Skip to main content
Log in

Phytochrome-mediated photomorphogenesis in plants

  • Review
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Photomorphogenesis is the process by which plants grow and develop in response to light signals. This process is mediated by a sophisticated network of photoreceptors among which phytochromes play a key role. Phytochrome-mediated photomorphogenic responses are characterized by the complex variety of relationships between light input and physiological outputs, including germination, de-etiolation, shade avoidance, circadian rhythm, and flowering. Recent studies have resulted in several important advances, and have revealed the major consequences of phytochrome activity in terms of controlling protein subcellular localization, transcription, protein stability, and protein phosphorylation. In addition, many downstream components in the phytochrome signaling have now been identified, and a complex, highly regulated signaling network is envisaged. Here, we review the current knowledge about red/far-red photoreceptor phytochromes and provide a comprehensive summary of the phytochrome-mediated photomorphogenesis signaling network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Ahmad M, Jarillo JA, Smirnova O, Cashmore AR (1998) The CRY1 blue light photoreceptor ofArabidopsis interacts with phytochrome Ain vitro. Mol Cell1: 939–948

    Article  PubMed  CAS  Google Scholar 

  • Al-Sady B, Ni W, Kircher S, Schäfer E, Quail PH (2006) Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol Cell23: 439–446

    Article  PubMed  CAS  Google Scholar 

  • Bauer D, Viczián A, Kircher S, Nobis T, Nitschke R, Kunkel T, Panigrahi KCS, Ádám E, Fejes E, Schäfer E, Nagy F (2004) Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling inArabidopsis. Plant Cell16: 1433–1445

    Article  PubMed  CAS  Google Scholar 

  • Casal JJ, Luccioni LG, Oliverio KA, Boccalandro HE (2003) Light, phytochrome signaling and photomorphogenesis inArabidopsis. Photochem Photobiol Sci2: 625–636

    Article  PubMed  CAS  Google Scholar 

  • Casal JJ, Yanovsky MJ (2005) Regulation of gene expression by light. IntlJ Dev Biol49: 501–511

    Article  CAS  Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet38: 87–117

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Tao Y, Lim J, Shaw A, Chory J (2005) Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear-localization signals. Curr Biol15: 637–642

    Article  PubMed  CAS  Google Scholar 

  • Choi G, Kim Jl, Hong SW, Shin B, Choi G, Blakeslee JJ, Murphy AS, Seo YW, Kim K, Koh EJ, Song PS, Lee H (2005) A possible role of NDPK2 in the regulation of auxin mediated responses for plant growth and development. Plant Cell Physiol46: 1246–1254

    Article  PubMed  CAS  Google Scholar 

  • Choi G, Yi H, Kwon YK, Soh MS, Shin B, Luka Z, Hahn TR, Song PS (1999) Phytochrome signaling is mediated through nucleo-side diphosphate kinase 2. Nature401: 610–613

    Article  PubMed  CAS  Google Scholar 

  • Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol58: 21–45

    Article  PubMed  CAS  Google Scholar 

  • Colón-Carmona A, Chen DL, Yeh KC, Abel S (2000) Aux/IAA proteins are phosphorylated by phytochromein vitro. Plant Physiol124: 1728–1738

    Article  PubMed  Google Scholar 

  • Duek PD, Elmer MV, van Oosten VR, Fankhauser C (2004) The degradation of HFR1, a putative bHLH class transcription factor involved in light signaling, is regulated by phosphorylation and requires COP1. Curr Biol14: 2296–2301

    Article  PubMed  CAS  Google Scholar 

  • Duek PD, Fankhauser C (2005) bHLH class transcription factors take centre stage in phytochrome signaling. Trends Plant Sci10: 51–53

    Article  PubMed  CAS  Google Scholar 

  • Emborg TJ, Walker JM, Noh B, Vierstra, RD (2006) Multiple heme oxygenase family members contribute to the biosynthesis of the phytochrome chromophore inArabidopsis. Plant Physiol140:856–868

    Article  PubMed  CAS  Google Scholar 

  • Fankhauser C, Yeh KC, Lagarias JC, Zhang H, Elich TD, Chory J (1999) PKS1, a substrate phosphorylated by phytochrome that modulates light signaling inArabidopsis. Science284: 1539–1541

    Article  PubMed  CAS  Google Scholar 

  • Franklin KA, Larner VS, Whitelam CC (2005) The signal transducing photoreceptors of plants. Intl J Dev Biol49: 653–664

    Article  CAS  Google Scholar 

  • Fujimori T, Yamashino T, Kato T, Mizuno T (2004) Circadian-controlled basic helix-loop-helix factor, PIL6, implicated in lightsignal transduction inArabidopsis thaliana. Plant Cell Physiol45: 1078–1086

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Mockler T, Duong H, Lin C (2001) SUB1, anArabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science291: 487–490

    Article  PubMed  CAS  Google Scholar 

  • Hardtke CS, Cohda K, Osterlund MT, Oyama T, Okada K, Deng XW (2000) HY5 stability and activity inArabidopsis is regulated by phosphorylation in its COP1 binding domain. EMBO J19: 4997–5006

    Article  PubMed  CAS  Google Scholar 

  • Hoecker U (2005) Regulated proteolysis in light signaling. Curr Opin Plant Biol8: 469–476

    Article  PubMed  CAS  Google Scholar 

  • Huq E, Al-Sady B, Hudson M, Kim C, Apel K, Quail PH (2004) Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science305: 1937–1941

    Article  PubMed  CAS  Google Scholar 

  • Huq E, Quail PH (2002) PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling inArabidopsis. EMBO J21: 2441–2450

    Article  PubMed  CAS  Google Scholar 

  • Im YJ, Kim JI, Shen Y, Na Y, Han YJ, Kim SH, Song PS, Eom SH (2004) Structural analysis ofArabidopsis thaliana nucleoside diphosphate kinase-2 for plant phytochrome signaling. J Mol Biol343: 659–670

    Article  PubMed  CAS  Google Scholar 

  • Jang IC, Yang JY, Seo HS, Chua NH (2005) HFR1 is targeted by COP1 E3 ligase for post translational proteolysis during phytochrome A signaling. Genes Dev19: 593–602

    Article  PubMed  CAS  Google Scholar 

  • Jarillo JA, Capel J, Tang RH, Yang HQ, Alonso JM, Ecker JR, Cashmore AR (2001) AnArabidopsis circadian clock component interacts with both CRY1 and phyB. Nature410: 487–490

    Article  PubMed  CAS  Google Scholar 

  • Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nature Rev Genet8: 217–230

    Article  CAS  Google Scholar 

  • Khanna R, Shen Y, Toledo-Ortiz G, Kikis EA, Johannesson H, Hwang YS, Quail PH (2006) Functional profiling reveals that only a small number of phytochrome-regulated early-response genes inArabidopsis are necessary for optimal deetiolation. Plant Cell18: 2157–2171

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Kang JG, Yang SS, Chung KS, Song PS, Park CM (2002a) A phytochrome associated protein phosphatase 2A modulates light signals in flowering time control inArabidopsis. Plant Cell14: 3043–3056

    Article  CAS  Google Scholar 

  • Kim Jl, Bhoo SH, Han YJ, Zarate X, Furuya M, Song PS (2006) The PAS-2 domain is required for dimerization of phytochrome A. J Photochem Photobiol A 178: 115–121

    Article  Google Scholar 

  • Kim Jl, Kozhukh GV, Song PS (2002b) Phytochrome-mediated signal transduction pathways in plants. Biochem Biophys Res Commun298: 457–463

    Article  CAS  Google Scholar 

  • Kim Jl, Park JE, Zarate X, Song PS (2005) Phytochrome phosphorylation in plant light signaling. Photochem Photobiol Sci4: 681–687

    Article  PubMed  CAS  Google Scholar 

  • Kim Jl, Shen Y, Han YJ, Kirchenbauer D, Park JE, Soh MS, Nagy F, Schäfer E, Song PS (2004) Phytochrome phosphorylation modulates light signaling by influencing the protein-protein interaction. Plant Cell16: 2629–2640

    Article  PubMed  CAS  Google Scholar 

  • Kim Jl, Song PS (2005) A Structure-function model based on interdomain crosstalks in phytochromes,In M Wada, K Shimazaki, M lino, eds, Light Sensing in Plants. Springer-Verlag Tokyo, pp 53–63

    Google Scholar 

  • Kim Jl, Yi H, Choi G, Shin B, Song PS, Choi G (2003) Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. Plant Cell15: 2399–2407

    Article  PubMed  CAS  Google Scholar 

  • Kircher S, Gil P, Kozma-Bognar L, Fejes E, Speth V, Husselstein Muller T, Bauer D, Adam D, Schäfer E, Nagy F (2002) Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell14: 1541–1555

    Article  PubMed  CAS  Google Scholar 

  • Krall L, Reed JW (2000) The histidine kinase-related domain participates in phytochrome B function but is dispensable. Proc Natl Acad Sci USA97: 8169–8174

    Article  PubMed  CAS  Google Scholar 

  • Kwon M, Choe S (2005) Brassinosteroid biosynthesis anddwarf mutants. J Plant Biol48: 1–15

    Article  CAS  Google Scholar 

  • Lariguet P, Schepens I, Hodgson D, Pedmale UV, Trevisan M, Kami C, de Carbonnel M, Alonso JM, Ecker JR, Liscum E, Fankhauser C (2006) PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding required for phototropism. Proc Natl Acad Sci USA103: 10134–10139

    Article  PubMed  CAS  Google Scholar 

  • Lariguet P, Soccalandro HE, Alonso JM, Ecker JR, Chory J, Casai JJ, Fankhauser C (2003) A growth regulatory loop that provides homeostasis to phytochrome A signaling. Plant Cell15: 2966- 2978

    Article  PubMed  CAS  Google Scholar 

  • Laubinger S, Marchai V, Gentihomme J, Wenkel S, Adrian J, Jang S Kulajta C, Braun H, Couplamd G, Hoecker U (2006)Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development133: 3213–3222

    Article  PubMed  CAS  Google Scholar 

  • Lee JS (2006) Response to red and blue lights by electrical currents on the surface of intact leaves. J Plant Biol49: 186–192

    Article  CAS  Google Scholar 

  • Lin C, Shalitin D (2003) Cryptochrome structure and signal transduction. Annu Rev Plant Biol54: 469–496

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Todo T (2005) The cryptochromes. Genome Biol6: 220

    Article  PubMed  Google Scholar 

  • Liu XL, Covington MF, Fankhauser C, Chory J, Wagner D (2001)ELF3 encodes a circadian clock-regulated nuclear protein that functions in anArabidopsis PHYB signal transduction pathway. Plant Cell13: 1293–1304

    Article  PubMed  CAS  Google Scholar 

  • Lorrain S, Genoud T, Fankhauser C (2006) Let there be light in the nucleus. Curr Opin Plant Biol9: 509–514

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Garcia JF, Huq E, Quail PH (2000) Direct targeting of light signals to a promoter element-bound transcription factor. Science288: 859–863

    Article  PubMed  Google Scholar 

  • Mas P, Delvin PF, Panda S, KayS (2000) Functional interaction of phytochrome B with cryptochrome 2. Nature408: 207–211

    Article  PubMed  CAS  Google Scholar 

  • Mateos JL, Luppi JP, Ogorodnikova OB, Sineshchekov VA, Yanovsky MJ, Braslavsky SE, Gärtner W, Casai JJ (2006) Functional and biochemical analysis of the N-terminal domain of phytochrome A. J Biol Chem281: 34421–34429

    Article  PubMed  CAS  Google Scholar 

  • Mathews S, Sharrock RA (1997) Phytochrome gene diversity. Plant Cell Environ20: 666–671

    Article  CAS  Google Scholar 

  • Matsushita T, Mochizuki N, Nagatani A (2003) Dimers of the Nterminal domain of phytochrome B are functional in the nucleus. Nature424: 571–574

    Article  PubMed  CAS  Google Scholar 

  • Mazzella MA, Arana MV, Staneloni RJ, Perelman S, Batiller MJR, Muschietti J, Cerdán PD, Chen K, Sánchez RA, Zhu T, Chory J, Casai JJ (2005) Phytochrome control of theArabidopsis transcriptome anticipates seedling exposure to light. Plant Cell17: 2507–2516

    Article  PubMed  CAS  Google Scholar 

  • Molas ML, Kiss JZ, Correll MJ (2006) Gene profiling of the red light signaling pathways in roots. J Exp Bot57: 3217–3229

    Article  PubMed  CAS  Google Scholar 

  • Moller SC, Ingels PJ, Whitelam GC (2002) The cell biology of phytochrome signaling. New Phytol154: 553–590

    Article  CAS  Google Scholar 

  • Moller SG, Kim YS, Kunkel T, Chua NH (2003) PP7 is a positive regulator of blue light signaling inArabidopsis. Plant Cell15: 1111–1119

    Article  PubMed  CAS  Google Scholar 

  • Monte E, Tepperman JM, Al-Sady B, Kaczorowski KA, Alonso JM, Ecker JR, Li X, Zhang Y, Quail PH (2004) The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proc Natl Acad Sci USA101: 16091 -16098

    Article  PubMed  CAS  Google Scholar 

  • Moon J, Parry G, Estelle M (2004) The ubiquitin-proteasome pathway and plant development. Plant Cell16: 3181–3195

    Article  PubMed  CAS  Google Scholar 

  • Nagatani A (2004) Light-regulated nuclear localization of phytochromes. Curr Opin Plant Biol7: 708–711

    Article  PubMed  CAS  Google Scholar 

  • Natori C, Kim JI, Bhoo SH, Han YJ, Hanzawa H, Furuya M, Song PS (2007) Differential interactions of phytochrome A (Pr vs. Pfr) with monoclonal antibodies probed by a surface plasmon resonance technique. Photochem Photobiol Sci6: 83–89

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus G, Bowler C, Hiratsuka K, Yamagata H, Chua NH (1997) Phytochrome-regulated repression of gene expression requires calcium and cGMR EMBO J16: 2554–2564

    Article  PubMed  CAS  Google Scholar 

  • Ni M, Tepperman JM, Quail PH (1998) PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell95: 657–667

    Article  PubMed  CAS  Google Scholar 

  • Oh E, Kim J, Park E, Kim Jl, Kang C, Choi G (2004) PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination inArabidopsis thaliana. Plant Cell16: 3045–3058

    Article  PubMed  CAS  Google Scholar 

  • Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung Wl, Choi G (2006) Light activates the degradation of PIL5 protein to promote seed germination through gibberellin inArabidopsis. Plant J47: 124–139

    Article  PubMed  CAS  Google Scholar 

  • Oka Y, Matsushita T, Mochizuki N, Suzuki T, Tokutomi S, Nagatani A (2004) Functional analysis of a 450-amino acid N-terminal fragment of phytochrome B inArabidopsis. Plant Cell16: 2104–2116

    Article  PubMed  CAS  Google Scholar 

  • Park E, Kim J, Lee Y, Shin J, Oh E, Chung Wl, Liu JR, Choi G (2004) Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling. Plant Cell Physiol136: 968–975

    Article  Google Scholar 

  • Phee BK, Shin DH, Cho JH, Kim SH, Kim Jl, Lee YH, Jeon JS, Bhoo SH, Han TR (2006) Identification of phytochrome-interacting protein candidates inArabidopsis thaliana by co-immunoprecipitation coupled with MALDI-TOP MS. Proteomics6: 3671–3680

    Article  PubMed  CAS  Google Scholar 

  • Qu LJ, Zhu YX (2006) Transcription factor families inArabidopsis: Major progress and outstanding issues for future research. Curr Opin Plant Biol9: 544–549

    Article  PubMed  CAS  Google Scholar 

  • Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D (1995) Phytochromes: Photosensory perception and signal transduction. Science268: 675–680

    Article  PubMed  CAS  Google Scholar 

  • Rockwell NC, Su YS, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol57: 837–858

    Article  PubMed  CAS  Google Scholar 

  • Ryu JS, Kim Jl, Kunkel T, Kim BC, Cho DS, Hong SH, Kim SH, Fernández AP, Kim Y, Alonso JM, Ecker JR, Nagy F, Lim PO, Song PS, Schäfer E, Nam HG (2005) Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer. Cell120: 395–406

    Article  PubMed  CAS  Google Scholar 

  • Salter MG, Franklin KA, Whitelam GC (2003) Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature426: 680–683

    Article  PubMed  CAS  Google Scholar 

  • Seo HS, Watanabe E, Tokutomi S, Nagatani A, Chua NH (2004) Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling. Genes Dev18: 617–622

    Article  PubMed  CAS  Google Scholar 

  • Seo HS, Yang JY, Ishikawa M, Bolle C, Ballesteros ML, Chua NH (2003) LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature2003: 995–999

    Article  Google Scholar 

  • Shalitin D, Yang H, Mockler TC, Maymon M, Guo H, Whitelam GC, Lin C (2002) Regulationof Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature417: 763–767

    Article  PubMed  CAS  Google Scholar 

  • Shalitin D, Yu X, Maymon M, Mockler T, Lin C (2003) Blue light-dependent in vivo and in vitro phosphorylationof Arabidopsis cryptochrome 1. Plant Cell15: 2421–2429

    Article  PubMed  CAS  Google Scholar 

  • Sharrock RA, Clack T (2002) Patterns of expression and normalized levels of the fiveArabidopsis phytochromes. Plant Physiol130: 442–456

    Article  PubMed  CAS  Google Scholar 

  • Sharrock RA, Clack T (2004) Heterodimerization of type II phytochromes inArabidopsis. Proc Natl Acad Sci USA101: 11500–11505

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Kim Jl, Song PS (2005) NDPK2 as a signal transducer in the phytochrome-mediated light signaling. J Biol Chem280: 5740–5749

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JA, Deng XW (2003) From seed to seed: The role of photoreceptors inArabidopsis development. Dev Biol260: 289–297

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JA, Shirasu K, Deng XW (2003) The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat Rev Gen4: 948–958

    Article  CAS  Google Scholar 

  • Sweere U, Eichenberg K, Lohrmann J, Mira-Rodado V, Baurle I, Kudla J, Nagy F, Schäfer E, Harter K (2001) Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. Science294: 1108–1111

    Article  PubMed  CAS  Google Scholar 

  • Tepperman JM, Hudson ME, Khanna R, Zhu T, Chang SH, Wang X, Quail PH (2004) Expression profiling ofphyB mutant demonstrates substantial contribution of other phytochromes to red light regulated gene expression during seedling de-etiolation. Plant J38: 725–739

    Article  PubMed  CAS  Google Scholar 

  • Torres-Galea P, Huang LF, Chua NH, Bolle C (2006) The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome A signaling. Mol Gen Genet276: 13–30

    CAS  Google Scholar 

  • Wagner JR, Brunzelle JS, Forest KT, Vierstra RD (2005) A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature438: 325–331

    Article  PubMed  CAS  Google Scholar 

  • Wang H (2005) Signaling mechanisms of higher plant photoreceptors: A structure-function perspective. Curr Top Dev Biol68: 227–261

    Article  PubMed  CAS  Google Scholar 

  • Wei N, Deng XW (2003) The COP9 signalosome. Annu Rev Cell Dev Biol19: 261–286

    Article  PubMed  CAS  Google Scholar 

  • Yeh KC, Lagarias JC (1998) Eukaryotic phytochromes: Light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc Natl Acad Sci USA95: 13976–13981

    Article  PubMed  CAS  Google Scholar 

  • Yi C, Deng XW (2005) COP1-from plant photomorphogenesis to mammalian tumorigenesis. Trends Cell Biol15: 618–625

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-ll Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, YJ., Song, PS. & Kim, Jl. Phytochrome-mediated photomorphogenesis in plants. J. Plant Biol. 50, 230–240 (2007). https://doi.org/10.1007/BF03030650

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030650

Keywords

Navigation