Skip to main content
Log in

Core-shell poly(d,l-lactide-co-glycolide)/poly(ethyl 2-cyanoacrylate) microparticles with doxorubicin to reduce initial burst release

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Monodispersed microparticles with a poly(d,l-lactide-co-glycolide) (PLGA) core and a poly(ethyl 2-cyanoacrylate) (PE2CA) shell were prepared by Shirasu porous glass (SPG) membrane emulsification to reduce the initial burst release of doxorubicin (DOX). Solution mixtures with different weight ratios of PLGA polymer and E2CA monomer were permeated under pressure through an SPG membrane with 1.9 ώm pore size into a continuous water phase with sodium lauryl sulfate as a surfactant. Core-shell structured microparticles were formed by the mechanism of anionic interfacial polymerization of E2CA and precipitation of both polymers. The average diameter of the resulting microparticles with various PLGA:E2CA ratios ranged from 1.42 to 2.73 ώm. The morphology and core-shell structure of the microparticles were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The DOX release profiles revealed that the microparticles with an equivalent PLGA:E2CA weight ratio of 1:1 exhibited the optimal condition to reduce the initial burst of DOX. The initial release rate of DOX was dependent on the PLGA:E2CA ratio, and was minimized at a 1:1 ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bodmeier and J. W. McGinity,Pharm. Res.,4, 465 (1987).

    Article  CAS  Google Scholar 

  2. K. Juni, J. Ogata, M. Nakano, T. Ichihara, K. Mori, and M. Akagi,Chem. Pharm. Bull.,33, 313 (1985).

    CAS  Google Scholar 

  3. J. M. Ruiz, B. Tissier, and J. P. Benoit,Int. J. Pharm.,49, 69 (1989).

    Article  Google Scholar 

  4. R. Bodmeier and H. Chen,J. Pharm. Pharmacol.,40, 754 (1988).

    Article  CAS  Google Scholar 

  5. D. L. Wise, G. J. McCormick, G. P. Willet, and L. C. Anderson,Life Sci.,19, 867 (1976).

    Article  CAS  Google Scholar 

  6. K. A. Athanasiou, G. G. Niederauer, and C. M. Agrawal,Biomaterials,17, 93 (1996).

    Article  CAS  Google Scholar 

  7. R. Jalil and J. R. Nixon,J. Microencap.,7, 297 (1990).

    Article  CAS  Google Scholar 

  8. H. Okada, M. Miyamoto, T. Heya, Y. Inoue, S. Kamei, Y. Ogawa, and H. Taguchi,J. Control. Release,28, 121 (1994).

    Article  CAS  Google Scholar 

  9. M. O. Omelczuk and J. W. McGinity,Pharm. Res.,9, 26 (1992).

    Article  CAS  Google Scholar 

  10. S. S. Shah, Y. Cha, and C. G. Pitt,J. Control. Release,38, 261 (1992).

    Article  Google Scholar 

  11. K. J. Pekarek, J. S. Jacob, and E. Mathiowitz,Mater. Res. Soc. Symp. Proc.,331, 97 (1994).

    Article  CAS  Google Scholar 

  12. A. Kishida, K. Murakami, H. Goto, M. Akashi, H. Kubita, and T. Endo,J. Bioact. Compat. Polym.,13, 270 (1998).

    CAS  Google Scholar 

  13. K. Shiga, N. Muramatsu, and T. Kondo,J. Pharm. Pharmacol.,48, 891 (2002).

    Article  Google Scholar 

  14. L. Y. Chu, S. H. Park, T. Yamaguchi, and S. I. Nakao,Langmuir,18, 1856 (2002).

    Article  CAS  Google Scholar 

  15. C. Y. Huang and Y. D. Lee,Int. J. Pharm.,325, 132 (2006).

    Article  CAS  Google Scholar 

  16. S. Gibaud, C. Rousseau, C. Weingarten, R. Favier, L. Douay, J. Andreux, and P. Couvreur,J. Control. Release,52, 131 (1998).

    Article  CAS  Google Scholar 

  17. W. R. Vezin and A. T. Florence,J. Biomed. Mater. Res.,14, 93 (1980).

    Article  CAS  Google Scholar 

  18. F. Leonard, R. K. Kulkarni, G. Brandes, J.Nelson, and J. J. Cameron,J. Appl. Polym. Sci.,10, 259 (1966).

    Article  CAS  Google Scholar 

  19. R. H. Müller, C. Lherm, J. Herbort, T. Blunk, and P. Couvreur,Int. J. Pharm.,84, 1 (1992).

    Article  Google Scholar 

  20. V. Lenaerts, P. Couvreur, D. Christiaens-Leyh, E. Joiris, M. Roland, B. Rollman, and P. Speiser,Biomaterials,5, 65 (1984).

    Article  CAS  Google Scholar 

  21. D. Scherer, J. R. Robinson, and J. Kreuter,Int. J. Pharm.,101, 165 (1994).

    Article  CAS  Google Scholar 

  22. C. O’Sullivan and C. Birkinshaw,Polym. Degrad. Stabil.,78, 7 (2002).

    Article  Google Scholar 

  23. M. E. Page-Clisson, H. Pinto-Alphandary, M. Ourevitch, A. Andremont, and P. Couvreur,J. Control. Release,56, 23 (1998).

    Article  CAS  Google Scholar 

  24. C. O’Sullivan and C. Birkinshaw,Biomaterials,25, 4375 (2004).

    Article  Google Scholar 

  25. L. Y. Chu, R. Xie, J. H. Zhu, W. M. Chen, T. Yamaguchi, and S. I. Nakao,J. Colloid Interf. Sci.,265, 187 (2003).

    Article  CAS  Google Scholar 

  26. N. Behan, C. Birkinshaw, and N. Clarke,Biomaterials,22, 1335 (2001).

    Article  CAS  Google Scholar 

  27. S. Omi, T. Senba, M. Nagai, and G.-H. Ma,J. Appl. Polym. Sci.,79, 2200 (2001).

    Article  CAS  Google Scholar 

  28. S. W. Choi, H. Y. Kwon, W. S. Kim, and J. H. Kim,Colloid Surface A,201, 283 (2002).

    Article  CAS  Google Scholar 

  29. J. Brandrup, E. H. Immergut, and E. A. Grulke,Polymer Handbook, 4th edition, Vol. 1, p. 708.

  30. B. S. Zolnik and D. J. Burgess,J. Control. Release,122, 338 (2007).

    Article  CAS  Google Scholar 

  31. A. Bootz, T. Russ, F. Gores, M. Karas, and J. Kreuter,Eur. J. Pharm. Biopharm.,60, 391 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SH., Baek, HH., Kim, J.H. et al. Core-shell poly(d,l-lactide-co-glycolide)/poly(ethyl 2-cyanoacrylate) microparticles with doxorubicin to reduce initial burst release. Macromol. Res. 17, 1010–1014 (2009). https://doi.org/10.1007/BF03218649

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218649

Keywords

Navigation