Skip to main content
Log in

Flexible docking of an acetoxyethoxymethyl derivative of thiosemicarbazone into three different species of dihydrofolate reductase

  • Research Articles
  • Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Dihydrofolate reductases (DHFR) of human,Candida albicans andE. coli were docked with their original ligands of X-ray crystal complex using QXP (Quick eXPIore), a docking program. Conditions to reproduce the crystal structures within the root mean square deviation (rmsd) of 2.00 Å were established. Applying these conditions, binding modes and species-specificities of a novel antibacterial compound, N4-(2-acetoxyethoxymethyl)-2-acetylpyridine thiosemicarbazone (AATSC), were studied. As the results, the docking program reproduced the crystal structures with average rmsd of six ligands as 0.91 A ranging from 0.49 to 1.45 ÅA. The interactions including the numbers of hydrogen bonds and hydrophobic interactions were the same as the crystal structures and superposition of the crystal and docked structures almost coincided with each other. For AATSC, the results demonstrated that it could bind to either the substrate or coenzyme sites of DHFR in all three species with different degrees of affinity. It confirms the experimentally determined kinetic behavior of uncompetitive inhibition against either the inhibitor or the coenzyme. The docked AATSC overlapped well with the original ligands and major interactions were consistent with the ones in the crystal complexes. The information generated from this work should be useful for future development of antibacterial and antifungal agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bohacek, R. S., Dalgarno, D. C., Hatada, M., Jacobsen, V. A., Lynch, B. A., Macek, K. J., Merry, T., Metcalf III, C. A., Narula, S. S., Sawyer, T. K., Shakespeare, W. C., Violette, S. M., and Weigele, M., X-ray structure of citrate bound to Src SH2 leads to a high-affinity, bone-targeted Src SH2 inhibitor.J. Med. Chem., 44, 660–663 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Bolin, J. T., Filman, D. J., Matthews, D. A., Hamlin, R.C., and Kraut, J., Crystal structures o.Escherichia coli andLactobacillus casei dihydrofolate reductase refined at 1.7 resolution.J. Biol. Chem., 257 (22), 13650–13662 (1982).

    PubMed  CAS  Google Scholar 

  • Bruice, R Y.,Organic Chemistry (fourth eds). Prentice Hall, New Jersey, (1995).

    Google Scholar 

  • Bystroff, C., Oatley, S. J., and Kraut, J., Crystal structures o.Escherichia coli dihydrofolate reductase: the NADP+ holoen-zyme and the folate NADP+ ternary complex: Substrate binding and a model for the transition state.Biochemistry, 29, 3263–3277 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Cody, V., Luft, J. R., Ciszak, E., Kalman, T. I., and Freisham, J. H., Crystal structure determination at 2.3 of recombinant human dihydrofolate reductase ternary complex with NADPH and methotrexate-tetrazole.Anticancer Drug Design, 7, 483–491 (1992).

    CAS  Google Scholar 

  • Cody, V., Wojtczak, A., Kalman, T. I., Freisham, J. H., and Blakley, R. L., Conformational analysis of human dihydrofolate reductase inhibitor complexes: Crystal structure determination of wild type and F31 mutant binary and ternary-inhibitor complexes. Ayling, J. E., Nair, M. G. and Baugh, C. M. (Eds.), InChemistry and Biology of Pteridines and Folates. Plenum Press, New York, pp. 48–486, (1993).

    Google Scholar 

  • Cody, V., Galitsky, N., Luft, J. R., Pangborn, W., Gangjee, A., Devraj, R., Queener, S. F., and Blakley, R. L., Comparison of ternary complexes o.Pneumocystis carinii and wild type human dihydrofolate reductase with coenzyme NADPH and a novel classical antitumor furo[2,3-d]pyrimidine antifolate.Acta Crystallographica, D53, 638 (1997).

    CAS  Google Scholar 

  • Cody, V., Galitsky, N., Luft, J. R., Pangborn, W., Blakley, R. L., and Gangjee, A., Comparison of ternary crystal complexes of F31 variants of human dihydrofolate reductase with NADPH and a classical antitumor furopyrimidine.Anticancer Drug Des., 13, 307–315 (1998).

    PubMed  CAS  Google Scholar 

  • Cocco, L., Roth, B., Temple, C. Jr., Montgomery, J. A., London, R. E., and Blakley, R. L., Protonated state of methotrexate, trimethoprim, and pyrimethamine bound to dihydrofolate reductase.Arch. Biochem. Biophys., 226, 567–577 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Fierke, C. A., Johnson, K. A., and Benkovic, S. J., Construction and evaluation of the kinetics scheme associated with dihydrofolate reductase fro.Escherichia coli.Biochemistry, 26, 4085–4092 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Foye, W. O., Banijamali, A. R. and Patarapanich, C., Synthesis and antimicrobial activities of N4-(2-acetoxyethoxymethyl) thiosemicarbazones and N3-(2-acetoxyethoxymethyl) thioureas.J. Pharm. Sci., 75, 1180–1184 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Foye, W. O., Dabade, S. V., Kelly, C. J., Lebrun, E., and van Rapenbusch, R., Synthesis and dihydrofolate reductase inhibitory activity of N4-2-L-glutaryl-N1-heteroaryl thiosemicarbazones.Med. Chem. Res., 8, 542–553 (1998).

    CAS  Google Scholar 

  • Gokhale, V. M., and Kulkarni, V. M., Selectivity analysis of 5-(arylthio)-2,4-diaminoquinazolines as inhibitors of Candida albicans dihydrofolate reductase by molecular dynamics simulations. J. Comput. Aided Mol., Des. 14, 495–500 (2000).

    Article  CAS  Google Scholar 

  • Graffner-Nordberg, M., Marelius, J., Ohlsson, S., Persson, A., Swedberg, G., Anderson, P., Andersson, S. E., Aqvist, J., and Hallberg, A., Computational predictions of binding affinities to dihydrofolate reductase: Synthesis and biological evaluation of methotrexate analogues.J. Med. Chem., 43, 3852–3861 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Jacques, S. L., Ejim, L. J., and Wright, G. D., Homoserine dehy-drogenase from Saccharomyces cerevisiae: Kinetic mechanism and stereochemistry of hydride transfer.Biochim. Biophys. Acta, 1544, 42–54 (2001).

    PubMed  CAS  Google Scholar 

  • Lebrun, E., Tu, Y. X., van Rapenbusch, R., Banijamali, A. R., and Foye, W. O., Inhibition of bovine dihydrofolate reductase and enhancement of methotrexate sensitivity by N4-(2-acet-oxyethoxymethyl)-2-acetylpyridine thiosemicarbazone.Biochim. Biophys. Acta., 1034, 81–85 (1990).

    PubMed  CAS  Google Scholar 

  • McMartin, C., and Bohacek, R. S., QXP: Powerful, rapid computer algorithms for structure-based drug design.J. Comput. Aided Mol. Des., 11, 333–344 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Meiering, E. M., and Wagner, G., Detection of long-lived bound water molecules in complexes of human dihydrofolate reductase with methotrexate and NADPH.J. Mol. Biol., 247, 294–308 (1995a).

    Article  PubMed  CAS  Google Scholar 

  • Meiering, E. M., Li, H., Delcamp, T. J., Freisheim, J. H., and Wagner, G., Contributions of tryptophan 24 and glutamate 30 to binding long-lived water molecules in the ternary complex of human dihydrofolate reductase with methotrexate and NADPH studied by site-directed mutagenesis and nuclear magnetic resonance spectroscopy.J. Mol. Biol., 247, 309–325 (1995b).

    Article  PubMed  CAS  Google Scholar 

  • Metcalf III, C. A., Eyermann, C. J., Bohacek, R. S., Haraldson, C. A., Varkhedkar, V. M., Lynch, B. A., Bartlett, C., Violette, S. M., and Sawyer, T. K., Structure-based design and solid-phase parallel synthesis of phosphorylated nonpeptides to explore hydrophobic binding at the sre SH2 (Src SH2) domain.J. Comb. Chem., 2, 305–313 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Sawaya, M., and Kraut, J., Loop and subdomain movements in the mechanism of escherichia coli dihydrofolate reductase: Crystallographic evidence.Biochemistry, 36, 586–603 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer, B. I., Dicker, A. P., and Bertino, J. R., Dihydrofolate reductase as a therapeutic target.FASEB J., 4, 2441–2452 (1990).

    PubMed  CAS  Google Scholar 

  • Shakespeare, W., Yang, M., Bohacek, R., Cerasoli, F., Stebbins, K., Sundaramoorthi, R., Azimioara, M., Vu, C., Pradeepan, S., Metcalf III, C., Haraldson, C., Merry, T., Dalgarno, D., Narula, S., Hatada, M., Lu, X., van Schravendijk, M. R., Adams, S., Violette, S., Smith, J., Guan, W., Bartlett, C., Herson, J., Luliucci, J., Weigele, M., and Sawyer, T., Structure-based design of an osteoclast-selective, nonpeptide Src homology 2 inhibitor with in vivo antiresorptive activity.Proc. Natl. Acad. Sci., 97, 9373–9378 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Stilz, H. U., Guba, W., Jablonka, B., Just, M., Klingler, O., Konig, W., Wehner, V., and Zoller, G., Discovery of an orally active non-peptide fibrinogen receptor antagonist based on the hydantoin scaffold.J. Med. Chem., 44, 1158–1176 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Vu, C. B., Corpuz, E. G., Merry, T. J., Pradeepan, S. G., Bartlett, C., Bohacek, R. S., Botfield, M. C., Eyermann, C. J., Lynch, B. A., MacNeil, I. A., Ram, M. K., van Schravendijk, M. R., Violette, S., and Sawyer, T. K., Discovery of potent and selective SH2 inhibitors of the tyrosine kinase ZAP-70.J. Med. Chem., 42, 4088–4098 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Algona, C., Profeta, S., and Weiner, P., A new force field for molecular mechanical simulation of nucleic acids and proteins.J. Am. Chem. Soc., 106, 765–784 (1984).

    Article  CAS  Google Scholar 

  • Whitlow, M., Howard, A. J., Stewart, D., Hardman, K. D., Kuyper, L. F., Baccanari, D. P., Fling, M. E., and Tansik, R. L., X-ray crystallographic studies of Candida albicans dihydro-folate reductase: High resolution structures of the holoenzyme and an inhibited ternary complex.J. Biol. Chem., 48, 30289–30298 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choonmi Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, I.H., Kim, C. Flexible docking of an acetoxyethoxymethyl derivative of thiosemicarbazone into three different species of dihydrofolate reductase. Arch Pharm Res 25, 807–816 (2002). https://doi.org/10.1007/BF02976996

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02976996

Key words

Navigation