Skip to main content
Log in

New devices for microwave photonics in optical communications

Nouveaux Dispositifs Pour la Photonique Micro-Onde Dans Les Communications Optiques

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Abstract

Optical microwave interactions in photonic devices are reviewed in the perspective of applications to optical communication systems. Laser sources, light modulators and photodetectors are successively considered, with emphasis on basic concepts of microwave photonics and their recent developments in new, faster and more efficient devices. The main advances concern dual-mode lasers, as well as modulators and photodetectors in the traveling-wave configuration.

Résumé

Les interactions optique-microondes dans les dispositifs photoniques sont passées en revue dans la perspective de leurs applications aux systèmes de communication optique. Les sources laser, les modulateurs de lumière et les photodétecteurs sont examinés successivement, en mettant l’accent sur les concepts de base de la photonique microonde et ses développements récents dans des dispositifs nouveaux, plus rapides et plus efficaces. Les principales avancées concernent les lasers bimodes, ainsi que les modulateurs et photodétecteurs en configuration d’ondes progressives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cox III (C.), Ackerman (E.), Helkey (R.), Betts (G.E.), Techniques and performance of intensity-modulation direct-detection analog optical links,IEEE Trans. Microwave Theory Tech., (1997), 45, pp. 1375–1383.

    Article  Google Scholar 

  2. Gliese (U.), Norskov (S.), Nielsen (T.N.), Chromatic dispersion in fiber-optic microwave and millimeter-wave links,IEEE Trans. Microwave Theory Tech., (1996),44, pp. 1716–1724.

    Article  Google Scholar 

  3. Tanguy (D.), Etude des systèmes de distribution hybrides fibre-radio,Thesis, Université de Bretagne Occidentale (1998).

  4. Mathoorasing (D.), Bouchoule (S.), Kazmierski (C.), Penard (E.), Dueme (P.), Dravet (A.), Nicole (P.), Schaller (M.), Bois (J.R.), Rumelhard (C.), Zahzouh, C. Devaux (C.), Wideband optoelectronic mixer for radio over fibre applications at 28/38/60 GHz, Electron. Lett. (1996), 32, pp. 1900–1902.

    Article  Google Scholar 

  5. Goldberg (L.), Taylor (H.F.), Weller (J.F.), Microwave signal generation with injection-locked laser diodes,Electron. Lett., (1983),19, pp. 491–493.

    Article  Google Scholar 

  6. Noël (L.), Wake (D.), Moodie (D.G.), Marcenac (D.D.), Westbrook (L.D.), Nesset (D.), Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,IEEE Trans. Microwave Theory Tech., (1997),45, pp. 1416–1423.

    Article  Google Scholar 

  7. Simonis (G.J.), Purchase (K.G.), Optical generation, distribution, and control of microwaves using laser heterodyne,IEEE Trans. Microwave Theory Tech., (1990),38, pp. 667–669.

    Article  Google Scholar 

  8. Alouini (M.), Benazet (B.), Vallet (M.), Brunel (M.), Di Bin (P.), Bretenaker (F.), Le Floch (A.), Thony (P.), Offset phase locking of Er:Yb glass laser eigenstates for RF photonics applications,IEEE Photon. Technol. Lett., (2001),13, pp. 367–369.

    Article  Google Scholar 

  9. Alouini (M.), Brunel (M.), Bretenaker (F.), Vallet (M.), Le Floch (A.), Dual tunable wavelength Er:Yb glass laser for teraHertz beat frequency generation,IEEE Photon. Technol. Lett., (1998),10, pp. 1554–1556.

    Article  Google Scholar 

  10. Alouini (M.), Bretenaker (F.), Brunel (M.), Le Floch (A.), Vallet (M.), Thony (P.), Existence of two coupling constants in microchip lasers,Opt. Lett., (2000),25, pp. 896–898.

    Article  Google Scholar 

  11. Vieira (A. J. C.), Herczfeld (P. R.), Rosen (A.), Ermold (M.), Funk (E. E.), Jemison (W. D.), Williams (K. J.), A mode-locked microchip laser optical transmitter for fiber radio,IEEE Photon. Technol. Lett. (2001),49, pp. 1882–1887.

    Google Scholar 

  12. Schlager (J. B.), Kawanishi (S.), Saruwatari (M.), Dual wavelength pulse generation using mode-locked erbium-doped fibre ring laser,Electron. Lett. (1991),27, pp. 2072–2073.

    Article  Google Scholar 

  13. Li (S.), Ding (H.), Chan (K. T.), Dual-wavelength actively mode-locked Er-doped fibre ring laser with fibre gratings,Electron. Lett. (1997),33, pp. 390–392.

    Article  Google Scholar 

  14. Loh (W. H.), De Sandro (J. P.), Cowle (G. J.), Samson (B. N.), Ellis (A. D.), 40 GHz optical-millimetre wave generation with a dual-polarisation distributed feedback fibre laser,Electron. Lett. (1997),33, pp. 594–595.

    Article  Google Scholar 

  15. Kim (D.Y.), Pelusi (M.), Ahmed (Z.), Novak (D.), Liu (H.F.), Ogawa (Y.), Ultrastable millimeter-wave signal generation using hybrid modelocking of a monolithic DBR laser,Electron. Lett. (1995),31, pp. 733–734.

    Article  Google Scholar 

  16. Ahmed (Z.), Liu (H.F.), Novak (D.), Ogawa (Y.), Pelusi (M.D.), Kim (D.Y.), Locking characteristics of a passively mode-locked monolithic DBR laser stabilized by optical injection,IEEE Photon. Technol. Lett. (1996),8, pp. 37–39.

    Article  Google Scholar 

  17. Sato (K.), Hirano (A.), Shimizu (N.), Ohno (T.), Ishii (H.), Optical millimeter-wave generation by dual-mode operation of semiconductor modelocked lasers,Electron. Lett. (2000),36, pp. 340–342.

    Article  Google Scholar 

  18. Wake (D.), Lima (C. R.), Davies (P. A.), Optical generation of millimeter-wave for fiber-radio systems using a dual-mode DFB semiconductor laser,IEEE Trans. Microwave Theory Tech. (1995),43, pp. 2270–2276.

    Article  Google Scholar 

  19. Wake (D.), Lima (C. R.), Davies (P. A.), Transmission of 60-GHz signals over 100 km of optical fiber using a dual-mode semiconductor laser source,IEEE Photon. Technol. Lett. (1996),8, pp. 578–580.

    Article  Google Scholar 

  20. Grosskopf (G.), Rhode (D.), Eggemann (R.), Bauer (S.), Bornholdt (C.), Möhrle (M.), Sartorius (B.), Optical millimeter-wave generation and wireless data transmission using a dual-mode laser,IEEE Photon. Technol. Lett. (2000),12, pp. 1692–1694.

    Article  Google Scholar 

  21. Bornholdt (C.), Sartorius (B.), Schelhase (S.), Möhrle (M.), Bauer (S.), Self-pulsating DFB laser for all-optical clock recovery at 40 Gbits/s,Electron. Lett. (2000),36, pp. 327–328.

    Article  Google Scholar 

  22. Radziunas (M.), Wünsche (H.J.), Sartorius (B.), Brox (O.), Hoffmann (D.), Schneider (K.R.), Marcenac (D.), Modeling self-pulsating DFB lasers with an integrated phase tuning section,IEEE J. Quantum Electron., (2000),36, pp. 1026–1034.

    Article  Google Scholar 

  23. Laperle (C.), Svilans (M.), Poirier (M.), Tetu (M.), Frequency multiplication of microwave signals by sideband optical injection locking using a monolithic dual-wavelength DFB laser device,IEEE Trans. Microwave Theory Tech. (1999),47, pp. 1219–1224.

    Article  Google Scholar 

  24. Matsui (Y.), Pelusi (M.D.), Arahira (S.), Ogawa (Y.), Beat frequency generation up to 3.4 THZ from simultaneous two-mode lasing operation of sampled-grating DBR laser,Electron. Lett. (1999),35, pp. 472–474.

    Article  Google Scholar 

  25. Mc Gowan (R.W.), Grischkowsky (D.), Experimental time-domain study of THZ signals from impulse excitation of a horizontal surface dipole,Appl. Phys. Lett., (1999),74, pp. 1764–1766.

    Article  Google Scholar 

  26. Rochat (M.), Ajili (L.), Willenberg (H.), Faist (J.), Beere (H.), Davies (G.), Linfield (E.), Ritchie (D.), Low-threshold terahertz quantum-cascade lasers,Appl. Phys. Lett., (2002),81, pp. 1381–1383.

    Article  Google Scholar 

  27. Smith (G.H.), Novak (D.), Ahmed (Z.), Overcoming chromatic dispersion effects in fiber-wireless systems incorporatin external modulators,IEEE Trans. Microwave Theory Tech. (1997),45, pp. 1410–1415.

    Article  Google Scholar 

  28. Ido (T.), Tanaka (S.), Suzuki (M.), Koizumi (M.), Sano (H.), Inoue (H.), Ultra-high-speed multiple-quantum-well electro-absorption optical modulators with integrated waveguides,J. Lightwave Technol., (1996),14, pp. 2026–2034.

    Article  Google Scholar 

  29. Devaux (F.), Bordes (P.), Cadiou (J.F.), Penard (E.), Guena (J.), Legaud (P.), Distribution of millimetre radiowave signals with a MQW electroabsorption modulator,Electron. Lett. (1994),30, pp. 1522–1523.

    Article  Google Scholar 

  30. Cadiou (J.F.), Devaux (F.), Veillard (J.F.), Le Merdy (B.), Guena (J.), Penard (E.), Legaud (P.), Electro-absorption modulator for radio over fibre at 38 GHz,Electron. Lett. (1995),31, pp. 1273–1274.

    Article  Google Scholar 

  31. O’reilly (J.J.), Lane (P.M.), Heidemann (R.), Hofstetter (R.), Optical generation of very narrow linewidth millimetre wave signals,Electron. Lett. (1992),28, pp. 2309–2311.

    Google Scholar 

  32. Hofstetter (R.), Schmuck (H.), Heidemann (R.), Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,IEEE Trans. Microwave Theory Tech. (1995),43, pp. 2263–2269.

    Article  Google Scholar 

  33. Narasimha (A.), Meng (X.), Lam (C.F.), Wu (M.C.), Yablonovitch (E.), Maximizing spectral utilization inWDM systems by microwave domain filtering of tandem single sidebands,IEEE Trans. Microwave Theory Tech. (2001),49, pp. 2042–2047.

    Article  Google Scholar 

  34. Vergnol (E.), Devaux (F.), Jahan (D.), Carenco (A.), Fully integrated millimetric single sideband lightwave source,Electron. Lett. (1997),33, pp. 1961–1963.

    Article  Google Scholar 

  35. Ramdane (A.), Ougazzaden (A.), Devaux (F.), Delorme (F.), Schneider (M.), Landreau (J.), Very simple approach for high performance DFB laser-electroabsorption modulator monolithic integration,Electron. Lett. (1994),30, pp. 1980–1981.

    Article  Google Scholar 

  36. Noguchi [K.], Mitomi [O.], Miyazawa [H.], Millimeter-wave Ti:LiNbO3 optical modulators,J. Lightwave Technol., (1998),16, pp. 615–619.

    Article  Google Scholar 

  37. Walker (R.G.), High-speed III–V electrooptic waveguide modulators,IEEE J. Quantum Electron., (1991),27, pp. 654–667.

    Article  Google Scholar 

  38. Spickermann (R.), Sakamoto (S.R.), Peters (M.G.), Dagli (N.), GaAl/AlGaAs traveling wave electrooptic modulator with electrical bandwidth greater than 40 GHz,Electron. Lett. (1996),32, pp. 1095–1096.

    Article  Google Scholar 

  39. Chen (D.), Bhattacharta (D.), Udupa (A.), Tsap (B.), Fettermann (H.), Chen (A.), Lee (S.S.), Chen (J.), Steier (W.H.), Dalton (L.R.), High frequency polymer modulators with integrayed finline transitions and low\(V_\pi \),IEEE Photon. Technol. Lett. (1999),11, pp. 54–56.

    Article  Google Scholar 

  40. Chen (D.), Fettermann (H. R.), Chen (A.), Steier (W.H.), Dalton (L.R.), Wang (W.), Shi (Y.), Demonstration of 110 GHz electro-optic modulators,Appl. Phys. Lett., (1997),70, pp. 3335–3337.

    Article  Google Scholar 

  41. Dagli (N.), Wide-bandwidth lasers and modulators for RF photonics,IEEE Trans. Microwave Theory Tech. (1999),47, pp. 1151–1171.

    Article  Google Scholar 

  42. Kaman (V.), Zhang (S.Z.), Keating (A.J.), Bowers (J.E.), High-speed operation of traveling-wave electroabsorption modulator,Electron. Lett. (1999),35, pp. 1095–1096.

    Article  Google Scholar 

  43. Kawano (K.), Kohtoku (M.), Ueki (M.), Ito (T.), Kondoh (S.), Noguchi (Y.), Hasumi (Y.), Polarisation-insensitive traveling-wave electrode electro-absorption (TW-EA) modulator with bandwidth over 50 GHz and driving voltage less then 2 V,Electron. Lett. (1997),33, pp. 1580–1581.

    Article  Google Scholar 

  44. Giboney [K.S.], Nagarajan (R.L.), Reynolds (T.E.), Allen (S.T.), Mirin (R.P.), Rodwell (M.J.W.), Bowers (J.E.), Traveling-wave photodetectors with 172 GHz bandwidth and 76 GHz bandwidth efficiency product,IEEE Photon. Technol. Lett. (1995),7, pp. 412–414.

    Article  Google Scholar 

  45. Kato (K.), Kozen (A.), Muramoto (Y.), Itaya (Y.), Nagatsuma (T.), Yaita (M.), 110 GHz, 50% efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55 µm wavelength,IEEE Photon. Technol. Lett. (1994),6, pp. 719–721.

    Article  Google Scholar 

  46. Kato (K.), Ultrawide-band/high-frequency photodetectors,IEEE Trans. Microwave theory Tech. (1999),47, pp. 1265–1281.

    Article  Google Scholar 

  47. Demiguel (S.), Giraudet (L.), Pagnod-Rossiaux (P.), Boucherez (E.), Jany (C.), Carpentier (L.), Coupe (V.), Fock-Yee (S.), Decobert (J.), Devaux (F.), Low-cost, polarisation independent, tapered photodiodes with bandwidth over 50 GHz,Electron. Lett. (2001),37, pp. 516–518.

    Article  Google Scholar 

  48. Jiang (H.), Yu (K.L.), Waveguide integrated photodiode for analog fiber-optics links,IEEE Trans. Microwave Theory Tech. (2000),48, pp. 2604–2610.

    Article  Google Scholar 

  49. Fukano (H.), Kato (K.), Nakajima (O.), Matsuoka (Y.), Low-cost, high-speed and high-responsivity photodiode module employing edge-illuminated refracting-facet photodiode,Electron. Lett. (1999),35, pp. 842–843

    Article  Google Scholar 

  50. Gonzalez (C.), mm-wave InP/InGaAs bipolar phototransistor for optoelectronic integrated circuits,workshop for 32 nd EuMC «Advances in photonics technologies for microwave applications», Milano, (2002).

  51. Kamitsuna (H.), Matsuoka (Y.), Yamahata (S.), Shigekawa (N.), Ultrahigh-speed InP/InGaAs DHPTS for OEMMICS,IEEE Trans. Microwave Theory Tech. (2001),49, pp. 1921–1925.

    Article  Google Scholar 

  52. Giboney (K.S.), Rodwell (M.J.W.), Bowers (J.E.), Traveling-wave photodetector theory,IEEE Trans. Microwave Theory Tech. (1997),45, pp. 1310–1319.

    Article  Google Scholar 

  53. Jasmin (S.), Vodjani (N.), Renaud (J.C.), Enard (A.), Diluted and distributed-absorption microwave waveguide photodiodes for high efficiency and high power,IEEE Trans. Microwave Theory Tech. (1997),45, pp. 1337–1341.

    Article  Google Scholar 

  54. Chiu (Y.J.), Fleischer (S.B.), Bowers (J.E.), High-speed low-temperature-grown GaAs p-i-n traveling-wave photodetector,IEEE Photon. Technol. Lett. (1998),10, pp. 1012–1014.

    Article  Google Scholar 

  55. Shi (J.W.), Gan (K.G.), Chiu (Y.J.), Chen (Y.H.), Sun (C.K.), Yang (Y.J.), Bowers (J.E.), Metal-semiconductor-metal traveling-wave photodetectors,IEEE Photon. Technol. Lett. (2001),16, pp. 623–625.

    Article  Google Scholar 

  56. Lin (L.Y.), Wu (M.C.), Itoh (T.), Vang (T.A.), Muller (R.E.), Sivco (D.L.), Cho (A.Y.), High-power high-speed photodetectors — Design, analysis, and experimental demonstration,IEEE Trans. Microwave Theory Tech. (1997),45, pp. 1320–1331.

    Article  Google Scholar 

  57. Islam (M.S.), Murthy (S.), Itoh (T.), Wu (M.C.), Novak (D.), Waterhouse (R.B.), Sivco (D.L.), Cho (A.Y.), Velocity-matched distributed photodetectors and balanced photodetectors with p-i-n photodiodes,IEEE Trans. Microwave Theory Tech. (2001),49, pp. 1914–1920.

    Article  Google Scholar 

  58. Scott (D.C.), Prakash (D.P.), Erlig (H.), Bhattacharya (D.), Ali (M.E.), Fetterman (H.R.), Matloubian (M.), High power high frequency traveling-wave heterojunction phototransistors with integrated polyimide waveguide,IEEE Microwave Guided Wave Lett., (1998),8, pp. 284–286.

    Article  Google Scholar 

  59. Leven (A.), Hurm (V.), Reuter (R.), Rosenzweig (J.), Design of narrow-band photoreceivers by means of the photodiode intrinsic conductance,IEEE Trans. Microwave Theory Tech. (2001),49, pp. 1908–1913.

    Article  Google Scholar 

  60. Kamitsuna (H.),Shibata (T.),Kurishima (K.),Ida (M.), 10- and 39-GHz-band InP/InaAshpt direct optical injection-locked oscillator Ics for optoelectronic clock recovery circuits,IEEE MTT-S, (2002), pp. 1699–1702.

  61. Cadiou (J.F.), Guena (J.), Penard (E.), Legaud (P.), Minot (C.), Palmier (J.F.), Le Person (H.), Harmand (J.C.), Direct optical injection locking of 20 GHz superlattice oscillators,Electronics Letters, (1994),30, pp. 1690–1691.

    Article  Google Scholar 

  62. Kurokawa (K.), Injection locking of microwave solid-state oscillators,Proceedings of the IEEE, (1973),61, pp. 1386–1410.

    Article  Google Scholar 

  63. Tanguy (D.),Penard (E.),Legaud (P.),Minot (C.), Direct optical injection-locking of superlattice millimetre-wave oscillators,Topical Meeting on Microwave Photonics, Duisbourg, (1997), pp. 95–99.

  64. Minot (C.), Harmand (J.C.), Esnault (J.C.), Doping dependence of millimeterwave negative differential conductance in strain-compensated GaInAs/AlInAs superlattices,Physica E, (2003),17, pp. 294–296.

    Article  Google Scholar 

  65. Muller (M.), Le phototransistor bipolaire InP/InGaAs comme mélangeur optique/électrique pour conversion vers la bande millimétrique dans le réseau d’accès radio sur fibre,Thesis, Université Paris 6 (2002).

  66. Takakura (Y.), Optical resonance in a narrow slit in a thick metallic screen,Phys. Rev. Lett., (2001),86, pp. 5601–5604.

    Article  Google Scholar 

  67. Collin (S.), Pardo (F.), Teissier (R.), Pelouard (J.L.), Horizontal and vertical surface resonances in transmission metallic gratings,J. Opt. A: Pure Appl. Opt., (2002),4, pp. S154-S160.

    Article  Google Scholar 

  68. Goossen (K.W.), Lyon (S.A.), Grating enhanced quantum well detector,J. Appl. Phys., (1985),47, pp. 1257–1259.

    Google Scholar 

  69. Pardo (F.),Collin (S.),Teissier (R.),Pelouard (J.L.), Dispositif de photodétection à microrésonateur métal-semiconducteur vertical et procédé de fabrication de ce dispositif, (2000), French patent no 2 803 950.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minot, C. New devices for microwave photonics in optical communications. Ann. Télécommun. 58, 1432–1458 (2003). https://doi.org/10.1007/BF03001739

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03001739

Key words

Mots clés

Navigation