Skip to main content
Log in

Cytokines in the pathogenesis of osteoporosis

  • Published:
Osteoporosis International Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Abe T, Chow JWM, Lean JM, Chambers TJ. Estrogens do not restore bone loss after ovariectomy in the rat. J Bone Miner Res 1993;8:831–8.

    Article  CAS  PubMed  Google Scholar 

  2. Cummings SR, Black D. Should perimenopausal women be screened for osteoporosis? Ann Intern Med 1986;104:817–23.

    CAS  PubMed  Google Scholar 

  3. Parfitt AM. Osteonal and hemiosteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 1994;55:273–86.

    Article  CAS  PubMed  Google Scholar 

  4. Martin TJ, Ng KW. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. J Cell Biochem 1994;56:357–66.

    Article  CAS  PubMed  Google Scholar 

  5. Suda T, Takahashi T, Martin TJ. Modulation of osteoclast differentiation. Endocr Rev 1992;13:66–80.

    CAS  PubMed  Google Scholar 

  6. Suda T, Takahashi N, Martin TJ. Modulation of osteoclast differentiation: update. In: Bikle DD, Negrovilar A, editors. Endocrine review monographs, vol 4. Bethesda, MD: Endocrine Society, 1995:266–70.

    Google Scholar 

  7. Parfitt AM. Calcium homeostasis. In: Mundy GR, Martin TJ, editors. Physiology and pharmacology of bone. Heidelberg: Springer, 1993:1–66.

    Google Scholar 

  8. Martin TJ, Findlay DM, Heath JK, Ng KW. Osteoblasts: differentiation and function. In: Mundy GR, Martin TJ, editors. Physiology and pharmacology of bone. Heidelberg: Springer, 1993:149–83.

    Google Scholar 

  9. Jilka RL, Weinstein RS, Takahashi K, Parfitt M, Manolagas SC. Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest 1996;97:1732–40.

    Article  CAS  PubMed  Google Scholar 

  10. Gowen M, Wood DD, Ihrie EJ, McGuire MKB, Russell RGG. An interleukin-1 like factor stimulates bone resorption in vitro. Nature 1983;306:378–80.

    Article  CAS  PubMed  Google Scholar 

  11. Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumor necrosis factor. Nature 1986;319:516–8.

    Article  CAS  PubMed  Google Scholar 

  12. Girasole G, Jilka RL, Passeri G, et al. 17β-Estradiol inhibits interleukin-6 production by bone marrow derived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effects of estrogens. J Clin Invest 1992;89:883–91.

    Article  CAS  PubMed  Google Scholar 

  13. Jilka RL, Hangoc G, Girasole G, et al. Increased osteoclast development after estrogen loss: mediation by interleukin 6. Science 1992;257:88–91.

    Article  CAS  PubMed  Google Scholar 

  14. Passeri G, Girasole G, Jilka RL, Manolagas SC. Increased interleukin 6 production by murine bone marrow and bone cells after estrogen withdrawal. Endocrinology 1993;133:822–8.

    Article  CAS  PubMed  Google Scholar 

  15. Tamura T, Udagawa N, Takahashi N, et al. Soluble IL-6 receptor triggers osteoclast formation by interleukin 6. Proc Natl Acad Sci USA 1993;90:11924–8.

    Article  CAS  PubMed  Google Scholar 

  16. Udagawa N, Takahashi N, Katagiri T, et al. Interleukin 6 (IL-6) induction of osteoclast differentiation depends upon IL-6 receptors expressed on osteoblastic cells, but not on osteoclast progenitors. J Exp Med 1995;182:1461–8.

    Article  CAS  PubMed  Google Scholar 

  17. Girasole G, Passeri G, Jilka RL, Manolagas SC. Interleukin-11: a new cytokine critical for osteoclast development. J Clin Invest 1994;93:1516–24.

    Article  CAS  PubMed  Google Scholar 

  18. Romas E, Udagawa N, Zhou H, et al. The role of gp130 mediated signals in osteoclast development: regulation of interleukin-11 production by osteoblasts and distribution of its receptor in bone marrow cultures. J Exp Med 1996;183:2581–91.

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi N, Udagawa N, Akatsu T, Tanaka H, Shionome M, Suda T. Role of colony stimulating factors in osteoclast development. J Bone Miner Res 1991;6:977–85.

    Article  CAS  PubMed  Google Scholar 

  20. Tanaka S, Takahashi N, Udagawa N, Tamura T, Akatsu T, Stanley ER, et al. Macrophage colony stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest 1993;91:257–63.

    Article  CAS  PubMed  Google Scholar 

  21. Schneider GB, Relfson M. Pluripotent hemopoietic stem cells give rise to osteoclasts in vitro: effect of rGM-CSF. Bone 1989;5:129–38.

    Article  CAS  Google Scholar 

  22. McDonald BR, Mundy GR, Clark S, et al. Effects of human recombinant CSF-GM and highly purified CSF-1 on the formation of multinucleated cells with osteoclast characteristics in long term human marrow cultures. J Bone Miner Res 1986;1:227–33.

    Article  Google Scholar 

  23. Matayoshi A, Brown C, DiPersio JF, et al. Human bloodmobilized hematopoietic precursors differentiate into osteoclasts in the absence of stromal cells. Proc Natl Acad Sci USA 1996; 10785–790.

  24. Mundy GR. Cytokines of bone. In: Mundy GR, Martin TJ, editors. Physiology and pharmacology of bone. Heidelberg: Springer, 1993:185–214.

    Google Scholar 

  25. Sykes M, Sharabi Y, Sachs DH. Natural suppressor cells in spleens of irradiated bone marrow: lack of SCA-1 expression and enrichment by depletion of MAC-1 positive cells. Cell Immunol 1990;127:260–74.

    Article  CAS  PubMed  Google Scholar 

  26. Salgame P, Abrams JS, Clayberger C, et al. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science 1991;254:279–82.

    Article  CAS  PubMed  Google Scholar 

  27. Pfeilschifter J, Chenu C, Bird A, Mundy GR, Roodman GD. Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclast-like cells in -vitro. J Bone Miner Res 1989;4:113–8.

    Article  CAS  PubMed  Google Scholar 

  28. Felix R, Fleisch H, Elford PR. Bone resorbing cytokines enhance release of macrophage colony sitmulating activity by the osteoblastic cell line MC3T3-E1. Calcif Tissue Int 1989;44:356–60.

    Article  CAS  PubMed  Google Scholar 

  29. Sato K, Fujii Y, Asano S, et al. Recombinant human interleukin 1 stimulates mouse osteoblast-like MC3T3-E1 cells to produce macrophage colony stimulating activity and PGE2. Biochem Biophys Res Commun 1986;141:285–91.

    Article  CAS  PubMed  Google Scholar 

  30. Kimble RB, Srivastava S, Ross PF, Matayoshi A, Pacifici R. Estrogen deficiency increases the ability of stormal cells to support murine osteoclastogenesis via an interleukin-1 and tumor necrosis factor-mediated stimulation of macrophage colony stimulating factor production. J Biol Chem 1996;271:28890–7.

    Article  CAS  PubMed  Google Scholar 

  31. Lorenzo JA, Souss SL, Fonseca JM, Hock JM, Medlock ES. Colony stimulating factors regulate the development of multinucleated osteoclasts from recently replicated cells in-vitro. J Clin Invest 1987;160:160–4.

    Article  Google Scholar 

  32. Elias JA, Lentz V. IL-1 and TNF synergistically stimulate fibroblast interleukin-6 production and stabilize IL-6 mRNA. J Immunol 1990;145:161–6.

    CAS  PubMed  Google Scholar 

  33. Elias JA, Tang W, Horowitz M. Cytokine and hormonal stimulation of human osteosarcoma interleukin-11 production. Endocrinology 1995;136:489–98.

    Article  CAS  PubMed  Google Scholar 

  34. Pollard JW, Stanley ER. Pleiotropic roles for CSF-1 in development defined by the mouse mutation osteopetrotic. Adv Dev Biochem 1996;4:153–93.

    Article  CAS  Google Scholar 

  35. Jimi E, Shuto T, Koga T. Macrophage colony stimulating factor and interleukin-1α maintain the survival of osteoclast-like cells. Endocrinology 1995;36:808–11.

    Article  Google Scholar 

  36. Flanagan AM, Sharma U, Edwards M. The role of macrophage colony stimulating factor (M-CSF) in the generation of human osteoclasts in human bone marrow cultures. J Bone Miner Res 1996;11(Suppl):S 282.

    Google Scholar 

  37. Felix R, Halasy-Nagy J, Wetterwald A, Cecchini MG, Fleisch H, Hofstetter W. Synthesis of membrane and matrix bound colony stimulating factor-1 (CSF-1) by cultured osteoblasts. J Cell Physiol 1996;166:311–22.

    Article  CAS  PubMed  Google Scholar 

  38. Yao GQ, Insogna K, Weir E. Osteotropic agents regulate expression of the cell-surface form of colony stimulating factor-1 (CSF-1) in osteoblasts. J Bone Miner Res 1995;10(Suppl 1):S 151.

    Google Scholar 

  39. Weir EC, Horowitz MC, Baron, et al. Macrophage colony stimulating factor release and receptor expression in bone cells. J Bone Miner Res 1993;8:S 151.

    Google Scholar 

  40. Dranoff G, Crawford AD, Sadelain M, et al. Involvement of granulocyte macrophage colony stimulating factor in pulmonary homeostasis. Science 1994;264:713–6.

    Article  CAS  PubMed  Google Scholar 

  41. Shuto T, Kukita T, Hirata M, Jimi E, Koga T. Dexamethasone stimulates osteoclast-like cell formation by inhibiting GM-CSF production in mouse bone marrow cultures. Endocrinology 1994;134:1121–6.

    Article  CAS  PubMed  Google Scholar 

  42. Hattersley G, Chambers TJ. The effects of IL-3, granulocyte-macrophage and macrophage colony stimulating factors on osteoclast differentiation from mouse hemopoietic tissue. J Cell Physiol 1990;142:201–9.

    Article  CAS  PubMed  Google Scholar 

  43. Kishimoto T, Akira S, Narazaki N, Taga T. Interleukin-6 family of cytokines and gp130. Blood 1995;86:1243–54.

    CAS  PubMed  Google Scholar 

  44. Ihle JN. Cytokine receptor signaling. Nature 1995;377:591–4.

    Article  CAS  PubMed  Google Scholar 

  45. Feldman GM, Petricoin EF, David M, Larner AC. Finbloom DS. Cytokines that associate with the signal transducer gp130 activate the interferon-induced transcription factor p91 by tyrosine phosphorylation. J Biol Chem 1994;269:10747–52.

    CAS  PubMed  Google Scholar 

  46. Saito M, Yoshida K, Hibi M, Taga T, Kishomoto T. Molecular cloning of a murine IL-6 receptor-associated signal transducer, gp130, and its regulated expression in-vivo. J Immunol 1992;148:4066–71.

    CAS  PubMed  Google Scholar 

  47. Roodman GD. Perspectives — interleukin 6 — an osteotropic factor. J Bone Miner Res 1992;7:475–8.

    Article  CAS  PubMed  Google Scholar 

  48. Woodroofe C, Muller W, Ruther U. Long term consequence of interleukin 6 overexpression in transgenic mice. DNA Cell Biol 1992;11:587–92.

    Article  CAS  PubMed  Google Scholar 

  49. Kimble RB, Matayoshi AB, Vannice JL, Kung VT, Williams C, Pacifici R. Inhibition of IL-6 activity in genetically normal mice does not prevent ovariectomy induced bone loss. J Bone Miner Res 1995;10(Suppl):S 160.

    Google Scholar 

  50. 50. De La Mata J, Uy HL, Guise TA, et al. Interleukin-6 enhances hypercalcemia and bone resorption mediated by parathyroid hormone related protein in vivo. J Clin Invest 1995;95:2846–52.

    Article  PubMed  Google Scholar 

  51. Manolagas SC, Jilka RL, Girasole G, et al. Estrogen, cytokines and the pathogenesis of osteoporosis. In: Kohler PO, editor. Current opinion in endocrinology and diabetes. Philadelphia: Current Science, 1994:275–81.

    Google Scholar 

  52. Du XX, Williams DA. Interleukin 11: a multifunctional growth factor derived from the hematopoietic microenvironment. Blood 1994;83:2023–30.

    CAS  PubMed  Google Scholar 

  53. Bellido T, Girasole G, Passeri G, Jilka RL, Manolagas SC. gp130 mRNA is increased by PTH and cytokines and decreased by sex steroids in stromal/osteoblastic cells [abstract]. J Bone Miner Res 1994;9:S 123.

    Google Scholar 

  54. Kodama Y, Takeuchi Y, Suzawa M, et al. Reduced expression of IL-11 from bone marrow stromal cells of senescence accelerated mice (SAM-P6): a role for impaired osteoblast and osteoclast formation [abstract]. J Bone Miner Res 1996;11:S 105.

    Google Scholar 

  55. Kawasaki K, Yokose S, Nakamura T, et al. Osteoclasts are present in gp130 deficient mice [abstract]. J Bone Miner Res 1996;11:S 96.

    Google Scholar 

  56. Okamura H, Tsutsui H, et al. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature 1995;378:88–91.

    Article  CAS  PubMed  Google Scholar 

  57. Ushio S, Namba M, Okura T, et al. Cloning of the cDNA for human IFN-γ inducing factor, expression inEscherichia coli, and studies on the biologic activities of the protein. J Immunol 1996;156:4274–9.

    CAS  PubMed  Google Scholar 

  58. Udagawa N, Horwood NJ, Elliot J, et al. Interleukin-18 (interferon gamma-inducing factor) is produced by osteoblasts and acts via granulocyte-macrophage colony stimulating factor and not via interferon gamma to inhibit osteoclast formation. J Exp Med 1997;185:1005–12.

    Article  CAS  PubMed  Google Scholar 

  59. Horwood N, Udagawa N, Elliott J, et al. Interleukin-18 inhibits osteoclast formation via T-cell production of GM-CSF [abstract]. J Bone Miner Res1997 (in press).

  60. Marx SJ, Auerbach GD, Gavin JR, Buell DW. Calcitonin receptors on cultured human lymphocytes. J Biol Chem 1974;249:6812–6.

    CAS  PubMed  Google Scholar 

  61. Yamamoto I, Potts JT, Segre GV. Circulating bovine lymphocytes contain receptors for PTH. J Clin Invest 1983;71:404–7.

    Article  CAS  PubMed  Google Scholar 

  62. Vanchit J, Hock JM, Short LI, Glasebrook AL, Sells Gavin R. A role for CD8+ T lymphocytes in osteoclast differentiation in vitro. Endocrinology 1996;137:2457–63.

    Article  Google Scholar 

  63. Buchinsky FJ, Ma YF, Mann G, et al. T-lymphocytes play a critical role in the development of cyclosporin induced osteopenia. Endocrinology 1996;137:2278–85.

    Article  CAS  PubMed  Google Scholar 

  64. McHugh KP, Teitelbaum SL, Ross FP. Interleukin-13, like interleukin-4, modulates murine osteoclastogenesis and expression of integrins on osteoclast precursors [abstract]. J Bone Miner Res 1995;10(Suppl):S 487.

    Google Scholar 

  65. Miyaura C, Onoe Y, Ohta H, et al. Interleukin-13 inhibits bone resorption by suppressing cyclooxygenase (COX-2) mRNA expression and prostaglandin production in osteoblasts [abstract]. J Bone Miner Res 1995;10(Suppl):S 158.

    Google Scholar 

  66. Fossiez F, Djossou O, Chomarat P, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 1996;183:2593–2603.

    Article  CAS  PubMed  Google Scholar 

  67. Udagawa N, Takahashi N, Martin TJ, Suda T. IL-17 is a potent stimulator of osteoclastic bone resorption via PGE2 synthesis [abstract]. J Bone Miner Res 1997;12(Suppl):S 342.

    Google Scholar 

  68. Fujita T, Matsui T, Nakao Y, Watanabe S. T-lymphocyte subsets in osteoporosis: effect of 1,25-dihydroxyvitamin D. Miner Electrolyte Metab 1984;10:375–8.

    CAS  PubMed  Google Scholar 

  69. Rosen CJ, Usiskin K, Owens M, et al. T-lymphocyte surface antigen markers in osteoporosis. J Bone Miner Res 1990;5:851–5.

    Article  CAS  PubMed  Google Scholar 

  70. Gulshan S, McCruden AB, Stimson WH. Estrogen receptors in macrophages. Scand J Immunol 1990;31:691–7.

    Article  CAS  PubMed  Google Scholar 

  71. Bellido T, Girasole G, Passeri G, et al. Demonstration of estrogen and vitamin D receptors in bone marrow derived stromal cells: up-regulation of the estrogen receptor by 1,25-dihydroxyvitamin D. Endocrinology 1993;133:553–62.

    Article  CAS  PubMed  Google Scholar 

  72. Fiorelli G, Gori F, Frediani U, et al. Evidence for bioeffects of LY 139478 on the human pre-osteoblastic cell line FLG 29.1. Biochem Biophys Res Commun 1995;211:857–63.

    Article  CAS  PubMed  Google Scholar 

  73. Oursler MJ, Osdoby P, Pyfferoen J, Riggs BL, Spelsberg TC. Avian Osteoclasts as estrogen target cells. Proc Natl Acad Sci USA 1991;88:6613–7.

    Article  CAS  PubMed  Google Scholar 

  74. 74.Pacifici R, Rifas L, McCracken R, et al. Ovarian steroid treatment blocks a postmenopausal increase in blood monocyte interleukin-1 release. Proc Natl Acad Sci USA 1989;86:2398–402.

    Article  CAS  PubMed  Google Scholar 

  75. Kimble RB, Vannice JL, Bloedow RC, et al. Interleukin-1 receptor antagonist decreases bone loss and bone resorption in ovariectomized rats. J Clin Invest 1994;93:1959–67.

    Article  CAS  PubMed  Google Scholar 

  76. Cohen-Solal ME, Craulet AM, Denne MA, et al. Peripheral blood monocyte culture supernatants of menopausal women can induce bone resorption: involvement of cytokines. J Clin Endocrinol Metab 1993;77:1648–53.

    Article  CAS  PubMed  Google Scholar 

  77. Amman P, Rizzoli R, Bonjour JP, et al. Transgenic mice expressing soluble tumor necrosis factor receptor are protected against bone loss caused by estrogen deficiency. J Clin Invest 1997;99:1699–703.

    Article  Google Scholar 

  78. Poli V, Balena R, Fattori E, et al. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO 1994;13:1189–96.

    CAS  Google Scholar 

  79. Rifas L, Kenney JS, Marcelli M, et al. Production of interleukin-6 in human osteoblasts and human bone marrow stromal cells: evidence that induction by interleukin-1 and tumor necrosis factor-α is not regulated by ovarian steroids. Endocrinology 1995;136:4056–67.

    Article  CAS  PubMed  Google Scholar 

  80. Rickard D, Russell RGG, Gowen M. Oestradiol inhibits the release of tumor necrosis factor but not interleukin-6 from adult human osteoblasts in vitro. Osteoporos Int 1992;2:94–102.

    Article  CAS  PubMed  Google Scholar 

  81. Chaudhary LR, Spelsberg TC, Riggs BL. Production of various cytokines by normal human osteoblast-like cells in response to interleukin-1β and tumor necrosis factor-β: lack of regulation by 17β-estradiol. Endocrinology 1992;130:2528–34.

    Article  CAS  PubMed  Google Scholar 

  82. Girasole G, Pedrazzoni M, Guiliani N, Passeri G, Passeri M. Increased serum soluble interleukin-6 receptor levels are induced by ovariectomy, prevented by estrogen replacement and reversed by alendronate administration [abstract]. J Bone Miner Res 1995;10:S 160.

    Google Scholar 

  83. Yang NA, Venugopalan M, Hardikar S, Glasebrook A. Identification of an estrogen response element activated by metabolites of 17β-estradiol and raloxi%ene. Science 1996; 273:1222–5.

    Article  CAS  PubMed  Google Scholar 

  84. Chenu C, Pfeilschifter J, Mundy GR, Roodman GD. Transforming growth factor β inhibits formation of osteoclast-like cells in long term human bone marrow cultures. Proc Natl Acad Sci USA 1988;85:5683–7.

    Article  CAS  PubMed  Google Scholar 

  85. Orrefo ROC, Bonewald L, Kukita A, et al. Inhibitory effects of the bone derived growth factors osteoinductive factor and transforming growth factor β on isolated osteoclasts. Endocrinology 1990;126:3069–75.

    Article  Google Scholar 

  86. Hughes DE, Jilka RL, Manolagas SC, et al. Sex steroids promote osteoclast apoptosis in vitro and in vivo [abstract], J Bone Miner Res 1995;10:S 48.

    Google Scholar 

  87. Kawaguchi H, Pilbeam CC, Vargas SJ, Morse EE, Lorenzo JA, Raisz LG. Ovariectomy enhances and estrogen replacement inhibits the activity of bone marrow factors that stimulate prostaglandin production in cultured mouse calvariae. J Clin Invest 1995;96:539–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romas, E., Martin, T.J. Cytokines in the pathogenesis of osteoporosis. Osteoporos Int 7 (Suppl 3), 47–53 (1997). https://doi.org/10.1007/BF03194342

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03194342

Keywords

Navigation