maximal velocity and Km, Michaelis constant) of washed-RBC L-T3 uptake 1) in thyroidectomized (TXT) rats, 2) in TXT rats administered with low doses of L-T4 (15 μg/kg/day × 14) to restore normal serum TH levels (REPL), 3) in TXT rats administered with high doses of L-T4 (200 μg/kg/day × 14) to achieve a large increase in serum TH levels (HIGH). Serum free T3 and T4 levels were significantly decreased in TXT rats (2.4 and 8.8 fold, respectively), not different in REPL rats and significantly increased in HIGH rats (2.4 and 3 fold, respectively) compared to sham-operated rats (SHAM). Both kinetics of RBC L-T3 uptake were significantly increased in TXT rats (Vmax±SE in pmol/min/108 cells=235.1±11.1, p<0.05 and Km±SE in nM=190.1±9.0, p<0.05), not different in REPL rats (Vmax=184.8±7.6 and Km=151.9±7.1) and significantly decreased in HIGH rats (Vmax= 168.0±4.1, p<0.01 and Km=131.9±4.6, p<0.01) compared to SHAM rats (Vmax=197.7±5.8 and Km=160.9±6.1). These results show that kinetics of RBC L-T3 uptake are modified in response to defect or excess in circulating TH levels. Since RBC play likely a role of a buffer system, the changes in carrier-mediated influx of L-T3 could be seen as a compensatory mechanism that counteract the disturbances in the TH availability for the target tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oppenheimer J.H. The nuclear receptor-triiodothyronine complex: relationship to thyroid hormone distribution, metabolism and biological action. In: Oppenheimer J.H., Samuel H.H. (Eds), Molecular basis of thyroid hormone action. Academic Press, New York, 1983, p. 1–34.

    Chapter  Google Scholar 

  2. Francon J., Osty J., Chantoux F., Blondeau J.P. Erythrocyte-associated triiodothyronine in the rat: a source of hormone for target cells. Acta Endocrinol. (Copenh.) 1990, 122: 341–348.

    CAS  Google Scholar 

  3. Docter R., Krenning E.P., Bos G., Fekkes D.F., Hennemann G. Evidence that the uptake of tri-iodo-L-thyronine is carrier-mediated but not energy-dependent. Biochem. J. 1982, 208: 27–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Osty J., Jego L., Francon J., Blondeau J.P. Characterization of triiodothyronine transport and accumulation in rat erythrocytes. Endocrinology 1988, 123: 2303–2311.

    Article  CAS  PubMed  Google Scholar 

  5. Samson M., Osty J., Francon J., Blondeau J.P. Triiodothyronine binding sites in the rat erythrocyte membrane: involvement in triiodothyronine transport and relation to the tryptophan transport system T. Biochim. Biophys. Acta 1992, 1108: 91–98.

    Article  CAS  PubMed  Google Scholar 

  6. Blondeau J.P., Osty J., Francon J. Characterization of the thyroid hormone transport system of isolated hepatocytes. J. Biol. Chem. 1988, 263: 2685–2692.

    CAS  PubMed  Google Scholar 

  7. Zhou Y., Samson M., Osty J., Francon J., Blondeau J.P. Evidence for a close link between the thyroid hormone transport system and the aromatic amino-acid transport system T. J. Biol. Chem. 1990, 265: 17000–17004.

    CAS  PubMed  Google Scholar 

  8. Zhou Y., Samson M., Francon J., Blondeau J.P. Thyroid hormone concentrativc uptake in rat erythrocytes: Involvement of the tryptophan transport system T in countertransport of tri-iodothyronine and aromatic amino-acids. Biochem. J. 1992, 281: 81–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Jeanningros R., Serres F., Dassa D., Azorin J.M., Grignon S. Red blood cell L-tryptophan uptake in depression: Kinetic analysis in untreated depressed patients and healthy subjects. Psychiatry Res. 1996, 63: 151–159.

    Article  CAS  PubMed  Google Scholar 

  10. Serres F., Dassa D., Azorin J.M., Jeanningros R. Red blood cell L-tryptophan uptake in depression. II. Effect of an antidepressant treatment. Psychiatry Res. 1997, 66: 87–96.

    Article  CAS  PubMed  Google Scholar 

  11. Moreau X., Azorin J.M., Maurel M., Jeanningros R. Increase in red blood cell triiodothyronine uptake in untreated unipolar major depressed patients compared to healthy volunteers. Prog. Neuropsychopharmacol. Biol. Psychiatry 1998, 22: 293–310.

    Article  CAS  PubMed  Google Scholar 

  12. Dratman M.B., Crutchfield F.L., Gordon J.T., Jennings A.S. Iodothyronine homeostasis in rat brain during hypoand hyperthyroidism. Am. J. Physiol. 1983, 245: E185–E193.

    CAS  PubMed  Google Scholar 

  13. Osty J., Zhou Y., Chantoux F., Francon J., Blondeau J.-P. The triiodothyronine carrier of rat erythrocytes: asymmetry and mechanisms of trans-inhibition. Biochim. Biophys. Acta 1990, 1051: 46–51.

    Article  CAS  PubMed  Google Scholar 

  14. Munson P.J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal. Biochem. 1980, 107: 220–239.

    Article  CAS  PubMed  Google Scholar 

  15. Diamond E.J. Measurement of thyroid hormones and related molecules. In: Thomas J.A. (Eds.), Endocrine Methods. Academic Press, New York, 1996, p. 157–186.

    Chapter  Google Scholar 

  16. Holm A.C., Kägedal B. Kinetics of triiodothyronine uptake by erythrocytes in hyperthyroidism, hypothyroidism and thyroid hormone resistance. J. Clin. Endocrinol. Metab. 1989, 69: 364–368.

    Article  CAS  PubMed  Google Scholar 

  17. Osty J., Valensi P., Samson M., Francon J., Blondeau J.P. Transport of thyroid hormones by human erythrocytes: Kinetic characterization in adults and newborns. J. Clin. Endocrinol. Metab. 1990, 71: 1589–1595.

    Article  CAS  PubMed  Google Scholar 

  18. Rosenberg R. A kinetic analysis of L-tryptophan transport in human red blood cells. Biochim. Biophys. Acta 1981, 649: 262–268.

    Article  CAS  PubMed  Google Scholar 

  19. Schlegel C., Rao G.S. In vivo modulation of the transport of L-triiodothyronine into rat liver cells. I.R.C.S. Biochem. 1982, 10: 123.

    CAS  Google Scholar 

  20. Ruggiero F.M., Gnoni, G.V., Quagliariello E. Effect of hypothyroidism on the lipid composition of rat plasma and erythrocyte membranes. Lipids 1987, 22: 148–151.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreau, X., Lejeune, P.J. & Jeanningros, R. Kinetics of red blood cell T3 uptake in hypothyroidism with or without hormonal replacement, in the rat. J Endocrinol Invest 22, 257–261 (1999). https://doi.org/10.1007/BF03343553

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03343553

Key-words

Navigation