Skip to main content
Log in

Irrigation best management practices for potato

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Application of the principle of best management practices (BMPs) for potato irrigation maximizes economic use of resources while minimizing environmental disturbances. Potato is a shallow-rooted crop that responds negatively to variations in water supply. Reported research confirms the detrimental effects of small errors in irrigation management on potato production profitability. Potato water use has been thoroughly documented in the literature. Newer irrigation application and control technology is available to growers. Irrigation BMPs for scheduling irrigation by crop evapotranspiration (ETc) and soil water tension (SWT) are presented and discussed. In most cases only refinements of existing potato irrigation systems are needed; growers need to acquire some way to measure ETc or soil water, or preferably both, along with record keeping to track irrigation, ETc, and soil water. An increased increment of management applied to potato irrigation can return greater profits to potato growers while enhancing the sustainability of production by avoiding environmental degradation.

Resumen

La aplicación de prácticas de un mejor manejo (BMPs) del riego para el cultivo de papa, maximiza el uso económico de recursos mientras que minimiza las alteraciones del medio ambiente. La papa es un cultivo de raíices poco profundas que responde negativamente a la variación en el abastecimiento de agua. Informes de investigación confirman el efecto nocivo de pequeños errores en el manejo del riego sobre la producción de papa. El uso de agua por el cultivo de papa ha sido ampliamente documentado en la literatura. La más reciente tecnología de aplicación y control del riego está disponible para los que cultivan papa. Se presentan y discuten las BMPs para programar el riego por evapotranspiración del cultivo (ETc) y tensión de agua del suelo (SWT). En la mayoría de los casos sólo se necesita un afinamiento de los sistemas de riego ya existentes; los que cultivan papa necesitan tener la forma de medir la ETc o el agua del suelo o preferiblemente ambos, junto con los registros para rastrear el agua de riego, ETc y agua del suelo. Un mayor incremento en el manejo del riego en la papa puede rendir mayores beneficios, a la vez que la sostenibilidad de la producción mejora evitando la degradación del medio ambiente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Brady GA and AJ Pratt. 1955. The effect of different combinations of soil moisture and nitrogen levels on early plant development and tuber set of potato. Am Potato J 32: 254–258.

    Article  Google Scholar 

  • Bushnell J. 1956. Growth response from restricting the oxygen at roots of young potato plants. Am Potato J 33: 242–248.

    Article  CAS  Google Scholar 

  • Cappaert MR, ML Powelson, NW Christensen, WR Stevenson and DI Rouse. 1994. Assessment of irrigation as a method of managing potato early dying. Phytopathology 84: 792–800.

    Article  Google Scholar 

  • Corey AT and GR Blake. 1953. Moisture available to various crops in some New Jersey soils. Soil Sci Soc Am Proc 17: 314–317.

    Google Scholar 

  • Corey GL and VI Myers. 1955. Irrigation of Russet Burbank potatoes in Idaho. Idaho Agric Exp Stn Bull #246.

  • Curwen D. 1993. Water management, pp. 67–75.In: RC Rowe (ed.), Potato Health Management. The American Phytopathological Society, ASP Press, Wooster, Ohio.

    Google Scholar 

  • Doerge TA and TL Thompson. 1996. Trickle irrigation: One answer to site-specific nutrient management. Fluid Journal 4(3): 22–26.

    Google Scholar 

  • Doering-Saad C, P Kampfer, S Manulis, G Kritzman, J Schneider, J Kakrzewska-Czerwinska, H Schrempf and I Barash. 1992. Diversity amongStreptomyces strains causing potato scab. Appl Environ Microbiol 58(12): 3932–3940.

    PubMed  CAS  Google Scholar 

  • Doorenbos J and AH Kassam. 1979. Yield response to water. FAO Irrigation and Drainage Paper, No. 33. FAO, Rome.

    Google Scholar 

  • Durrant MJ, BJG Love, AB Messeen and AP Draycot. 1973. Growth of crop roots in relation to soil moisture extraction. Ann Appl Biol 74: 387–394.

    Article  Google Scholar 

  • Eldredge EP, CC Shock and TD Stieber. 1992. Plot sprinklers for irrigation research. Agron J 84: 1981–1984.

    Google Scholar 

  • Eldredge EP, ZA Holmes, AR Mosley, CC Shock and TD Stieber. 1996. Effects of transitory water stress on potato tuber stem-end reducing sugar and fry color. Am Potato J 73: 517–530.

    Article  Google Scholar 

  • Epstein E and WJ Grant. 1973. Water stress relations of the potato plant under field conditions. Agron J 65: 400–404.

    Google Scholar 

  • Errebhi M, CJ Rosen, SC Gupta and DE Birong. 1998. Potato yield response and nitrate leaching as influenced by nitrogen management. Agron J 90: 10–15.

    Google Scholar 

  • Feibert EBG and CC Shock. 2006. 2005 Weather Report. Oregon State University Agricultural Experiment Station, Corvallis, Oregon. Report 1070: 1–8.

    Google Scholar 

  • Fulton JM. 1970. Relationship of root extension to the soil moisture level required for maximum yield of potatoes, tomatoes and corn. Can J Soil Sci 50: 92–94.

    Article  Google Scholar 

  • Grewal JS and VP Jaiswal. 1990. Agronomic studies on potato under All India Coordinated Potato Improvement Project. CPRI, Technical Bulletin #20.

  • Hang AN, and DE Miller. 1986. Yield and physiological responses of potatoes to deficit, high frequency sprinkler irrigation. Agron J 78: 436–440.

    Google Scholar 

  • Hegney MA and HP Hoffman. 1997. Potato irrigation — Development of irrigation scheduling guidelines. Final Report, Horticultural Research and Development Corporation Project NP 6. Agriculture Western Australia.

  • Hill HM. 1985. Irrigation — The option for economic development.In: Irrigation on the Prairies. Proceedings of the 4th Annual Western Provincial Conference, Rationalization of Water and Soil Research and Management pp. 233–245.

  • Hiller LK and DC Roller. 1984. Effect of early season moisture levels and growth regulator applications on internal quality of Russet Burbank potato tubers. Proc Wash State Potato Conf 23: 67–73.

    Google Scholar 

  • Hiller LK, DC Koller and RE Thornton. 1985. Physiological disorders of potato tubers, pp. 389–455.In: PH Li (ed), Potato Physiology. Academic Press Inc., Orlando.

    Google Scholar 

  • Holder CB and JW Cary. 1984. Soil oxygen and moisture in relation to Russet Burbank potato yield and quality. Am Potato J 61: 67–75.

    Article  Google Scholar 

  • Hooker WJ. 1981. Secondary growth and jelly end rot. pp 12–13.In: WJ Hooker (ed), Compendium of Potato Diseases. Am Phytopathological Soc, St. Paul, MN.

  • Iritani WM, LD Weller and TS Russel. 1973. Relative differences in sugar content of basal and apical portions of Russet Burbank potatoes. Am Potato J 50: 24–21.

    Article  Google Scholar 

  • Iritani WM and LD Weller. 1973a. The development of translucent-end potatoes. Am Potato J 50: 223–233.

    Article  Google Scholar 

  • Iritani WM and LD Weller. 1973b. Differences in dry matter content of apical and basal portions of Russet Burbank potatoes. Am Potato J 50: 389–397.

    Article  Google Scholar 

  • Jensen LB and BS Simko. 1991. Malheur County crop survey of nitrogen and water use practices. Oregon State University Agricultural Experiment Station, Special Report 882: 187–198.

    Google Scholar 

  • Johnson DA, M Martin and TF Cummings. 2003. Effect of chemical defoliation, irrigation water, and distance from the pivot on late blight tuber rot in center-pivot irrigated potatoes in the Columbia basin. Plant Disease 87: 977–982.

    Article  Google Scholar 

  • Kleinkopf GE. 1979. Translucent-end of potatoes. Univ. of Idaho, Current Information Series No. 488. August 1979.

  • Kunkel R. 1957. Factors affecting the yield and grade of Russet Burbank potatoes. Colorado State Univ Tech Bull #62.

  • Kunkel R and WH Gardner. 1958. Blackspot of Russet Burbank potatoes. Am Soc Hortic Sci 73: 436–444.

    Google Scholar 

  • Lapwood DH, LW Wellings and JH Hawkins. 1973. Irrigation as a practical means to control potato common scab (Streptomyces scabies): Final experiment and conclusions. Plant Pathol 22: 35–41.

    Article  Google Scholar 

  • Liegel EA and LM Walsh. 1976. Evaluation of sulfur-coated urea (SCU) applied to irrigated potatoes and corn. Agron J 68: 457–463.

    CAS  Google Scholar 

  • Lorenz OA, BL Weir and JC Bishop. 1974. Effects of sources of nitrogen on yield and nitrogen absorption of potatoes. Am Potato J 51: 56–65.

    Article  CAS  Google Scholar 

  • Loria R, RA Bukhalid, BA Fry and RR Long. 1997. Plant pathogenicity in the genusStreptomyces. Plant Disease 81: 836–846.

    Article  Google Scholar 

  • Lugt C. 1960. Second growth phenomena. Eur Potato J 3: 307–325.

    Article  Google Scholar 

  • MacKerron DK and RA Jefferies. 1986. The influence of early soil moisture stress on tuber numbers in potato. Potato Res 29: 299–312.

    Article  Google Scholar 

  • Miller DE and MW Martin. 1987. The effect of irrigation regime and sub-soiling on yield and quality of three potato cultivars. Am Potato J 64: 17–25.

    Article  Google Scholar 

  • Murphy PA. 1936. Some effects of drought on potato tubers. Empire J Exp Agric 4: 230–246.

    CAS  Google Scholar 

  • Nielson LW and WC Sparks. 1953. Bottleneck tubers and jelly-end rot in the Russet Burbank potato. Univ of Idaho Res Bull #23.

  • Owings TR, WM Iritani and CW Nagel. 1978. Respiration rates and sugar accumulation in normal and moisture-stressed Russet Burbank potatoes. Am Potato J 55: 211–220.

    Article  Google Scholar 

  • Painter CG and J Augustin. 1976. The effect of soil moisture and nitrogen on yield and quality of the Russet Burbank potato. Am Potato J 53: 275–284.

    Article  CAS  Google Scholar 

  • Penman F. 1929. Glassy end of potatoes. Jour Dept of Agric Victoria 27: 449–458.

    CAS  Google Scholar 

  • Pereira AB, JF Pedras, NA Villa Nova and DM Cury. 1995a. Water con- sumption and crop coefficient of potato (Solarium tuberosum L.) during the winter season in municipality of Botucatu-SP. Rev Bras Agrometeorol 3: 59–62.

    Google Scholar 

  • Pereira AB, NA Villa Nova, RL Tuon and V. Barbieri. 1995b. Estimate of the maximum evapotranspiration of potato crop under edapho-climatic conditions of Botucatu, SP, Brazil. Rev Bras Agrometeorol 3: 53–58.

    Google Scholar 

  • Pereira AB and NA Villa Nova. 2002. Physiological parameters and potato yield submitted to three irrigation levels. Eng Agric (Jaboticabal, Brazil) 22: 127–134.

    Google Scholar 

  • Powelson ML, KB Johnson and RC Rowe. 1993. Management of diseases caused by soilborne pathogens, pp. 149–158. In: RC Rowe(ed), Potato Health Management. The Am Phytopathological Soc. ASP Press, Wooster, Ohio.

    Google Scholar 

  • Rangarajan A, EA Bihn, R Gravani, D Scott and M Pritts. 2000. Food safety begins on the farm: a grower's guide. Cornell Good Agri- cultural Practices Program, http://www.hort.cornell.edu/exten- sion/commercial/vegetables/issues/foodsafe.html.

  • Rex BL and G Mazza. 1989. Cause, control, and detection of hollow heart in potatoes: A review. Am Potato J 66: 165–183.

    Article  Google Scholar 

  • Roberts S, RN Qubrosi and JK Rhee. 1991. Uptake and mobility of nutrients as influenced by potato irrigation, pp. 57–63. In: Proceedings Wash State Potato Conf and Trade Fair, Pullman.

    Google Scholar 

  • Saffigna PG, CB Tanner and DR Keeney. 1976. Non-uniform infiltration under potato canopies caused by interception, stemflow, and hilling. Agron J 68: 337–342.

    Google Scholar 

  • Saffigna PG, DR Keeney and CB Tanner. 1977. Nitrogen, chloride, and water balance with irrigated Russet Burbank potatoes in a sandy soil. Agron J 69: 251–257.

    CAS  Google Scholar 

  • Sexton BT, JF Moncrief, CJ Rosen, SC Gupta and HH Cheng. 1996. Optimizing nitrogen and irrigation inputs for corn based on nitrate leaching and yield on a coarse-textured soil. J Environ Qual 25: 982–992.

    CAS  Google Scholar 

  • Shock CC, JD Zalewski, TD Stieber and DS Burnett. 1992. Early season water deficits on Russet Burbank plant development, yield, and quality. Am Potato J 69: 793–804.

    Article  Google Scholar 

  • Shock CC, ZA Holmes, TD Stieber, EP Eldredge and P Zhang. 1993. The effect of timed water stress on quality, total solids and reducing sugar content of potatoes. Am Potato J 70: 227–241.

    Article  CAS  Google Scholar 

  • Shock CC, EBG Feibert and LD Saunders. 1998. Potato yield and quality response to deficit irrigation. HortScience 33: 655–659.

    Google Scholar 

  • Shock CC, EP Eldredge and LD Saunders. 2002. Drip irrigation management factors for Umatilla Russet potato production. Oregon State University Agricultural Experiment Station Special Report 1038: 157–169.

    Google Scholar 

  • Shock CC. 2003. Soil water potential measurement by granular matrix sensors, pp. 899-903. In: BA Stewart and TA Howell (eds), The Encyclopedia of Water Science. Marcel Dekker.

  • Shock CC, EBG Feibert and LD Saunders. 2003a. Umatilla Russet and Russet Legend potato yield and quality response to irrigation. HortScience 38: 1117–1121.

    Google Scholar 

  • Shock CC, CA Shock, LD Saunders, K Kimberling and LB Jensen. 2003b. Predicting the spread and severity of potato late blight (Phytophthora infestans) in Oregon, 2002. Oregon State University Agricultural Experiment Station, Special Report 1048: 130–138.

    Google Scholar 

  • Shock CC, EBG Feibert and LD Saunders. 2004. Drip-irrigated onion response to plant populations and nitrogen fertilization rates. HortScience 15: 652–659.

    Google Scholar 

  • Shock CC, R Flock, EP Eldredge, AB Pereira and LB Jensen. 2006. Suc- cessful potato irrigation scheduling. Oregon State University, Corvallis, Oregon, Extension Publication EM 8911-E.

  • Shock CC, AB Pereira, BR Hanson and MD Cahn. 2007. Vegetable irrigation, pp. 535–606. In: R Lascano and R Sojka (eds), Irrigation of Agricultural Crops, 2nd ed. Agron Monogr 30. ASA-CSSA- SSSA, Madison, WL

    Google Scholar 

  • Snapp SS, J Nyiraneza, M Otto and WW Kirk. 2003. Managing manure in potato and vegetable systems. Mich State Univ Ext Bull # E2893.

  • Solomon KH. 1984. Yield related interpretations of irrigation uniformity and efficiency measures. Irrigation Sci 5: 161–172.

    Article  Google Scholar 

  • Sommerfelt TG and KW Knutson. 1968. Greenhouse study of early potato growth response to soil temperature, bulk density and soil nitrogen in potatoes. Am Potato J 45: 231–237.

    Article  Google Scholar 

  • tark JC and IR McCann. 1992. Optimal allocation of limited water supplies for Russet Burbank potatoes. Am Potato J 69: 413–421.

    Article  Google Scholar 

  • Stieber TD and CC Shock. 1995. Placement of soil moisture sensors in sprinkler irrigated potatoes. Am Potato J 72: 533–543.

    Article  Google Scholar 

  • Tanner CB. 1981. Transpiration efficiency of potato. Agron J 73: 59–64.

    Google Scholar 

  • Thompson TL, TA Doerge and RE Godin. 2000a. Nitrogen and water interactions in subsurface drip-irrigated cauliflower I. Plant response. Soil Sci Soc Am J 64: 406–411.

    Article  CAS  Google Scholar 

  • Thompson TL, TA Doerge and RE Godin. 2000b. Nitrogen and water interactions in subsurface drip-irrigated cauliflower: n. Agronomic, economic, and environmental outcomes. Soil Sci Soc Am J 64: 412–18.

    CAS  Google Scholar 

  • Thompson TL, TA Doerge and RE Godin. 2002a. Subsurface drip irrigation and fertigation of broccoli. I. Yield, quality, and nitrogen uptake. Soil Sci Soc Am J. 66: 186–192.

    CAS  Google Scholar 

  • Thompson, TL, TA Doerge and RE Godin. 2002b. Subsurface drip irrigation and fertigation of broccoli. II. Agronomic, economic, and environmental outcomes. Soil Sci Soc Am J 66: 178–185.

    CAS  Google Scholar 

  • Thompson TL, SA White, J Walworth and GJ Sower. 2003. Fertigation frequency for subsurface drip-irrigated broccoli. Soil Sci Soc Am J 67: 910–918.

    CAS  Google Scholar 

  • Timm H and WJ Flockner. 1966. Responses of potato plants to fertilization and soil moisture under induced soil compaction. Agron J 58: 153–157.

    Google Scholar 

  • Waddell JT, SC Gupta, JF Moncrief, CJ Rosen and DD Steele. 2000. Irrigation- and nitrogen-management impacts on nitrate leaching under potato. J Environ Qual 29: 251–261.

    CAS  Google Scholar 

  • Westerman DT, TA Tindall, DW James and RI Hurst. 1994. Nitrogen and potassium fertilization of potatoes: yield and specific gravity. Am Potato J 71: 417–432.

    Article  Google Scholar 

  • Whitley KM and JR Davenport. 2003. Nitrate leaching potential under variable and uniform nitrogen fertilizer management in irrigated potato systems. HortTechnology 13: 605–609.

    CAS  Google Scholar 

  • Wright JL and JC Stark. 1990. Potato, pp. 859–888. In: BA Stewart and DR Neilsen (eds), Irrigation of agricultural crops. Agron Monogr 30. ASA-CSSA-SSSA, Madison, WL

    Google Scholar 

  • Yoder RE, MJ Haftendorf and T Hodges. 1991. Soil water and temperatures in alternate hill structures. Am Potato J 68: 642.

    Google Scholar 

  • Zebarth BJ and CJ Rosen. 2007. Research perspective on nitrogen BMP development for potato. Am J Potato Res 84: 3–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clinton C. Shock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shock, C.C., Pereira, A.B. & Eldredge, E.P. Irrigation best management practices for potato. Amer J of Potato Res 84, 29–37 (2007). https://doi.org/10.1007/BF02986296

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02986296

Additional Key words

Navigation