Skip to main content
Log in

Biochemical Alterations in Foliar Tissues of Citrus Genotypes Screened In vitro for Salinity Tolerance

  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Soil salinity is a prime impediment in the commercial production of citrus. In the present study two citrus rootstock genotypes viz. Citrus jambhiri and Citrus karna were cultured in vitro and exposed to NaCl salt stress. The previously standardized protocol was used for culture establishment and in vitro shoot and root regeneration. NaCl in different concentrations (25, 50, 75, 100 and 125 mM) was added in standardized regeneration and rooting media to note the biochemical changes due to salinity stress. Results revealed that salinity stress adversely affected the shoot and root differentiation and proved lethal above 100 mM NaCl. The hardening was also hampered due to salt stress. Among different biochemical parameters, proline, total soluble proteins and total sugars accumulation were enhanced however; total chlorophyll content was reduced under salinity stress. The revelation of some new protein polypeptides (21, 26 and 54 kDa) at different increasing salinity levels was attributed to their significance in stress alleviation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MS:

Murashige and Skoog medium

SDS-PAGE:

sodium dodecyl sulphate-polyacrylamide gel electrophoresis

BA6:

benzyl adenine

NAA:

α-Naphthalene acetic acid

IBA:

indole-3butyric acid

AC:

activated charcoal

References

  1. Murkute AA, Sharma S & Singh SK, J. Scientific Industrial Res, 64 (2005) 393.

    CAS  Google Scholar 

  2. Thorpe TD & Harry IS, Acta Hort, 447 (1997) 39.

    Google Scholar 

  3. Ben-Hayyim G & Goffer Y, Plant Cell Rep, 7 (1989) 680.

    CAS  Google Scholar 

  4. Singh SK, Sharma HC, Goswami AM & Singh SP, Physiol Mot Biol Plants, 6 (2000) 175.

    Google Scholar 

  5. Kashyap S, Ph.D. thesis. Indian Institute of Technology Delhi, New Delhi, India (2002) 215 p.

    Google Scholar 

  6. Harms CT & Oertli JJ, J Plant Physiol, 120 (1985) 29.

    Article  CAS  Google Scholar 

  7. Chandler SF & Vasil IK, Plant Sci Lett, 9 (1984) 101.

    Google Scholar 

  8. Mchughen A & Swartz M, J Plant Physiol, 117 (1984) 109.

    Article  PubMed  CAS  Google Scholar 

  9. Ben-Hayyim G & Kochba J, Plant Sci Lett, 27 (1982) 87.

    Article  CAS  Google Scholar 

  10. Kochba J, Ben-Hayyim G, Spiegel-Roy P, Seed S & Neumann H, Zeitschrift-fur-Pflanzenphysiologie, 106 (1982) 111.

    CAS  Google Scholar 

  11. Choudhary JB, Jain S & Jain RK, J Plant Biochem Biotech, 2 (1993) 1.

    Google Scholar 

  12. Murkute AA, Sharma S & Singh SK, Indian J Hort, 65 (2007) 127.

    Google Scholar 

  13. Bates LS, Waldren RP & Teare ID, Plant Soil, 39 (1973) 205.

    Article  CAS  Google Scholar 

  14. Barnes JD, Balaguer L, Maurigue E, Elvira S & Davison AW, Environ Exp Bot, 32 (1992) 85.

    Article  CAS  Google Scholar 

  15. Thimmaiah SR, In: Standard Methods of Biochemical Analysis. Kalyani Publishers, New Delhi, India. (2004) 545 p.

    Google Scholar 

  16. Bradford MM, Analyt Biochem, 72(1976) 248.

    Article  PubMed  CAS  Google Scholar 

  17. Laemmli VK, Nature, 277(1970) 680.

    Article  Google Scholar 

  18. Murkute AA, Sharma S & Singh SK, Hort Sci (Prague), 33 (2006) 70.

    Google Scholar 

  19. Lea-Cox JD & Syvertsen JP, Ann Bot, 72 (1993) 47.

    Article  CAS  Google Scholar 

  20. Zekri M, Sci Hort, 47(1991) 305.

    Article  CAS  Google Scholar 

  21. Vijayan K, Chakraborti SP & Ghosh PD, Plant Cell Rep, 22 (2003) 350.

    Article  PubMed  CAS  Google Scholar 

  22. Nolte KID & Hanson AD, J Amer Soc Hort Sci, 122(1997) 8.

    CAS  Google Scholar 

  23. Deluney AJ & Verma DS, The Plant J, 4 (1993) 215.

    Article  Google Scholar 

  24. Banuls J & Primo-Millo E, Physiol Planta, 66 (1992) 115.

    Article  Google Scholar 

  25. Nieves M, Cerda A & Botella M, J PI Nutrition, 14 (1991) 623.

    Article  Google Scholar 

  26. Hanson AD, Nelsen CE & Everson EH, Crop Sci, 17 (1977) 720.

    Article  CAS  Google Scholar 

  27. Chandler SF & Thorpe TA, Plant Cell Rep, 6 (1987) 176.

    Article  CAS  Google Scholar 

  28. Parida AK & Des AB, Ecotoxicology and Environ Safety, 60 (2005) 324.

    Article  CAS  Google Scholar 

  29. Ashraf M & Harris PJC, Plant Sci, 166 (2004) 3.

    Article  CAS  Google Scholar 

  30. Beeor-Tzahar T, Ben-Hayyim G, Holland D, Faltin Z & Eshdat YA, FEBS Lett, 366 (1995) 151.

    Article  PubMed  CAS  Google Scholar 

  31. Ben-Hayyim G, Faltin Z, Gepstein S, Camoin L, Strosberg AD & Eshdat Y, Plant Sci, 66 (1993) 129.

    Article  Google Scholar 

  32. Thanaa E & Newer A, Alex J Agric Res, 39 (1994) 263.

    Google Scholar 

  33. Garcia AB, Almeida-Engler J, Lyer S, Gerats T, Van Montagu M & Caplan AB, Plant Physiol, 115 (1997) 159.

    PubMed  CAS  Google Scholar 

  34. EI-Desouky SA & Tawia AAR, Alex J Agric Res, 43 (1998) 231.

    Google Scholar 

  35. Tozlu I, Moore GA & Guy CL, Australian J Plant Physiol, 227 (2000) 35.

    Google Scholar 

  36. PareekA,Single SL & Grover A, In: Strategies for Improving Salt Tolerance in Higher Plants (Jaiswal, PK, Singh RP and Gulati, A. Eds.) Oxford and IBH publication Co. New Delhi, India. (1997).

    Google Scholar 

  37. Singh NK, Bracken CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA & Bressan RA, Plant Physiol, 65 (1987) 529.

    Article  Google Scholar 

  38. Hurkman WJ, Fornari CS & Tanaka CK, Plant Physiol, 97(1991) 366.

    Article  PubMed  CAS  Google Scholar 

  39. Lopez F, Vansuyt P, Fourcroy F & Case-Delbert , Physiol Plant, 91(1994) 605.

    Article  CAS  Google Scholar 

  40. Uma S, Prasad TG & Kumar MU, Ann Bot, 76(1995) 43.

    Article  CAS  Google Scholar 

  41. Uma S, Ravishankar KV, Prasad TG, Reid JL & Kumar MU, Current Sci, 65 (1993) 548.

    Google Scholar 

  42. Jain S, Nainawati HS, Jain RK & Chowdhary JB, Euphytica, 65 (1993) 107.

    Article  Google Scholar 

  43. Conner AJ & Thomas MP, Proc Int Plant Crop Sci, 31 (1981) 342.

    Google Scholar 

  44. Hazarika BN, Singh IP, Nagaraju V & Parthasarathy VA, Ann Plant Physiol, 12 (1998) 47.

    Google Scholar 

  45. Wetzestein HY & Sommer HE, Amer J Bot, 69 (1982) 1579.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh A. Murkute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murkute, A.A., Sharma, S. & Singh, S.K. Biochemical Alterations in Foliar Tissues of Citrus Genotypes Screened In vitro for Salinity Tolerance. J. Plant Biochem. Biotechnol. 19, 203–208 (2010). https://doi.org/10.1007/BF03263341

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03263341

Key words

Navigation