Skip to main content
Log in

Cefotaxime pharmacokinetics after oral application in the form of 3α,7α-dihydroxy-12-keto-5β-cholanate microvesicles in rat

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

The aim of ths study was to investigate the pharmacokinetics of cefotaxime sodium (CEF) pharmacokinetics after oral application in the form of sodium 3α,7α-dihydroxy-12-keto-5β-cholanate (MKC) microvesicles (MV) in rat. Thirty Male Wister rats were divided into six groups (n=5 per group). Groups were treated orally with: i. CEF (15 mg/kg) saline solution (15 mg/kg); ii. CEF (15 mg/kg) saline solution with MKC (2 mg/kg); iii. CEF saline solution mixed with blank microvesicles; iv. CEF (15 mg/kg) encapsulated in microvesicles with saline solution; v. CEF saline solution (15 mg/kg) mixed with blank MKC microvesicules; vi. CEF (15 mg/kg) encapsulated in MKC microvesicules with saline solution. Data were analyzed using noncompartmental model. CEF oral bioavailability was increased twofold when coadministered with MKC and when encapsulated in microvesicles and ninefold when encap-sulated in MKC microvesicles compared to the same CEF dose administered orally as saline solution. The increased bioavailability of CEF resulting from CEF encapsulation in microvesicules with MKC suggests that this formulation can extend the application of CEF from parenteral only to oral application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosseel M.T., Vandewoude K.H., (2004): Liquid chromatographic determination of the plasma concentrations of cefotaxime and desacetylcefotaxime in plasma of critically ill patients. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 811, 159–163.

    PubMed  CAS  Google Scholar 

  2. USP NF — United States Pharmacopeia and National Formulary, United States Pharmacopeial Convention Inc., Rock-ville, MD, USA, 26th Edition, 2003

  3. Sharma P., Varma M.V., Chawla H.P., Panchagnula R. (2005): Absorption enhancement, mechanistic and toxicity studies of medium chain fatty acids, cyclodextrins and bile salts as peroral absorption enhancers. Farmaco, 6, 884–893.

    Article  CAS  Google Scholar 

  4. Berge S.M., Henderson N.L., Frank M.J. (1983): Kinetics and mechanism of degradation of cefotaxime sodium in aqueous solution. J. Pharm. Sci., 72, 59–63.

    Article  PubMed  CAS  Google Scholar 

  5. Das Gupta V. (1984): Stability of cefotaxime sodium as determined by high-performance liquid chromatography. J. Pharm. Sci., 73, 565–567.

    Article  PubMed  Google Scholar 

  6. Fabre H., Eddine N.H., Berge G. (1984): Degradation kinetics in aqueous solution of cefotaxime sodium, a third-generation cephalosporin. J. Pharm. Sci., 73,611–618.

    Article  PubMed  CAS  Google Scholar 

  7. Esmieu F., Guibert J., Rosenkilde H.C., Ho I., Le Go A. (1980): Pharmacokinetics of cefotaxime in normal human volunteers. J. Antimicrob. Chemother., 6 Suppl A, 83–92.

    PubMed  CAS  Google Scholar 

  8. Wise R., Wright N., et al. (1981): Pharmacology of cefotaxime and its desacetyl metabolite in renal and hepatic disease. Antimicrob. Agents Chemother., 19, 526–531.

    PubMed  CAS  Google Scholar 

  9. Mesiha M.S., Ponnapula P., Plakogiannis F. (2002): Oral absorption of insulin encapsulated in artificial chyles of bile alts, palmitic acid and alpha tocoferol dispersions. Int. J. Pharm., 249, 1–5.

    Article  PubMed  CAS  Google Scholar 

  10. Michael S., Thole M., Dillman R., Fahr A., Drewe J., Fricker F. (2000):Improvement of intestinal absorption by synthetic bile acid derivative, cholylsarcosine. Eur. J. Pharm. Sci., 10, 133–140.

    Article  PubMed  CAS  Google Scholar 

  11. Mikov M., Al-Salami H., Golocorbin-Kon S., Skrbic R., Raskovic A., Fawcett J.P. (2008): The influence of 3α,7α-dihydroxy-12-oxo-5β-cholanate on gliclazide pharmacokinetics and glucose levels in a rat model of diabetes. Eur. J. Drug Metabol. Pharmacokinet., 33, 137–142.

    Article  CAS  Google Scholar 

  12. Mrestani Y., Bretschneider B., Hard A., Neubert R.H.H. (2003): In vitro and in vivo studies of cefiprom using bile salts as absorption enhancers. J. Pharm. Pharmacol., 55, 1601–1606.

    Article  PubMed  CAS  Google Scholar 

  13. Mikov M., Raskovic A., Jakovljevic E., Dudvarski D., Fawcett J.P. (2005): Influence of the bile salt sodium 3α,7α-dihydroxy-12-oxo-5β-cholanate on ampicillin pharmacokinetics in rats. Asian J. Drug Metabol. Pharmacokinet., 5, 197–200.

    Google Scholar 

  14. Mikov M., Kevresan S., Kuhajda K., Jakovljevic V., Vasovic V. (2004): 3α,7α-dihydroxy-12-oxo-5β-cholanate as blood-brain barrier permeator. Pol. J. Pharmacol., 56, 367–371.

    PubMed  CAS  Google Scholar 

  15. Sharma P., Chawla H.P., Panchagnula R. (2002): LC determination of cephalosporins in in vitro rat intestinal sac absorption model. J. Pharm. Biomed. Anal., 27, 39–50.

    Article  PubMed  CAS  Google Scholar 

  16. Ling S.S.N., Magrosso E., Khan N.A. K., Yen K.H. (2006): Enhanced oral bioavailability and intestinal lymphatic transport of hydrophilic drug using liposomes. Drug Dev. Ind. Pharm., 32, 335–345.

    Article  PubMed  CAS  Google Scholar 

  17. Miljkovic D., Kuhajda K., Hranisavljevic J. (1996): Selective C-12 oxidation of cholic acid. J. Chem. Res.; Suppl, 106–107.

  18. Russell D.G., Alexander J. (1988): Effective immunization against cutaneous leishmaniasis with defined membrane antigens reconstituted into liposomes. J. Immunol., 140, 1274–1279.

    PubMed  CAS  Google Scholar 

  19. Ling S.S.N., Yuen K.H., Barker S.A. (2002): Simple Liquid chromatographic method for determination of cefotaxime in human and rat plasma. J. Chrom. B, 783, 297–301.

    Article  Google Scholar 

  20. Hsieh D. (ed). Drug Permeation Enhancement Theory and Applications. Marcel Dekker Inc, New York, 1994

    Google Scholar 

  21. Mikov M., Fawcett J.P. (editors). In: (Mikov M., Fawcett J.P., Kuhajda K., Kevresan S., Kandrac J., eds) Bile acids: Chemistry, biosynthesis, analysis, chemical and metabolic transformations. Mediset Publisher, Geneva, 2007.

    Google Scholar 

  22. Alberts B., Bary D., Lewis J., Raff M., Roberts K., Watson J. (eds): Molecular Biology of the Cell. Garland, New York, 1983

    Google Scholar 

  23. Bretschneider B., Brandsch M., Neubert R. (1999): Intestinal transport of beta-lactam antibiotics: Analysis of the affinity at the H+/peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux. Pharm. Res., 16, 55–61.

    Article  PubMed  CAS  Google Scholar 

  24. Van Bambeke F., Michot J-M., Tulkens P.M. (2003): Antibiotic efflux pumps in eucariotic cells: occurrence and impact on antibiotic cellular pharmacokinetics, pharmacodynamics and toxicodimamics. J. Antimicrob. Chemother., 51, 1067–1077.

    Article  PubMed  CAS  Google Scholar 

  25. Maincent P., Le Verge R., Sado P., Couvreur P., Devissaquet J.P. (1986): Disposition kinetics and oral bioavailability of vincamine-loaded polyalkyl cyanoacrylate nanoparticles. J. Pharm. Sci., 75, 955–958.

    Article  PubMed  CAS  Google Scholar 

  26. Iwanaga K., Ono S., Narioka K., Kakemi M., Morimoto K., Yamashita S., Namba Y., Oku N., (1999): Application of surface-coated liposomes for oral delivery of peptide: effects of coating the liposome’s surface on the GI transit of insulin. J. Pharm. Sci., 88, 248–252.

    Article  PubMed  CAS  Google Scholar 

  27. Florence A.T. (1997): The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual. Pharm. Res., 14, 259–266.

    Article  PubMed  CAS  Google Scholar 

  28. Chen H., Langer R. (1988): Oral particulate delivery: status and future trends. Adv. Drug Deliv. Rev., 34, 339–350.

    Article  Google Scholar 

  29. LeFevre M.E., Vanderhoff J.W., Laissue J.A., Joel D.D. (1978): Accumulation of 2-micron latex particles in mouse Peyer’s patches during chronic latex feeding. Experientia, 34, 120–122.

    Article  PubMed  CAS  Google Scholar 

  30. Lefevre M.E., Joel D.D., Schidlovski G. (1985): Retention of ingested latex particles in Peyer’s patches of germfree and conventional mice. Proc. Soc. Exp. Biol. Med., 179, 522–528.

    PubMed  CAS  Google Scholar 

  31. LeFevre M.E., Joel D.D. (1986): Distribution of label after intragastric administration of 7Be-labeled carbon to weanling and aged mice. Proc. Soc. Exp. Biol. Med., 182, 112–119.

    PubMed  CAS  Google Scholar 

  32. Jani P., Haibert G.W., Langridge J., Florence A.T. (1989): The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J. Pharm. Pharmacol., 41, 809–812.

    PubMed  CAS  Google Scholar 

  33. Aramaki Y., Tomizawa H., Hara T., Yachi H., Tsuchiya S. (1993): Stability of liposomes in vitro and their uptake by rat Peyer’s patches following oral administration. Pharm. Res., 10, 1228–1231.

    Article  PubMed  CAS  Google Scholar 

  34. Senior K. (2001): Bilosomes: the answer to oral vaccine delivery? Drug Disco Today, 6, 1031–1032.

    Article  Google Scholar 

  35. Pappo J. (1989): Generation and characterization of monoclonal antibodies recognizing follicle epithelial M cells in rabbit gut-associated lymphoid tissues. Cell. Immunol. 120: 31–41.

    Article  PubMed  CAS  Google Scholar 

  36. Maury J., Nicoletti C., Guzzo-Chambraud L., Maroux S. (1995): The filamentous brush border glycocalyx, a mucin-like marker of enterocyte hyper-polarization. Eur. J. Biochem., 228, 323–31.

    Article  PubMed  CAS  Google Scholar 

  37. Frey A., Giannasca K.T., Weltzin R.G., Giannasca P.J., Reggio H., Lencer W.I., Neutra M.R. (1996): Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J. Exp. Med., 184, 1045–1059.

    Article  PubMed  CAS  Google Scholar 

  38. Neutra M.R. (1998): Current concepts in mucosal immunity. V Role of M cells in transepithelial transport of antigens and pathogens to the mucosal immune system. Am. J. Physiol., 274,785–791.

    Google Scholar 

  39. Walde P., Sunamoto J., O’Connor J. (1987): The mechanism of liposomal damage by taurocholate. Biochim. Biophys. Acta, 905, 30–38.

    Article  PubMed  CAS  Google Scholar 

  40. O’Connor C.J., Wallace R.G., Iwamoto K., Taguchi T., Sunamoto J. (1985): Bile salt damage of egg phosphatidylcholine liposomes. Biochim. Biophys. Acta, 817, 95–102.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golocorbin-Kon, S., Mikov, M., Arafat, M. et al. Cefotaxime pharmacokinetics after oral application in the form of 3α,7α-dihydroxy-12-keto-5β-cholanate microvesicles in rat. Eur. J. Drug Metabol. Pharmacokinet. 34, 31–36 (2009). https://doi.org/10.1007/BF03191381

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03191381

Key words

Navigation