Skip to main content
Log in

A constitutive catabolite repression mutant of a recombinantSaccharomyces cerevisiae strain improves xylose consumption during fermentation

  • Industrial Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Efficient xylose utilisation by microorganisms is of importance to the lignocellulose fermentation industry. The aim of this work was to develop constitutive catabolite repression mutants in a xylose-utilising recombinantSaccharomyces cerevisiae strain and evaluate the differences in xylose consumption under fermentation conditions.S. cerevisiae YUSM was constitutively catabolite repressed through specific disruptions within theMIG1 gene. The strains were grown aerobically in synthetic complete medium with xylose as the sole carbon source. Constitutive catabolite repressed strain YCR17 grew four-fold better on xylose in aerobic conditions than the control strain YUSM. Anaerobic batch fermentation in minimal medium with glucose-xylose mixtures and N-limited chemostats with varying sugar concentrations were performed. Sugar utilisation and metabolite production during fermentation were monitored. YCR17 exhibited a faster xylose consumption rate than YUSM under high glucose conditions in nitrogen-limited chemostat cultivations. This study shows that a constitutive catabolite repressed mutant could be used to enhance the xylose consumption rate even in the presence of high glucose in the fermentation medium. This could help in reducing fermentation time and cost in mixed sugar fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ausubel F.M., Brent R., Kingson R.E., Moore D.D., Seidman J.G., Smity J.A., Struhl K. (1995). Gurrent Protocols in Molecular Biology. John Wiley and Sons, New York, USA.

    Google Scholar 

  • Belinchon M.M., Gancedo J.M. (2003). Xylose and some nonsugar carbon sources cause catabolite repression inSaccharomyces cerevisiae. Arch. Microbiol., 180: 293–297.

    Article  CAS  PubMed  Google Scholar 

  • Bruinenberg P.M., de Bot P.H.M., van Dijken J.P., Scheffers W.A. (1983). The role of redox balances in the anaerobic fermentation of xylose by yeasts. Appl. Microbiol. Biotechnol., 18: 287–292.

    Article  CAS  Google Scholar 

  • Busturia A., Lagunas R. (1986). Catabolite inactivation of the glucose transport system inSaccharomyces cerevisiae. J. Gen. Microbiol., 132: 379–385.

    CAS  PubMed  Google Scholar 

  • Chakravorty M., Viega L.A., Bacila M., Horecker B.L. (1962). Pentose metabolism in CandidaII. The diphosphoridine nucleotide-specific polyol dehydrogenase ofCandida utilis. J. Biol. Chem., 237: 1014–1020.

    CAS  PubMed  Google Scholar 

  • Chiang C., Knight S.G. (1960). Metabolism of D-xylose by moulds. Nature, 168: 79–81.

    Article  Google Scholar 

  • Chiang L.C., Gong C.S., Chen L.F., Tsao G.T. (1981). D-Xylulose fermentation to ethanol bySaccharomyces cerevisiae. Appl. Environ. Microbiol., 42: 284–289.

    CAS  PubMed  Google Scholar 

  • Christensen L.H., Schulze U., Nielsen J., Villadsen J. (1995). Acoustic off-gas analyzer for bioreactors: precision, accuracy and dynamics of detection. Chem. Engg. Science, 50: 2601–2610.

    Article  CAS  Google Scholar 

  • Eliasson A., Christensson C., Wahlborn C.F., Hahn-Hägerdal B. (2000). Anaerobic xylose fermentation by recombinantSaccharomyces cerevisiae carryingXYL1, XYL2, andXKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol., 66: 3381–3386.

    Article  CAS  PubMed  Google Scholar 

  • Fiaux J., Çakar Z.P., Sonderegger M., Wüthrich K., Szyperski T., Sauer U. (2003). Metabolic-flux profiling of the yeastsSaccharomyces cerevisiae andPichia stipitis. Eukaryot. Cell, 2: 170–180.

    Article  CAS  PubMed  Google Scholar 

  • Gancedo J.M. (1998). Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev., 62: 334–361.

    CAS  PubMed  Google Scholar 

  • Gardonyi M., Jeppsson M., Liden G., Gorwa-Grauslund M.F., Hahn-Hägerdal B. (2003). Control of xylose consumption by xylose transport in recombinantSaccharomyces cerevisiae. Biotechnol. Bioengg., 82: 818–824.

    Article  CAS  Google Scholar 

  • Gietz D., St. Jean A., Woods R.A., Schiestl R.H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res., 20: 1425.

    Article  CAS  PubMed  Google Scholar 

  • Gong C.S., Claypool T.A., McCracken L.D., Mauw C.M., Ueng P.P., Tsao G.T. (1983). Conversion of pentoses by yeasts. Biotechnol. Bioengg., 15: 85–102.

    Article  Google Scholar 

  • Hahn-Hägerdal B., Hallborn J., Jeppsson H., Olsson L., Skoog K., Walfridsson M. (1993). Pentose fermentation to alcohol. In: Saddler, J.N., Ed., Bioconversion of forest and agricultural plant residues. CAB International, Wallingford, pp. 231–290.

    Google Scholar 

  • Hahn-Hägerdal B., Wahlborn C.F., Gardonvi M., van Zyl W.H., Cordero Otero R.R., Jonsson L.J. (2001). Metabolic engineering ofSaccharomyces cerevisiae for xylose utilisation. Adv. in Biochem. Engg. Biotechnol., 73: 53–84.

    Google Scholar 

  • Hamacher T., Johansson B., Gardonyi M., Hahn-Hägerdal B., Boles E. (2002). Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilisation. Microbiology, 148: 2783–2788.

    CAS  PubMed  Google Scholar 

  • Hayn M., Steiner W., Klinger R., Steinmuller H., Sinner M., Esterbauer H. (1993). Basic research and pilot studies on the enzymatic conversion of lignocellulosics. In: Saddler, J.N., Ed., Bioconversion of forest and agricultural plant residues. CAB International, Wallingford, pp. 33–72.

    Google Scholar 

  • Ho N.W.Y., Chen Z., Brainard A.P. (1998). Genetically engineeredSaccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol., 64: 1852–1859.

    CAS  PubMed  Google Scholar 

  • Hochster R.M., Watson R.W. (1954). Enzymatic isomerisation of D-xylose to D-xylulose. Arch. Biochem., 48: 120–129.

    Article  CAS  PubMed  Google Scholar 

  • Inoue H., Nojima H., Okayama H. (1990). High efficiency transformation ofEscherichia coli with plasmids. Gene, 96(1): 23–28.

    Article  CAS  PubMed  Google Scholar 

  • Jeffries T.W., Jin Y.S. (2004). Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol., 63: 495–509.

    Article  CAS  PubMed  Google Scholar 

  • Jeppsson M., Johansson B., Jensen P.R., Hahn-Hägerdal B., Gorwa-Grauslund M.F. (2003). The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinantSaccharomyces cerevisiae strains. Yeast, 20: 1263–1272.

    Article  CAS  PubMed  Google Scholar 

  • Jin Y.S., Jones S., Shi N.Q., Jeffries T.W. (2002). Molecular cloning ofXYL3 (D-xylulokinase) fromPichia stipitis and characterization of its physiological function. Appl. Environ. Microbiol., 68: 1232–1239.

    Article  CAS  PubMed  Google Scholar 

  • Jin Y.S., Ni H., Laplaza J.M., Jeffries T.W. (2003). Optimal growth and ethanol production from xylose by recombinantSaccharomyces cerevisiae require moderate D-xylulokinase activity. Appl. Environ. Microbiol., 69: 495–503.

    Article  CAS  PubMed  Google Scholar 

  • Johansson B., Christensson C., Hobley T., Hahn-Hägerdal B. (2001). Xylulokinase overexpression in two strains ofSaccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl. Environ. Microbiol., 67: 4249–4255.

    Article  CAS  PubMed  Google Scholar 

  • Johansson B., Hahn-Hägerdal B. (2002). The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose inSaccharomyces cerevisiae TMB3001. FEMS Yeast Res., 2(3): 277–282.

    CAS  PubMed  Google Scholar 

  • Kaniak A., Xue Z., Macool D., Kim J.H., Johnston M. (2004). Regulatory network connecting two glucose signal transduction pathways inSaccharomyces cerevisiae. Eukaryot. Cell, 3: 221–231.

    Article  CAS  PubMed  Google Scholar 

  • Karhumaa K., Hahn-Hägerdal B., Gorwa-Grauslund M.F. (2005). Investigation of limiting metabolic steps in the utilisation of xylose by recombinantSaccharomyces cerevisiae using metabolic engineering. Yeast, 22: 359–368.

    Article  CAS  PubMed  Google Scholar 

  • Karhumaa K., Wiedemann B., Hahn-Hägerdal B., Boles E., Gorwa-Grauslund M.F. (2006). Co-utilisation of L-arabinose and D-xylose by laboratory and industrialSaccharomyces cerevisiae strains. Microb. Cell Factories, 5:18.

    Article  Google Scholar 

  • Klein C.J.L., Olsson L., Nielsen J. (1998). Nitrogen-limited continuous cultivations as a tool to quantify glucose control inSaccharomyces cerevisiae. Enzyme Microb. Technol., 23: 91–100.

    Article  CAS  Google Scholar 

  • Kötter P., Ciriacy M. (1993). Xylose fermentation bySaccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 38: 776–783.

    Article  Google Scholar 

  • Kotyk A. (1967). Properties of the sugar carrier in baker’s yeast. 2. Specificity of transport. Folia Microbiol., 12: 121–131.

    Article  CAS  Google Scholar 

  • Lee J. (1997). Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol., 56: 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Lee W.J., Kim M.D., Ryu Y.W., Bisson L.F., Seo J.H. (2002). Kinetic studies on glucose and xylose transport inSaccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 60: 186–191.

    Article  CAS  PubMed  Google Scholar 

  • Lidèn G., Persson A., Gustafsson L., Niklasson C. (1995). Energetics and product formation bySaccharomyces cerevisiae grown in anaerobic chemostats under nitrogen limitation. Appl. Microbiol. Biotechnol., 43: 1034–1038.

    Article  PubMed  Google Scholar 

  • Lillie S., Pringle J.R. (1980). Reserve carbohydrate metabolism inSaccharomyces cerevisiae: responses to nutrient limitation. J. Bacteriol., 143: 1384–1394.

    CAS  PubMed  Google Scholar 

  • Meinander N.Q., Hahn-Hägerdal B. (1997). Influence of cosubstrate concentration on xylose conversion by recombinant,XYL1-expressingSaccharomyces cerevisiae: a comparison of different sugars and ethanol as cosubstrates. Appl. Environ. Microbiol., 63: 1959–1964.

    CAS  PubMed  Google Scholar 

  • Meinander N.Q., Boels I., Hahn-Hägerdal B. (1999). Fermentation of xylose/glucose mixtures by metabolically engineeredSaccharomyces cerevisiae strains expressingXYL1 andXYL2 fromPichia stipitis with and without overexpression ofTAL1. Bioresource Technol., 68: 79–87.

    Article  CAS  Google Scholar 

  • öhgren K., Bengtsson O., Gorwa-Grauslund M.F., Galbe M., Hahn-Hägerdal B., and Zacchi G. (2006). Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content withSaccharomyces cerevisiae TMB3400. J. Biotechnol., 126: 488–498.

    Article  PubMed  Google Scholar 

  • Östling J., Carlberg M., Ronne H. (1996). Functional domains in the Mig1 repressor. Mol. Cell Biol., 16: 753–761.

    PubMed  Google Scholar 

  • Parrou J.L., François J. (1997). A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal. Biochem., 248: 186–188.

    Article  CAS  PubMed  Google Scholar 

  • Panek A.D. (1991). Storage carbohydrates. In: Rose A.H., Harrison J.S. Eds., The Yeasts. Vol. 4, 2nd edn., Academic Press, San Diego. pp. 655–678.

    Google Scholar 

  • Richard P., Toivari M.H., Penttila M. (2000). The role of xylulokinase inSaccharomyces cerevisiae xylulose catabolism. FEMS Microbiol. Lett., 190: 39–43.

    Article  CAS  PubMed  Google Scholar 

  • Roels J.A. (1983). Energetics and kinetics in biotechnology. 1st edn. Elsevier Biomedical Press BV, Amsterdam, The Netherlands

    Google Scholar 

  • Roca C., Haack M.B., Olsson L. (2004). Engineering of carbon catabolite repression in recombinant xylose fermentingSaccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 63: 578–583.

    Article  CAS  PubMed  Google Scholar 

  • Rose A.H., Vijayalakshmi G. (1993). Baker’s yeast. In: Rose, A.H., Harrison, J.S., Eds., Yeast Technology Vol. 5. Academic Press, San Diego, pp. 357–397.

    Google Scholar 

  • Senac T., Hahn-Hägerdal B. (1990). Intermediary metabolite concentrations in xylulose- and glucose-fermentingSaccharomyces cerevisiae cells. Appl. Environ. Microbiol., 56: 120–126.

    CAS  PubMed  Google Scholar 

  • Sherman F., Fink G., Hicks J.B. (1983). Methods in yeast genetics. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.

    Google Scholar 

  • Sonderegger M., Sauer U. (2003). Evolutionary engineering ofSaccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol., 69: 1990–1998.

    Article  CAS  PubMed  Google Scholar 

  • Sonderegger M., Jeppsson M., Hahn-Hägerdal B., Sauer U. (2004). Molecular basis for anaerobic growth ofSaccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl. Environ. Microbiol., 70: 2307–2317.

    Article  CAS  PubMed  Google Scholar 

  • Thomsson E., Gustafsson L., Larsson C. (2005). Starvation response ofSaccharomyces cerevisiae grown in anaerobic nitrogen- or carbon-limited chemostat cultures. Appl. Environ. Microbiol., 71: 3007–3013.

    Article  CAS  PubMed  Google Scholar 

  • Toivari M.H., Aristidou A., Ruohonen L., Penttila M. (2001). Conversion of xylose to ethanol by recombinantSaccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metabol. Engg., 3: 236–249.

    Article  CAS  Google Scholar 

  • Verduyn C., Postma E., Scheffers W.A., van Dijken J.P. (1992). Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast, 8: 501–517.

    Article  CAS  PubMed  Google Scholar 

  • Verho R., Londesborough J., Penttila M., Richard P. (2003). Engineering redox cofactor regeneration for improved pentose fermentation inSaccharomyces cerevisiae. Appl. Environ. Microbiol., 69: 5892–5897.

    Article  CAS  PubMed  Google Scholar 

  • Wahlbom C.F., Eliasson A., Hahn-Hägerdal B. (2001). Intracellular fluxes in a recombinant xylose-utilisingSaccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations. Biotechnol. Bioengg., 72: 289–296.

    Article  CAS  Google Scholar 

  • Wahlborn C.F., van Zyl W.H., Jonsson L.J., Hahn-Hägerdal B., Cordero Otero R.R. (2003a). Generation of the improved recombinant xylose-utilisingSaccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison withPichia stipitis CBS 6054. FEMS Yeast Res., 3: 319–326.

    Article  Google Scholar 

  • Wahlbom C.F., Cordero Otero R.R., van Zyl W.H., Hahn-Hägerdal B., Jonsson L.J. (2003b). Molecular analysis of aSaccharomyces cerevisiae mutant with improved ability to utilise xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl. Environ. Microbiol., 69: 740–746.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isak S. Pretorius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thanvanthri Gururajan, V., Gorwa-Grauslund, MF., Hahn-Hägerdal, B. et al. A constitutive catabolite repression mutant of a recombinantSaccharomyces cerevisiae strain improves xylose consumption during fermentation. Ann. Microbiol. 57, 85–92 (2007). https://doi.org/10.1007/BF03175055

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175055

Key words

Navigation