Skip to main content
Log in

A kinetic study of thermal degradations of chitosan/polycaprolactam blends

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We have used FT-IR spectra to explain the effects of hydrogen bonding between chitosan and polycaprolactam (PA6). A dynamic mechanical analysis study suggested that the optimum chitosan and PA6 miscibility under the conditions of this experiment were obtained at a blending ratio of 40∶60. We studied the thermal degradation of chitosan blended with PA6 (chitosan/PA6) by thermogravimetric analysis and kinetic analysis (by the Ozawa method). Dry chitosan and PA6 exhibited a single stage of thermal degradation and chitosan/PA6 blends having > 20 wt% PA6 exhibited at least two stages of degradation. In chitosan/PA6 blends, chitosan underwent the first stage of thermal degradation; the second stage proceeded at a temperature lower than that of PA6, because the decomposition product of chitosan accelerated the degradation of PA6. The activation energies of the blends were between 130 and 165 kJ/mol, which are also lower than that of PA6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hasegawa, A. Isogai, F. Onabe, M. Usuda, and R. Atalla,J. Appl. Polym. Sci.,45, 1873 (1992).

    Article  CAS  Google Scholar 

  2. S. W. Shalaby,Biomedical Polymers, Carl Hanser Verlag, New York, 1994.

    Google Scholar 

  3. S. Bartnicki-Garcia and W. J. Nickerson,Biochim. Biophys. Acta.,5, 102 (1962).

    Article  Google Scholar 

  4. S. Aiba,Makromol. Chem.,194, 65 (1993).

    Article  CAS  Google Scholar 

  5. R. A. A. Muzzarelli,Natural Chelating Polymers, Pergamon, New York, 1973.

    Google Scholar 

  6. R. A. A. Muzzarelli and E. R. Pariser,Proceeding of First Internation Conference on Chitin/Chitosan, MIT Sea Grant ReportMITSG 78-7, May, 1978.

  7. W. A. Bough,Food Product Development,11, 90 (1977).

    CAS  Google Scholar 

  8. T. D. Rathke and A. M. Hudson,Rev. Macromol. Chem. Phys.,C34, 375 (1994).

    CAS  Google Scholar 

  9. J. Hosokawa,Food Packag.,2, 38, (1990).

    Google Scholar 

  10. R. Muzzarelli, G. Bjagini, and C. Rizzoli,Biomaterials,10, 598 (1989).

    Article  CAS  Google Scholar 

  11. M. Miya, S. Yoshikawa, R. Iwamoto, and S. Mima,Koubunshi Ronbunshu,40, 645 (1983).

    Article  CAS  Google Scholar 

  12. R. J. Samuels,J. Polym. Sci.: Polym. Phys. Ed.,19, 1081 (1981).

    Article  CAS  Google Scholar 

  13. J. A. Ratto, C. C. Chen, and R. B. Blumstein,J. Appl. Polym. Sci.,59, 1451 (1996).

    Article  CAS  Google Scholar 

  14. J. Hosokawa, M. Nishiyama, K. Yoshihara, T. Kubo, and A. Terabe,Ind. Eng. Chem. Res.,30, 788 (1991).

    Article  CAS  Google Scholar 

  15. I. Vieira, V. L. S. Severgnini, D. J. Mazerz, M. S. Soldi, and E. A. Pinheiro,Polym. Degrad. Stab.,74, 151 (2001).

    Article  CAS  Google Scholar 

  16. C. Peniche, E. Carlos, and JS. Roman,Polymer,39, 6549 (1998).

    Article  CAS  Google Scholar 

  17. F. A. A. Tirkistani,Polym. Degrad. Stab.,60, 67 (1998).

    Article  CAS  Google Scholar 

  18. K. Sreenivasan,Polym. Degrad. Stab.,52, 85 (1996).

    Article  CAS  Google Scholar 

  19. T. Ikejima, K. Yogi, and Y. Inonu,Macromol. Chem. Phys.,200, 413 (1999).

    Article  CAS  Google Scholar 

  20. X. Qu, A. Wirsen, and A. Albertsson,Polymer,41, 4841 (2000).

    Article  CAS  Google Scholar 

  21. P. Gijsman, R. Steenbakkers, C. Furst, and J. Kersjes,Polym. Degrad. Stab.,78, 219 (2002).

    Article  CAS  Google Scholar 

  22. J. González, C. Albano, R. Sciamanna, M. Ichazo, C. Rosales, J. Martînez, and M. Candal,Polym. Degrad. Stab.,68, 9 (2000).

    Article  Google Scholar 

  23. T. Ozawa,Bull. Chem. Soc. Japan,38, 1881 (1965).

    Article  CAS  Google Scholar 

  24. T. Ozawa,J. Thermal. Anal.,7, 601 (1975).

    Article  CAS  Google Scholar 

  25. V. Gonzalez, C. Guerrero, and U. Ortiz,J. Appl. Polym. Sci.,78, 850 (2000).

    Article  CAS  Google Scholar 

  26. G. Cardenenas, J. C. Paredes, G. Cabrea, and P. Casals,J. Appl. Polym. Sci.,86, 2742 (2002).

    Article  Google Scholar 

  27. P. C. Carlos, A. M. Waldo, and J. S. Romãn,Polym. Degrad. Stab.,39, 21 (1993).

    Article  Google Scholar 

  28. E. S. Kim, S. H. Kim, and Y. M. Lee,J. Polym., Part B: Polym. Phys. Ed.,34, 2367 (1996).

    Article  CAS  Google Scholar 

  29. N. M. Langer and C. A. Wilkie,Polym. Adv. Technol.,9, 290 (1998).

    Article  CAS  Google Scholar 

  30. D. A. Costa and C. M. F. Oliveira,J. Appl. Polym. Sci.,81, 2556 (2001).

    Article  CAS  Google Scholar 

  31. H. W. Starkweather, Jr. R. John, and E. I. Barkley,J. Polym. Sci.: Polym. Phys. Ed.,19, 1211 (1981).

    Article  CAS  Google Scholar 

  32. I. Garcia, C. Peniche, and J. M. Nieto,J. Thermal Anal.,21, 189 (1983).

    Google Scholar 

  33. H. Bockhorn, A. Horung, U. Horung, and J. Weichmann,Thermochimica Acta,337, 97 (1999).

    Article  CAS  Google Scholar 

  34. Z. Czégény, E. Jakab, and M. Blazsó,Macromol. Mater. Eng.,287, 277 (2002).

    Article  Google Scholar 

  35. K. Fukatsu,Polym. Degrad. Stab.,75, 479 (2002).

    Article  CAS  Google Scholar 

  36. M. G. Lu, J. Y. Lee, M. J. Shim, and S. W. Kim,J. Appl. Polym. Sci.,85, 2552 (2001).

    Article  Google Scholar 

  37. M. G. Lu, M. J. Shim, and S. W. Kim,J. Appl. Polym. Sci.,75, 1514 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, SK., Hung, CC. & Lin, MF. A kinetic study of thermal degradations of chitosan/polycaprolactam blends. Macromol. Res. 12, 466–473 (2004). https://doi.org/10.1007/BF03218428

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03218428

Keywords

Navigation