Ueber die schlauchförmigen Drüsen des Magendarmkanals und die Beziehungen ihres Epithels zu dem Oberflächenepithel der Schleimhaut.

Zweite Mittheilung.

Von

G. Bizzozero, Professor in Turin.

(Auszug aus den "Atti della R. Accademia delle scienze di Torino," Vol. XXVII, Sitzung vom 22. November 1891 und Sitzung vom 17. Januar 1892.)

Hierzu Tafel XVIII und XIX.

Rectumdrüsen der Maus (mus musculus).

Die Schleimhaut bildet, zusammen mit ihrer Muskelschicht und dem Unterschleimhautgewebe, 5 oder 6 Längsfalten, welche das Lumen des Darms fast verschliessen. In der Schleimhaut befinden sieh, palissadenförmig angeordnet und durch spärliches Bindegewebe von einander getrennt, die schlauchförmigen Drüsen. Hier und dort ist ihre Schicht von Lymphfollikeln unterbrochen, welche bis unter das Epithel der freien Schleimhautfläche gelangen. Die Drüsen durchziehen die ganze Dicke der Schleimhaut und sind verhältnissmässig kurz, geradlinig. Sie endigen unten in einen leicht keulenartig angeschwollenen Blindsack (Taf. XVIII, Fig. 1). Ihr Lumen ist verhältnissmässig eng, es erweitert sich leicht sowohl im Blindsack als auch an der Mündung der Drüse auf die Schleimhautoberfläche.

Auch bei diesen Drüsen besteht das sie auskleidende Epithel aus zwei Zellenarten: aus Protoplasma- und Schleimzellen ¹).

Die Protoplasmazellen sind ohne Vergleich in viel zahl-

¹⁾ Zur Härtung benutzte ich sowohl Alkohol als Pikrinsäure. Letztere erhält besser die Umrisse der Elemente. Zur Färbung mit Safranin dienen beide; doch verleiht der Alkohol lebhaftere Farben.

reicherer Menge vorhanden und haben, je nach dem Punkte wo man sie beobachtet, verschiedene Form und Constitution.

Im Blindsack (Fig. 1) haben sie die Gestalt von Pyramiden mit abgestumpfter Spitze, deren Basis auf der Membrana propria aufsitzt. Ihr Kern ist rund oder leicht oval und liegt in dem der Basis zugewendeten Theil der Zelle.

Gleich oberhalb des Blindsacks ändern die Zellen allmählich ihre Form. Sie nehmen eine Krümmung an, derart, dass ihre Convexität gegen die Oberfläche der Schleimhaut gerichtet ist, und gleichzeitig ordnen sie sich so an, dass sie etwas schief zur Axe des Drüsenschlauches stehen, wobei ihr freies Ende auf einem etwas höheren Niveau liegt, als das auf der Membrana propria aufsitzende Ende. Ausserdem ist dieses letztere Ende nicht abgestumpft, sondern hat die Gestalt einer abgeplatteten Zunge, die sich krümmt und gebogen unter der Basis der unmittelbar darunterliegenden Zelle endigt. Der Kern bewahrt seine runde oder ovale Gestalt und verbleibt in dem basalen Ende des Elements.

Diese Aenderung der Zellen in Form und Anordnung tritt um so deutlicher hervor, je mehr wir uns der Drüsenmündung nähern. Ueber die Mündung hinaus bilden die Zellen das Epithel der freien Darmoberfläche; und hier sind sie in verhältnissmässig beschränkter Zahl, denn da die Drüsen eng aneinander gerückt sind, stellt die Schleimhaut nur die feineren Bälkchen eines Netzwerks dar, in welchem jede Masche von einer Drüsenmündung eingenommen, oder besser gesagt, gebildet wird. — Auf der Schleimhaut sind die Epithelzellen natürlich pyramidenförmig und haben im Gegensatz zu dem, was man in den Blindsäcken der Drüsen beobachtet, die Basis am freien Ende.

Ausser diesen Formveränderungen bieten uns die Protoplasmazellen das Protoplasma und ihre freie Oberfläche betreffende Modificationen dar, ganz ähnlich jenen, die wir schon beim Kaninchen gesehen haben. Denn in den beiden tieferen Dritteln des Drüsenschlauches ist das Epithelprotoplasma ziemlich hell und stellt sich, bei starker Vergrösserung untersucht, als aus einer homogenen Substanz gebildet dar, in welcher ein Netzwerk von sehr feinen Bälkchen und mit sehr breiten Maschen sich ausbreitet. Im oberflächlichen Drittel der Drüse dagegen wird das Protoplasma immer körniger (Fig. 1), und dieses Aussehen

wird dadurch bedingt, dass das Netzwerk immer dichter und infolgedessen die dazwischen liegende homogene Substanz immer spärlicher wird. Das gewahrt man ganz deutlich, wenn man bei sehr starker Vergrösserung mit wässerigem Safranin gefärbte und in Zuckerlösungen aufbewahrte Präparate untersucht. Auf diese Weise nimmt das Protoplasma der Zellen allmählich das wohlbekannte Aussehen jenes der die Darmschleimhaut auskleidenden Zellen an. — Was das freie Ende der Zellen anbetrifft, so zeigt sich dieses in den beiden tieferen Dritteln der Drüse (bei den von der Seite betrachteten Zellen) durch eine sehr feine Linie begrenzt; im oberen Drittel dagegen fängt ein gestrichelter Saum an zu erscheinen, der allmählich an Dicke zunimmt, bis er schliesslich so dick wird wie der gestrichelte Saum des Epithels der freien Darmoberfläche, mit welchem er sich direkt fortsetzt.

Die Schleimzellen bieten ebenfalls, je nach ihrer Lage, bemerkenswerthe Veränderungen in Form und Structur dar. Diese Unterschiede studirt man am besten an Sectionen, die nach Härtung in Pikrinsäure und Färbung z. B. mit Vesuvin in Damarharz eingeschlossen worden; denn in den nach Färbung mit Picrocarmin oder Safranin in Glycerin eingeschlossenen Schnitten ist der Schleim der Zellen stark aufgequollen und infolgedessen hat auch der Durchmesser der Elemente sehr zugenommen.

Nun wohl, in diesen Präparaten sieht man, dass im Blindsack der Drüsen (Fig. 1 b) die Zellen meistens eine Form haben, die von jener der umstehenden Protoplasmazellen wenig abweicht; sie sind nur etwas breiter an der Stelle, wo sich der Schleim befindet, und der Kern ist nach der Basis gerückt und quer gestellt. Je weiter man in der Drüse nach oben geht, desto mehr nimmt das Schleimtröpfehen an Grösse zu 1), und die Zelle nimmt so eine birnenförmige Gestalt an; der dickere Theil entspricht der freien Oberfläche, der verjüngte Theil dagegen enthält den Kern und endigt, schnabelförmig auslaufend, gegen die Drüsenmembran. In Fig. 1 sieht man, wie diese Zellen quer zur Längsaxe der Drüse gestellt und gekrünmt sind, gleich den sie umgebenden Protoplasmazellen ihre Convexität

¹⁾ Der Querdurchmesser des Schleimtröpfchens in den Zellen des Blindsacks misst $7-8~\mu$, in den der oberen Drüsenhälfte 15 μ .

gegen die Drüsenmündung richtend; ausserdem sieht man hier auch, wie sie allmählich ihre Form ändern, bis sie zu Becherformen des Schleimhautepithels werden.

Nicht weniger bedeutende Modificationen finden wir in der Structur und in den Reactionen des Schleimklümpchens, das sie enthalten. In den Zellen des Blindsacks wird dieses (in mit Picrinsäure gehärteten, mit Vesuvin gefärbten und in Damarharz eingeschlossenen Präparaten) durch eine homogene Substanz dargestellt, die von einem Netzwerk mit feinen Bälkehen durchzogen ist; jene färbt sich nicht, dieses färbt sich sehr wenig mit Vesuvin, sodass man die Zelle kaum von den Protoplasmazellen unterscheiden kann. Weiter nach oben wird das Netzwerk gröber und färbt sich besser; so werden die Zellen auch bei schwacher Vergrösserung durch ihre braune Farbe erkennbar. Im obersten Theil der Drüse endlich und im Epithel der freien Schleimhautoberfläche erscheinen die Schleimklümpehen unter der Form von Häufehen braungelber Körnehen.

Was nun die chemische Zusammensetzung der Schleimsubstanz anbelangt, bemerke ich, dass man auch hier, wie beim Kaninchen, eine graduirte Modification in der Art und Weise wie sie gegen Safranin reagirt, gewahrt, eine Modification, deren beide Endpunkte durch die Zellen der Drüsenblindsäcke einerseits und durch die Zellen der Schleimhautoberfläche andererseits dargestellt werden. In der That färben sich diese, mit Safranin, schneller und stärker gelb als jene, und entfärben sich, wenn in die Zuckerlösung gebracht, weniger leicht. Doch entfärben auch sie sich, wenn die Zuckerlösung nicht sehr concentrirt ist.

Die in Mitosis begriffenen Zellen (Fig. 1) sind in den hier in Rede stehenden Drüsen sehr zahlreich. Eine jede dieser letzteren enthält deren 5-8 und selbst mehr, und alle befinden sich in den tieferen 3 Fünfteln der Drüse, sodass der der Mündung näher gelegene Theil derselben ohne solche ist, wie denn auch das Epithel der freien Darmoberfläche keine solche enthält. Bringt man nun diese Anordnung der Mitosen in Anschlag und andererseits auch die obenbeschriebenen stufenweise erfolgenden anatomischen und chemischen Modificationen, welche die beiden Drüsenzellenformen, vom Blindsack der Drüsen nach der Schleimhautoberfläche gehend, darbieten, so muss man schliessen, dass auch in den Drüsen von mus mus c. alle jene Bedingungen vor-

handen sind, welche uns beim Kaninchen eine allmähliche Umwandlung des Drüsenepithels in Schleimhautepithel annehmen liessen.

Bei Mus würden wir den Unterschied haben, dass hier die Mitosen im Drüsenhals fehlen. Das lässt sich leicht erklären. Beim Kaninchen ist das Drüsenepithel sehr reich an schleimbereitenden Zellen, sodass es, auch wenn man eine Zerstörung und Ausstossung von Schleimzellen in Rechnung zieht, einer schnellen Erzeugung von Protoplasmazellen der Drüsenmündung entsprechend bedarf, um jenes grosse Uebergewicht der Protoplasmazellen über die Schleimzellen zu erlangen, das man an der freien Oberfläche des Darms beobachtet. — Bei Mus dagegen bedarf es dieses secundären Zellenerzeugungsherdes nicht, denn da die Schleimzellen auch in der Drüse spärlich sind, verändert sich das numerische Verhältniss zwischen den beiden Zellenarten beim Uebergang vom Drüsenepithel zum Epithel der freien Darmoberfläche nicht in erheblichem Grade.

Rectumdrüsen des Hundes.

Ich brauche hier keine Beschreibung dieser Drüsen zu geben, da ihre Form und Structur schon von Klose 1) eingehend behandelt worden ist und eine Zeichnung derselben schon von Heidenhain gegeben wurde 2). Es sind, wie gewöhnlich, schlauchförmige Drüsen, die von zwei Epithelzellenarten ausgekleidet werden: von Schleimzellen, zwischen welchen sich Protoplasmazellen befinden. — Doch muss ich bemerken, dass in der Heidenhain'schen Zeichnung der Antheil der Schleimzellen etwas übertrieben ist zu Ungunsten des protoplasmatischen Theils. Das rührt von der angewendeten Präparationsmethode her: Härtung in Müller'scher Flüssigkeit oder Alkohol und, nach ausgeführter Färbung, Untersuchung und Conservirung in Glycerin. Bei Anwendung dieser Flüssigkeiten schwellen die Schleimzellen sehr an, und durch den Druck, den sie auf den Körper der dazwischenliegenden Protoplasmazellen ausüben, verkleinern sie diesen. - Denselben Fehler kann man, nach meiner Erfahrung, der Härtung

¹⁾ K los e, Beitrag zur Kenntniss der tubulösen Darmdrüsen. Inaug.-Diss. Breslau 1880.

²⁾ Heidenhain, Phys. der Absonderungsvorgänge. 1880.

mittelst Picrinsäure oder Sublimats zum Vorwurf machen. — Bei Härtung in Flemming'scher oder Hermann'scher Flüssigkeit dagegen bewahren die Schleimzellen fast gänzlich die Grösse und die Form, die sie von Natur aus haben, wie man dies leicht feststellen kann, wenn man einen Vergleich macht mit Präparaten, die man einfach durch Zerzupfung der eben dem Thiere entnommenen Schleimhaut und deren Ausbreitung zwischen den zwei Gläschen ohne Hinzufügung irgend welcher Flüssigkeit erhält. Doch muss bemerkt werden, dass weder die Flemming'sche noch die Hermann'sche Flüssigkeit der in den Zellen enthaltenen Schleimsubstanz jene Structur kugelrunder und blasser Körnehen bewahren, die sie im frischen Gewebe hat. Diese körnige Structur ist übrigens sehr zart und verliert sich bald, auch wenn man das frische Gewebe mit den anderen obenerwähnten Härtungsflüssigkeiten behandelt. Um sie zu sehen, muss man also das frische Gewebe entweder ohne Hinzufügung einer Flüssigkeit, oder in Müller'scher Flüssigkeit zerzupfen, welche die körnige Structur erst nach einiger Zeit zerstört.

In der hier nachfolgenden Beschreibung werde ich mich hauptsächlich der durch Härtung in Flemming'scher oder in Hermann'scher Flüssigkeit erhaltenen Präparate bedienen, denn eine sorgfältige Vergleichung hat mich überzeugt, dass sie besser als die anderen die natürliche Zusammensetzung der Elemente erhalten und deren Structur deutlicher hervortreten lassen. eine ergänzt sodann die mit der andern erhaltenen Resultate, denn wenn die erstere besser die Zellenumrisse hervortreten lässt, hat die andere mir gestattet, glänzendere Färbungen, besonders was den in den Zellen enthaltenen Schleim betrifft, zu erhalten. und dieses ist zum Studium der Entwicklung dieser letzteren von grosser Wichtigkeit. Als Färbemittel des Schleims leistet das Safranin in den mittelst dieser beiden Flüssigkeiten gehärteten Stücken nicht so gute Dienste wie in den in Alkohol gehärteten. Prächtige und exclusive Schleimfärbungen erhält man dagegen sowohl mit Methylenblau als mit Hämatoxylin. Wegen seiner grösseren Wirkungsschnelligkeit habe ich diesem letztern bei meinen Untersuchungen den Vorzug gegeben. Die besten meiner Präparate sind eben jene, bei welchen, nach Härtung in Hermann'scher Flüssigkeit, die Kerne durch Safranin eine rothe und der Schleim durch Hämatoxylin eine violette Färbung erhielten ¹). In diesen Präparaten lassen sich auch bei schwacher Vergrösserung leicht die Zahlenverhältnisse zwischen den Schleimund den Protoplasmazellen an den verschiedenen Stellen der Drüse erkennen. — Im Blindsack derselben (Taf. XVIII, Fig. 2 A) pflegen die Schleimzellen verhältnissmässig zahlreich zu sein, sodass zwischen je zweien derselben nur eine oder höchstens zwei Protoplasmazellen beobachtet werden. Dieses Verhältniss erhält sich bis gegen die Mitte des Drüsenschlauches. — In der oberen Hälfte der Drüse dagegen erlangen die Protoplasmazellen entschieden das Uebergewicht, sodass die Schleimzellen durch mehrere Zellen der andern Art von einander getrennt werden (Fig. 2 B). Das Epithel der freien Darmoberfläche endlich wird fast ausschliesslich von Protoplasmazellen gebildet.

Die morphologischen Merkmale der Protoplasmazellen bieten in den verschiedenen Regionen der Drüsen des Hundes dieselben Modificationen dar, die wir bereits beim Kaninchen und bei der Maus kennen gelernt haben.

Im Blindsack (Fig. 2 A) passen sie sich, in der Form, den von den Schleimzellen freigelassenen Räumen an, besitzen einen ovalen Kern, der in das tiefe Ende des Zellkörpers gerückt ist, und haben ihr freies Ende von einer feinen Linie begrenzt. Das Protoplasma erscheint etwas weniger granulös als in den

¹⁾ Die Schnitte von in Hermann'scher Flüssigkeit und später in Alkohol gehärteten Stücken werden mittelst Xylols und absoluten Alkohols vom Paraffin befreit, darauf auf 1 oder 2 Stunden in eine wässerige Safraninlösung gelegt, sodann in absolutem Alkohol 10-15 Sec. lang gewaschen, 10 Min. lang in Hämatoxylin gehalten, eine halbe Minute lang von Neuem in Brunnen-Wasser gewaschen und endlich schnell in absoluten Alkohol (oder zuerst in eine 1% ige Salzsäurelösung und dann in absoluten Alkohol), in Bergamottöl und in Canadabalsam gebracht. Die Schnitte müssen sehr dünn, von höchstens $5\,\mu$ Dicke sein. Gewöhnlich sind sie steif genug, um direct aus einer Flüssigkeit in die andere gebracht zu werden. Fallen sie zufälligerweise zu zart aus, so können sie unter dem Deckglas gefärbt werden, indem man die verschiedenen Flüssigkeiten unter denselben passiren lässt. Wird das Deckglas von zwei sehr dünnen Papierstreifen gehalten, die parallel zur längeren Axe des Objectträgers angebracht sind, dann erfolgen die Strömungen schnell und regelmässig, ist die Substitution einer Flüssigkeit durch die andere eine vollkommenere und werden infolgedessen die Präparate besser gefärbt,

Zellen der freien Darmoberfläche. Die seitlichen Umrisse der Zellen sind nicht sehr deutlich.

In den oberen Regionen der Drüse nehmen die Zellen fortschreitend an Länge und Breite zu (man vergleiche mit einander die Elemente der Fig. 2 A und 2 B, die in derselben Vergrösserung gezeichnet wurden) und nehmen ausserdem die typischen Merkmale der ausgewachsenen Zelle an. Denn der Kern rückt etwas mehr gegen die Mitte der Zelle, das Protoplasma wird etwas körniger, die seitlichen Umrisse des Zellkörpers treten deutlicher hervor, und auf der das freie Ende des Elements begrenzenden Linie bildet sich der gestrichelte Saum. Letzterer ist gegen die Mitte der Drüse hin schon ziemlich deutlich und nimmt um so mehr an Dicke zu, je näher der Mündung die Zellen sind.

Also auch bei den Rectundrüsen des Hundes kann man nicht von einem Drüsenepithel sprechen, das morphologisch sich von dem der freien Oberfläche unterschiede. Das Epithel des Blindsacks ist verschieden von dem der freien Oberfläche; aber zwischen dem einen und der anderen haben wir alle Uebergangsstadien, und diese finden sich in stufenmässiger Anordnung im Körper der Drüse 1).

Was die schleimabsondernden Zellen betrifft, so deute ich deren Modificationen nur an, denn sie differiren nicht wesentlich von jenen, die wir bei anderen Thieren kennen gelernt haben.

In Fig. 3 B habe ich von einem in Hermann'scher Flüssigkeit gehärteten Präparat drei verschiedene Zellenformen abgezeichnet, von denen a dem Blindsack, b dem mittleren Theil und e nahe der Drüsenmündung entnommen ist.

Man sieht, dass die Zellen, je mehr wir uns der Oberfläche nähern, desto straffer mit Schleim gefüllt sind. In Fig. 3 A habe ich zwei Zellen gezeichnet, welche die gleiche Thatsache darthun, die jedoch einem in Alkohol gehärteten und in Glycerin aufbewahrten Präparat entnommen sind. Ein Vergleich mit den in Fig. 3 B gezeichneten Elementen wird eine Vorstellung ge-

¹⁾ Auch zwischen den Epithelzellen der Rectumdrüsen des Hundes gewahrt man auswandernde Leukocyten, doch in verhältnissmässig nicht grosser Zahl.

ben von dem Grad der Anschwellung, den, wie ich schon sagte, die Härtung in Alkohol in den Schleimzellen erzeugt.

Auch beim Hunde sodann kann man deutlich nachweisen, dass auch in viel geringerm Maasse als beim Kaninchen, eine allmähliche chemische Modification des abgesonderten Schleims stattfindet. In der That gewahrt man in den mit Hämatoxylin gefärbten Präparaten, dass die Intensität in der Färbung des Schleims vom Blindsack gegen die Drüsenmündung hin leicht zunimmt ¹).

Dass diese graduirten Modificationen in beiden Epithelzellenarten auf eine Abstammung des Epithels der Darmoberfläche von dem der Drüsen hindeuten, wird auch beim Hunde durch das Studium der Mitosen bestätigt.

Diese sind in den Rectumdrüsen des Hundes sehr zahlreich; jede Drüse enthält deren mehrere. Und das steht in Zusammenhang mit der beständigen und bedeutenden Abschuppung des Epithels. In der That sind in dem die freie Darmoberfläche bedeckenden Schleim die durch Abschuppung abgefallenen Epithelzellen verhältnissmässig zahlreich; in einem Schleimhautsehnitt z. B. von 5—10 μ Dieke und 7 mm Länge zählte ich deren etwa 50. Es ist nicht leicht, genaue Zahlen anzugeben, denn die abgeschuppten Zellen verlieren ihre Form, sodass es mitunter nicht möglich ist, ihre wahre Natur festzustellen; und andererseits muss ihre Zahl sicherlich bei den verschiedenen Thieren und bei den verschiedenen Bedingungen eines und desselben Thieres variiren.

Nun wohl, auch beim Hunde fehlen die Mitosen im Epithel der freien Darmoberfläche gänzlich. Sie finden sich zahlreich im tiefen Drittel der Drüsen und besonders in dem Blindsack. Im mittleren Drittel sind sie selten, und zum Unterschied von dem, was wir in den Rectum- und Colondrüsen des Kaninchens beobachtet haben, finden sich im oberflächlichen Drittel keine

¹⁾ Diesen Unterschied der Färbungsintensität in den verschiedenen Theilen der Drüse beobachtet man auch in den in Alkohol gehärteten und mit wässeriger Safraninlösung gefärbten Präparaten. — Man beachte hierbei, dass die gelbe Farbe, welche bei dieser Behandlung die Schleimsubstanz annimmt, sich verliert, wenn man zur Conservirung des Präparates die wässerige Zuckerlösung hinzufügt.

mehr. — Der thätigste Zellenerzeugungsherd ist also der Blindsack.

Betreffs der Mitosen in den Drüsen des Hundes heben wir jedoch eine Thatsache hervor, die für das Studium der Entwickelung der schleimabsondernden Zellen von hohem Interesse ist: nämlich die, dass neben zahlreichen Mitosen mit hellem, nicht differenzirterem, protoplasmatischen Zellkörper, von denen man also nicht recht weiss, ob man sie zur Reihe des protoplasmatischen, oder zu jener des schleimabsonderden Epithels zählen soll, weniger zahlreiche Mitosen vorkommen, welche in ihrem Protoplasma Schleimsubstanz enthalten und die sich durch dieses Merkmal als Regenerationselemente des Schleimhautepithels offenbaren.

Auf diese Elemente wurde meine Aufmerksamkeit zuerst gelenkt, als ich dabei war, Längsschnitte von in Alkohol gehärteten Drüsen zu untersuchen; und die Beobachtung wurde bei anderen sowohl in Sublimat als in Pierinsäure gehärteten Drüsen bestätigt. Unter den anderen den Drüsenschlauch auskleidenden Elementen sah ich nicht selten gepaarte Zellen, die dünner und kürzer waren, als die benachbarten gewöhnlichen Epithelzellen.

Die Vermuthung, dass diese Zwillings-Zellen schleimiger Natur wären, kam mir durch die Beobachtung, dass ihr Protoplasma hell und von einem feinen Netz, ganz wie das der Schleimsubstanz, durchzogen war; ebenso wie die Vermuthung, dass es in Mitose begriffene Elemente wären, in mir auftauchte, als ich sah: 1. dass die Zellen immer gepaart und einander so ähnlich waren; 2. dass sie dicht aneinander lagen, während die ausgewachsenen Schleimzellen, an welcher Stelle der Drüse sie sich auch befinden, immer durch dazwischen liegende Protoplasmazellen von einander getrennt sind; 3. dass sie kleiner waren als die gewöhnlichen Schleimzellen; 4. dass ihre Kerne nicht, wie in den Schleimzellen, in das der Membrana propria anliegende Ende der Zelle gerückt waren, sondern sich an den seitlichen und entgegengesetzten Theilen der betreffenden Zellen befanden. - Um jedoch diese Vermuthung zur Gewissheit zu machen, musste ich feststellen: 1. die schleimige Natur der in der Zelle enthaltenen Substanz, 2. das Vorhandensein der den anderen Stadien des karyokinetischen Prozesses entsprechenden Formen.

Die schleimige Natur der Substanz wurde durch die Reac-

tionen mit Färbemittel ausser Zweifel gestellt. Denn genau so wie der Schleim der wirklichen Schleimzellen färbte sie sich: 1. gelb, wenn sie auf einfach in Alkohol gehärteten Schnitten mit einer wässerigen Safraninlösung behandelt wurde, 2. stark violett oder blau, wenn sie auf Schnitten von in Flemming'scher oder Hermann'scher Flüssigkeit gebärteten Stücken mit Hämatoxylin (Fig. 4 d) oder Methylenblau behandelt wurde. — Von diesen Reactionen hat die mit Hämatoxylin grösseren Werth, denn (namentlich wenn die Härtung in Hermann'scher Flüssigkeit vorgenommen und der Schnitt nach Färbung mit Hämatoxylin und vor seiner Einschliessung in Damarharz in leicht mit Salzsäure versetztem Alkohol gewaschen wurde) mit dieser färbt sich die Schleimsubstanz sehr intensiv, während alle anderen Theile, alle anderen Elemente der Schleimhaut vollkommen farblos bleiben.

Was nun die verschiedenen Formen anbelangt, welche die verschiedenen Stadien des karyokinetischen Prozesses darstellen, so fand ich dieselben leicht und in vollständig überzeugender Weise durch die in der Anmerkung auf Seite 331 mitgetheilten Die violette Farbe, welche die Mitosen der Doppelfärbung. Schleimzellen annehmen, macht es möglich, sie auf den ersten Blick von den gewöhnlichen Mitosen zu unterscheiden. — Und hier ist zu bemerken, dass sich zu dieser Untersuchung besser die Quer- als die Längsschnitte der Drüsen eignen. Der Grund davon ist folgender: während die gewöhnlichen Mitosen, wie schon gesagt, sich im ganzen tiefen Drittel der Drüse zerstreut finden, finden sich die Mitosen der Schleimzellen nur zwischen den das äusserste Ende des Blindsacks auskleiden den Epithelzellen. Auf einem Längsschnitt der Drüse bietet also der Blindsack dem Beobachter nur eine einzige Reihe (von der Schnittstäche gesehen) der ihn auskleidenden Epithelzellen dar, sodass man unter diesen wenigen Zellen nur selten. eine Schleimzellen-Mitose zu sehen bekommt. Werden dagegen die Drüsen quer geschnitten, d. h. wird die Schleimhaut in lauter parallel zu ihrer Oberfläche gerichtete Schnitte zerlegt, so bieten uns die die tieferen Schichten treffenden und also die Blindsäcke umfassenden Schnitte diese letzteren vollständig dar, sodass wir die sie auskleidende Epithelschicht ganz oder fast ganz zu sehen bekommen.

In Fig. 4 habe ich einige von den Schleimzellen-Mitosen, die sich in meinen Präparaten befinden, gezeichnet. hier verschiedene den Acquatorialplatten- (von der Schnittfläche gesehen oder in der Frontalansicht (a a a') und den Doppelstern-Stadien (c c c' c') entsprechende Figuren vom Beginn der Trennung der beiden Faserngruppen bis zur vollendeten Theilung der Zelle. - Schleimzellen, die einen in Mitosis befindlichen Kern im Knäuelstadium enthielten, habe ich nie gesehen. sein, dass ungenügende Beobachtung der Grund davon ist; doch wenn ich bedenke, welch grosse Zahl von Präparaten ich studirt habe, bin ich fast geneigt anzunehmen, dass dies daher kommt, weil in diesem ersten Stadium des karyokinetischen Prozesses die Zellen noch keine Schleimsubstanz in ihrem Innern gebildet haben und ihr Körper also noch aus Protoplasma allein besteht. Um die Frage zu entscheiden wären jedoch noch weitere Beobachtungen nöthig.

Alle diese in Mitosis befindlichen Kerne liegen, wie die der gewöhnlichen Karyokinesen, mehr im Innern, d. h. dem Drüsenlumen näher, als die Kerne der in Ruhe befindlichen Zellen (Fig. 2 A).

Ich sagte vorhin, dass die Zwillingszellen einige Merkmale darbieten, durch welche sie sich von den typischen Schleimzellen unterscheiden. Zwischen jenen und diesen sind jedoch alle Uebergangsstadien vorhanden. Denn während anfangs die Zwillingszellen kürzer sind als die Cylinderepithelschicht, in welcher sie sich befinden, so dass sie mit ihrem tiefen Ende die Drüsenmembran nicht erreichen (Fig. 2 A; Fig. 4 d), verlängern sie sich später allmählich, bis sie diese letztere berühren; die Kerne, die seitwärts lagen, rücken allmählich gegen das tiefe Ende (Fig. 4e) und nehmen, mehr oder weniger zusammengedrückt, ihre Stelle in der äussersten Spitze, und endlich, während die beiden Zellen zuerst dicht aneinander lagen, werden sie durch die sich zwischen sie schiebenden benachbarten Protoplasmazellen von einander getrennt. So bilden sich aus den beiden Zwillingszellen zwei ausgewachsene Schleimzellen, sowohl hinsichtlich der Constitution als hinsichtlich der Form, der Dicke und der Lage, die sie im Drüsenschlauche einnehmen.

Die Fadenstructur der ehromatophilen Substanz der Schleimzellen-Mitosen tritt nicht besonders deutlich hervor, nach welcher Methode die Härtung und Färbung auch ausgeführt worden sein mag. Doch ist dies überhaupt bei allen Mitosen des Darmepithels der Fall, und jedenfalls sind die in Mitosis befindlichen Kerne der Schleimzellen dem Aussehen nach vollständig den Kernen der ihnen benachbarten gewöhnlichen Mitosen gleich. — In Fig. 4b habe ich eine Aequatorialplatte gezeichnet, die einige Spuren der achromatischen Spindel aufweist. Es ist dies etwas sehr Seltenes, denn im Allgemeinen sieht man in diesen Drüsen des Hundes die farblose Spindel weder in den Schleimzellen-, noch in den schönsten protoplasmatischen Mitosen.

Also auch beim Hunde wird die Abstammung des Epithels des Dickdarms vom Epithel seiner schlauchförmigen Drüsen bewiesen: 1. durch die stufenweise erfolgenden Umbildungen, welche die Epithelzellen, sowohl die protoplasmatischen als die schleimbereitenden, auf dem Wege vom Grunde des Blindsacks bis zur Drüsenmündung aufweisen; 2. dadurch, dass in Mitosis befindliche Elemente nur in den Drüsen vorkommen. — Beim Hunde verdienen sodann folgende Thatsachen Beachtung: 1. dass die Regeneration des Epithels im Blindsack der Drüse stattfindet, während beim Kaninchen zwei Hauptregenerationsherde vorhanden sind; nämlich der eine im Blindsack, der andere am Drüsenhalse; 2. dass ausser den gewöhnlichen Mitosen auch Mitosen vorhanden sind, deren Körper schon Schleimsubstanz enthält und die dennach sicherlich zur Regeneration der sogenannten becherförmigen Zellen dienen.

Diese Schleimzellenmitosen wurden von mir schon im Colon des Kaninchens beobachtet¹); beim Hunde aber treten sie viel deutlicher hervor und sind zahlreicher, und befinden sich auch bei ihm ausschliesslich im Blindsack der Drüse. Ohne Zweifel also hat in diesem der Regenerationsherd der becherförmigen Zellen seinen Sitz²).

¹⁾ Bizzozero, Dieser Arbeit erster Theil Bd. XXXIII, Fig. 12 der Tafel XV.

²⁾ Ich halte die Bemerkung nicht für überflüssig, dass sich in dem das Lumen der Rectumdrüsen des Hundes ausfüllenden Schleim sehr zahlreiche Bacillen zu befinden pflegen, die bis zum Blindsack gelangen. Damit werde ich mich in einem andern Kapitel der Arbeit beschäftigen.

Duodenaldrüsen.

Duodenaldrüsen des Hundes.

Zum Studium der schlauchförmigen Drüsen des Duodenum habe ich die des Hundes denen des Kaninchens vorgezogen; denn die Duodenaldrüsen des Kaninchens sind sehr gewunden, so dass sie sich zu einer vergleichenden Untersuchung der Modificationen, welche die Epithelien in den verschiedenen Regionen des Drüsenschlauches darbieten, nicht recht eignen; während sich dazu sehr wohl die des Hundes eignen, die lang, geradlinig sind und vertical in der Schleimhaut sitzen.

Was die Härtungs-, Färbungs- und Conservirungsmethoden betrifft, so habe ich alle bereits vorher erwähnten angewendet. Unter diesen habe ich besonders die Härtung in einfachem Alkohol zweckmässig befunden¹), der besser als jede andere Flüssigkeit die Merkmale und die Umrisse des Epithels erhält, sowie die Färbung mit Pierocarmin (und Einschliessung in Glycerin) oder mit Safranin (und Conservirung in Rohrzucker). Die Conservirung in Damarharz ist, wie gewöhnlich, besser dann anzuwenden, wenn es sich um das Studium der Mitosen handelt.

Die Drüsen (Taf. XVIII, Fig. 5) nehmen ihren Anfang mit einem leicht angeschwollenen, keulenförmigen Blindsack, durchziehen leichtgewunden die ganze Dicke der Schleimhaut, stehen parallel zu einander und sind durch einen vom Bindegewebsstroma der Schleimhaut ausgefüllten Zwischenraum (d) von einander getrennt; in kurzer Entfernung von der Schleimhautoberfläche verschmelzen sie gewöhnlich mit einander derart, dass sich aus je zwei Drüsen (cc) ein einziger breiter Schlauch bildet, der an der Basis der Darmzotten ausmündet. Das Stroma der Schleimhaut ist reich an Leukocyten, welche sich in besonders grosser Zahl unterhalb der Drüsenblindsäcke vorfinden (c).

Das Lumen der Drüsen ist eher etwas weit, besonders im Blindsack. Es wird von einer Masse ausgefüllt, welche, wenn in Alkohol gehärtet, ein schleimiges oder vielmehr colloidartiges

¹⁾ Bei der Härtung in Alkohol und Conservirung in Glycerin muss man natürlich der Anschwellung Rechnung tragen, welche die Schleimklümpehen erfahren (S. 329). Da jedoch in diesen Drüsen die Schleimzellen spärlich sind, so ist das von keinem Nachtheil, sondern dient vielmehr dazu, diese Zellen deutlicher hervortreten zu lassen.

Aussehen hat und consistenter im Blindsack (Fig. 2 A) als in der oberen Region scheint. In derselben beobachtet man stets Haufen von Körnchen und Leukocyten, deren Kerne von den Färbestoffen intensiv durchtränkt werden und die den im Stroma der Schleimhaut befindlichen ähnlich sind. Gleich diesen enthalten sie bald nur einen einzigen ovalen oder rundlichen Kern, bald 2 oder 3 kleine runde Kerne. Es sind offenbar Elemente, die aus dem Stroma stammen und mit dem Drüsensecret ausgeschieden werden. In der That sieht man nicht wenige dieser Leukocyten, während sie dabei sind das Drüsenepithel zu durchwandern.

Was die Mitosen des Epithels anbelangt, so sind sie, wie bekannt, sehr zahlreich. Doch wie ich schon früher zu bemerken Gelegenheit hatte¹), sind sie im Drüsenschlauche nicht gleichmässig vertheilt; sie sind sehr zahlreich in der tiefen Hälfte der Drüse und mithin auch in deren Blindsack, spärlich dagegen in der oberen Hälfte derselben, obgleich man einige wenige bis in unmittelbarer Nähe der Drüsenmündung gelangen sieht.

Nehmen wir nunmehr die Structur der Epithelzellen in Augenschein. Auch hier haben wir Protoplasma- und Schleimzellen; die einen und die anderen müssen wir gesondert betrachten, sie in Beziehung setzend zu den Epithelformen, welche die Darmzotten auskleiden, mit denen sie sich in ununterbrochenem Zusammenhang befinden.

Nehmen wir an, eine in Längsschnitte zerlegte Drüse vor uns zu haben:

Protoplasmazellen. — Wenn wir damit anfangen, die Zellen der Blindsäcke mit jenen der Zotten zu vergleichen, finden wir in den Dimensionen und in der Structur ziemlich bedeutende Unterschiede, so dass wir Jenen Recht geben könnten, die da annehmen, dass das Epithel der Drüsen verschieden sei von dem der Zotten. Wenn wir jedoch, mit unserer Untersuchung bei den Blindsäcken beginnend, allmählich in der Drüse nach oben schreiten, bis wir deren Mündung erreichen, und dann zu den Zotten übergehen, sehen wir, dass zwischen der einen und der anderen Epithelform an keiner Stelle eine scharfe Grenze besteht; das Epithel verändert sich durch eine abgestufte Reihe von Uebergangsformen.

¹⁾ Bizzozero und Vassale, l. c.

Im Blindsack (Fig. 6 A) sind die Zellen lang, pyramidenförmig; ihre Basis ist der Fläche, auf welcher sie aufsitzen, zugewendet und die abgestumpfte Spitze liegt dem freien Ende entsprechend. Die Kerne liegen der Basis nahe und enthalten 2—3—4 dieke Kernkörperchen. Bei den unmittelbar darüber liegenden Zellen ist die Form schon modificirt, denn deren freies Ende ist breiter geworden und bei vielen Zellen ist die basale Hälfte etwas gekrümmt und läuft in ein verdünntes und nach unten gerichtetes Ende aus (b); bei anderen Zellen jedoch ist auch das basale Ende scharf abgeschnitten (c).

Weiter nach oben in der Drüse gehend (Fig. 6B) bis zu deren Mündung, sehen wir, dass die Zellen sich fast gar nicht verändern; sie sind senkrecht zur Achse der Drüse angeordnet und infolge dessen ist ihr basales Ende abgestumpft: ihre Form wird so mehr die eines Rechtecks (ausgenommen jene Zellen, die seitlich von den Schleimzellen gedrückt werden), die Kerne verbleiben in der basalen Hälfte, und das Protoplasma bleibt feinkörnig. Die einzige wesentliche Veränderung findet in ihrem freien Ende statt. Dieses wird im Blindsack von einer einfachen feinen Linie begrenzt, weiter oben in der Drüse wird an seiner freien Oberfläche eine blasse Schicht sichtbar, welche bei geringer Vergrösserung homogen scheint, aber bei starker Vergrösserung feine parallel zur Längsachse der Zelle gerichtete Streifen zeigt. In der Mitte der Drüsenlänge ist diese Schicht schon ziemlich entwickelt (Fig. 6 B) und sind deren Streifen deutlicher; sie hat ganz das Aussehen jenes gestrichelten Saumes angenommen, der für das absorbirende Epithel des Darms charakteristisch ist, und als solches setzt sie sich durch den ganzen übrigen Theil der Drüse fort.

An der Basis der Zotten angelangt, setzt sich das Epithel auf ihnen fort, indem es seine wesentlichen Merkmale beibehält; die einzigen Unterschiede bestehen darin, dass (Fig. 6 C) die Zellen etwas schmäler und länger werden, der glänzende Saum etwas an Dicke zunimmt und die ihn bildenden Stäbchen deutlicher hervortreten, und endlich, dass der Zellenkern sich etwas von der Basis entfernt und bis gegen die Mitte der Zelle vorrückt.

Wie man sieht, liegt der Hauptunterschied zwischen den Zellen der Drüsenblindsäcke und jenen der Zotten im Fehlen oder im Vorhandensein des glänzenden Saumes; aber dieses kann kein unterscheidendes Merkmal zwischen dem Drüsenepithel und dem Epithel der freien Oberfläche sein, denn der glänzende Saum existirt auch beim Epithel der Drüse auf einer Strecke, die mehr als die Hälfte ihrer Länge ausmacht, und ausserdem sieht man ihn aus einer Modification hervorgehen, die am freien Ende der Zelle stufenweise erfolgt.

Schleimzellen. — Auch diese haben je nach der Stelle, wo man sie beobachtet, ein verschiedenes Aussehen. Im Blindsack (Fig. 6 A, d) sind sie pyramidenförmig, ihre Basis der Membrana propria zuwendend. Ihre äussere Hälfte wird von dem einen ovalen oder rundlichen Kern enthaltenden Protoplasma gebildet; die innere Hälfte dagegen ist mit vom gewöhnlichen Netzwerk durchzogenen Schleim gefüllt. Am freien Ende sind die Zellen offen, um ihr Secret in das Drüsenlumen ergiessen zu können.

Etwas weiter oben (Fig. 6 A, e) bewahren die Zellen noch fast dieselbe Form, aber ihr Kern zeigt sich von spärlichem Protoplasma umgeben und ist gegen das basale Ende der Zelle gedrängt.

Noch weiter oben verändern sich die Zellen ganz und gar. Sie nehmen allmählich an Dicke zu und neigen so zur Ei- oder Kugelform (Fig. VI B, a), so dass sie einen Kelch ohne Fussgestell darstellen; ihr Kern ist abgeplattet und gegen die Peripherie gedrängt, und der ganze von der Zellenmembran begrenzte Raum wird vom Schleim eingenommen. Mitunter befindet sich noch unterhalb des Kerns Protoplasma (Fig. 6 B, b) unter der Form eines mit der Spitze gegen die Drüsenmembran gerichteten kleinen Kegels. Der in der Zelle enthaltene Schleim steht in ununterbrochener Verbindung mit dem im Drüsenlumen angesammelten. Der Kern, zusammengedrängt wie er ist, präsentirt sich, wenn von der Schnittfläche gesehen, unter der Form eines sehr dünnen homogenen und glänzenden und von den gewöhnlichen Kernfärbemitteln ziemlich intensiv gefärbten Halbmondes; in der Flächenansicht dagegen scheint er noch oval, feinkörnig und mit Kernkörperchen versehen.

Die Schleimzellen gelangen mit diesen Merkmalen bis zur Drüsenmündung, werden jedoch immer grösser und durch den Schleim immer mehr ausgedehnt. Auf den Zotten angelangt, ändert sich ihre Form ganz plötzlich: gleich den Protoplasmazellen werden sie schmäler und länger (Fig. 6 C); besonders verschmälert sich die basale Hälfte der Zellen und sie erhalten so die Form eines mit spitz auslaufendem Fusse versehenen Kelches, und im Fusse ist der Kern enthalten. Letzterer ist ebenfalls in der Form modificirt worden, d. h. er ist schmal und lang geworden, und seine Längsachse ist parallel der Längsachse der Zelle; doch bewahrt er noch seine grosse Färbbarkeit und sein glänzendes Aussehen.

Nach allem, was wir an den Rectum- und Colondrüsen des Kaninchens schon beobachtet haben, gestattet uns der Vergleich dieser verschiedenen Schleimzellenformen beim Hunde die Annahme, dass sie durch eine stufenweise erfolgende Modification jener pyramidenförmigen Schleimzellen, die sich in den Drüsenblindsäcken befinden, erzeugt sind. Und diese Annahme wird auch durch die Thatsache bestätigt, dass die morphologische Veränderung der Zellen in gleichem Schritt mit einer chemischen Modification des von ihnen ausgeschiedenen Schleims erfolgt.

Hier muss ich bemerken, dass der Schleim dieser Zellen beim Hunde nicht die gleichen Reactionen auf die Färbemittel darbietet, wie bei den Rectumdrüsen des Kaninchens; es färbt sieh nicht mit Methylgrün und Vesuvin, färbt sieh dagegen mit Safranin, doch nur, wenn eine concentrirte wässerige Lösung angewendet wird¹). Mit dieser erhält man, wie ich schon vorher zu bemerken Gelegenheit hatte, eine sehr elegante Differenzirung: die Grundsubstanz des Bindegewebes bleibt farblos, alle Kerne des Gewebes nehmen eine vesuvingelbe Farbe an, der Körper der Epithelzellen, der glatten Muskelfasern und der Zellen des Meisner'schen und des Auerbach'schen Ganglion wird fuchsinroth, und der Schleim hebt sieh durch eine hellgelbe Farbe ab²).

¹⁾ Der Schleimhautschnitt, der sehr dünn (etwa 5 µ) sein muss, wird in Terpentin vom Paraffin befreit, in absoluten Alkohol gebracht und dann mittelst eines Spatels in einem Tropfen Alkohol (der ihm eine gewisse zur Weiterbeförderung sehr zweckdienliche Steifigkeit verleiht) auf den Objectträger gelegt, wo er unter dem Deckglas gefürbt wird. Der Alkohol wird durch Wasser ersetzt und dieses sodann durch eine concentrirte wässerige Safraninlösung.

²⁾ Nicht mit allen im Handel vorkommenden Safraninfarben erhält man diese schöne Differenzirung der verschiedenen Elemente.

Nun wohl, wenn man einen so gefärbten Schnitt der Drüsen untersucht, gewahrt man leicht, dass die Färbungsintensität des Schleims sehr variirt: in den Blindsäcken ist er kaum röthlichgelb, während er etwas weiter oben rein gelb ist und noch weiter oben eine ausgesprochen hellgelbe Farbe zeigt. Das bezieht sich sowohl auf den in den Zellen enthaltenen, wie auf den das Drüsenlumen ausfüllenden oder auf der Oberfläche der Darmzotten befindlichen Schleim.

Also auch hier haben wir, wie beim Colon und Rectum, eine abgestufte chemische Modification des Schleimzellensecrets, die in den Blindsäcken beginnt und bis zur freien Darmoberfläche fortschreitet. Es ist in den Blindsäcken, wo die jüngsten Schleimzellen entstehen. Die zahlreichen Theilungen durch Mitosis, die hier stattfinden, geben cylinder- oder pyramidenförmigen Elementen den Ursprung, welche eine verschiedene Bestimmung haben: einige bleiben Protoplasmazellen, andere dagegen bilden sich in Schleimzellen um. Die ersten Stadien dieser Umbildung lassen sich sehwer wahrnehmen, denn die eben erst erzeugten ganz kleinen Schleimkörnehen werden versteckt durch das körnige Protoplasma, in welchem sie liegen. Die in den Blindsäcken vorherrschenden Formen zeigen uns also gewöhnlich die Schleimzellen in einem schon verhältnissmässig weit vorgeschrittenen Stadium. Macht man jedoch Schleimhautschnitte quer zu den Drüsen, und zwar äusserst dünne, und färbt sie mit Safranin, so bekommt man nicht selten (in jenen Schnitten, welche die Drüse unmittelbar oberhalb der Blindsäcke getroffen haben) Cylinderzellen zu sehen, in denen die Umbildung eben erst begonnen hat (Fig. 7, a); die Zellen gleichen noch in Form, Kern u. s. w. den benachbarten Protoplasmazellen, unterscheiden sich von diesen jedoch durch Schleimkörnehen, welche, sich in deren inneren Hälfte anhäufend, hier ihr Protoplasma auf ein einfaches Balkennetz reducirt haben.

Die darauf folgende Formveränderung bei den Schleimzellen wird hauptsächlich dadurch bestimmt, dass sich in ihnen viel Schleim ansammelt, der sie rundlich gestaltet und den Kern sowie das spärliche Protoplasma gegen ihre Basis drückt. Ich

Ich erhielt sie mit dem aus der Fabrik von Bindschedler und Busch in Basel kommenden Safranin. — Mit dem mir von Dr. Grübler in Leipzig gelieferten Safranin O erzielte ich z. B. keine Färbung des Schleims.

sage hauptsächlich und nicht vollständig, denn auf die Formen sowohl der Protoplasma- als der Schleimzellen muss auch der auf ihre Oberfläche ausgeübte Druck einen Einfluss haben.

In der That müssen, da in der tieferen Hälfte des Drüsenschlauches eine lebhafte Vermehrung durch Mitosis stattfindet, die Elemente auf einander einen Druck ausüben, und müssen die gedrückten Elemente beständig dem Punkte des geringern Drucks, d. h. der freien Darmoberfläche zustreben, wo die beständige Ausstossung von Zellen den Raum für die neuhinzukommenden Zellen frei macht.

Unmittelbar oberhalb des Blindsacks macht sich dieser Druck vorwiegend auf die Seitenwände der Zellen, d. h. in einer senkrecht zur Längsaxe der Drüse stehenden Richtung geltend. Das geht aus der Form der Zellen und ihrer Kerne hervor; denn wenn man einen Längsschnitt (Fig. 6 A) von dieser Drüsenregion mit einem Quersehnitt (Fig. 7) vergleicht, bemerkt man, dass in diesem letztern die Zellen schmäler und länger und die Kerne ebenfalls mehr in die Länge ausgedehnt sind. Ein Gleiches geht auch hervor, wenn man in einem Längsschnitt die aufsitzende Basis der Drüsenzellen von vorn betrachtet (Fig. 8); die längere Achse dieser Basis ist parallel der Hauptachse der Drüse.

Die sonderbare Form der Zellen b in Fig. 6 A, die in den Blindsäcken sehr häufig vorkommt und dadurch charakterisirt wird, dass das freie Ende des Elements höher liegt als das basale und dass dieses letztere sich krümmt und, immer dünner werdend, unter der Basis der darunter liegenden Zelle endigt, findet bekanntlich eine leichte Erklärung in dem Vorrücken der Zellen gegen die Drüsenmündung; denn dieses kann sich leichter vom freien Ende vollziehen als vom basalen, das auf der Drüsenmembran aufsitzt.

Vom Blindsack absehend, ist in den anderen Regionen des Drüsenschlauches die Richtung der Achse des grössern Drucks veränderlich, wahrscheinlich im Zusammenhang damit, dass Centren karyokinetischer Vermehrung vorübergehend sich bilden und dann verschwinden. Eben deshalb beobachtet man, dass in den verschiedenen Regionen des Drüsenschlauchs die Epithelzellen bald in der Querrichtung, wie in den Blindsäcken, bald in der

Richtung der Längsachse der Drüse zusammengedrückt erscheinen, bald endlich, dass sie gleiche Querdurchmesser haben.

Wie bereits gesagt, sind sowohl die Protoplasma- wie die Schleimzellen in den Drüsen im allgemeinen kürzer als auf den Zotten. Ich glaube, dass dies in Zusammenhang steht mit dem Drucke, den die Secretmasse auf das Absonderungsepithel ausübt. Einen solchen Druck übt der im Lumen eingeschlossene Schleim sicherlich auf die freie Oberfläche der Drüsenepithelzellen aus, und er muss bewirken, dass dieselben kürzer werden. Sind dagegen die Zellen auf den Zotten angelangt, dann hat der vom Secret ausgeübte Druck aufgehört und es wirkt nur noch der Seitendruck auf sie, den sie selbst auf einander ausüben und der bewirkt, dass sie länger werden. Uebrigens variirt, auf der Zottenoberfläche, die Dicke und die Länge einer und derselben Zelle (sei es Protoplasma- oder Schleimzelle) je nach dem Contractionsstand jener Zottenstelle, auf welcher sie ihren Sitz hat, bekanntlich bedeutend.

Duodenaldrüsen der grauen Maus.

Mit lebhaftem Interesse machte ich mich daran, diese Drüsen zu studiren, denn gewisse schon seit längerer Zeit bekannte Besonderheiten in ihrer Structur mussten die Zuverlässigkeit meiner Theorie über den Ursprung des Darmepithels von Neuem erhärten.

Paneth¹) hatte in der That schon im Jahre 1887 gefunden, dass im Blindsack der schlauchförmigen Drüsen der Maus und der Ratte dicke und glänzende Körnchen enthaltende Zellen existiren, welche zwischen den Zellen des Drüsenepithels gelagert sind und ebenfalls als secernirende Elemente betrachtet werden können. Nun wohl, welches sind die Beziehungen, die zwischen ihnen und den Schleimsubstanz secernirenden Elementen bestehen? Wie kommt es, dass diese von Paneth beschriebenen Zellen sich in jenem Theile der Drüse befinden, in welchem, nach meiner Meinung, sich der Regenerationsherd des Darmepithels zu befinden pflegt?

Diese Fragen hatte bereits Paneth zu beantworten ge-

¹⁾ Paneth, Centralbl. f. Physiol. 1877 pag. 255, und Archiv f. mikr. Anatomie, Bd. XXXI, 1888.

sucht; doch blieben seine darauf gerichteten Untersuchungen ohne befriedigendes Resultat. Er kam nur zu dem Schlusse, dass die körnchenhaltigen Zellen ganz und gar verschieden von den Schleimzellen seien.

In der That beschreibt er sie, kurz gesagt, so¹): "Diese mit Körnchen erfüllten Zellen im Fundus von Krypten liegen. Die Körnehen (oder Tröpfehen), in frischen Präparaten, sind mässig lichtbrechend, nicht so stark als Fett, von verschiedener Grösse, meistens viel grösser als die Körnchen in Becherzellen der Maus und selbst des Tritons. In der Krypte sind manchmal mehrere, manchmal nur ein bis zwei Zellen von diesen Tröpfehen erfüllt, oder es liegen, wie es scheint, nur wenige Tröpfehen in einer Zelle. — Von der Wirkung einfachster Reagentien auf diese Tröpfehen ist Folgendes auszusagen: Gegen destillirtes Wasser und Kalilauge sind sie resistent; in letzterer schrumpfen sie etwas und bekommen härtere Contouren, werden also stärker lichtbrechend. Aether löst sie langsam auf; ehenso Alkohol. Verdünnte Säuren lösen sie rasch auf; sie treten nicht wieder auf, wenn man durch Kalilauge die Säure neutralisirt. Osmiumsäure conservirt die Tröpfchen und die Zellen, in denen sie liegen, vorzüglich, erstere werden dabei mahagonibrau, nicht schwarz. Sie nehmen alle Farbstoffe an und halten sie hartnäckig fest: Hämatoxylin, Safranin, Methylenblau, Eosin, Jodgrün. Sie halten dieselben bei der Entfärbung mit Alkohol länger fest als die Dabei färben sich diese Körnehen ohne allen Farbenwechsel und unterscheiden sich hierdurch von den Körnchen in den Becherzellen, die ausserdem viel kleiner sind. So färben sie sich mit Jodgrün türkisenblau, die Becherzellen olivgrün, mit Safranin intensiv krapproth, während die Becherzellen entweder homogen und kaum gefärbt oder mit rothgelben Körnchen erfüllt sind. . . . Nur selten liegt eine Becherzelle mit bauchiger Theka und den sonstigen Eigenschaften der Becherzellen in der Nähe des Fundus der Krypten, und unterscheidet sich dann sehr deutlich von den Körnchenzellen. Die Körnchenzellen sind eine eigene Art Drüsenzellen, verschieden von den Becherzellen. Das in ihnen gebildete Secret hat andere morphologische und chemische Eigenschaften, als die Körnchen in den Becherzellen. . . Die

¹⁾ Arch. f. mikr. Anatomie, Bd. XXXI pag. 178.

Zellen im Fundus der Krypten sind mit grösseren und reichlicheren Körnehen erfüllt, als die weiter oben befindichen. Dass die Körnehenzellen aus Epithelzellen entstehen, darüber kann kein Zweifel sein; ebensowenig darüber, dass sie ihren Inhalt in das Lumen entleeren. Was wird weiter aus ihnen?"

Diese Frage gestatteten die Beobachtungen Paneth's nicht in befriedigender Weise zu beantworten.

Und bessere Resultate hatten auch nicht die neueren Untersuchungen Nicolas'1), die nach vervollkommneten Methoden und mit den vollkommensten bis jetzt existirenden Objektiven ausgeführt wurden. Er constatirte das Vorhandensein der Paneth'schen Zellen nicht nur beim Menschen, bei der Maus und der Ratte, sondern auch bei der Feldmaus und beim Eichhörnchen, stellte im Gegensatz zur Ansicht Paneth's fest, dass sie stets einen Kern enthalten, sah einige Besonderheiten in der Structur der Körnchen und bemerkte, dass einige Epithelzellen einen oder zwei kugelförmige oder halbmondförmige Körper (enclaves) enthalten, welche sich zum Theil mit Safranin färben und jenen Körpern gleichen, die von Mehreren in anderen Theilen des Darmepithels von anderen Thieren beschrieben wurden. Er hält es für wahrscheinlich, dass die Zellen, wenn sie mit Körnchen ganz vollgefüllt sind, dieselben in das Drüsenlumen entleeren und eine kurze Zeit lang das Aussehen von schmalen und stark färbbaren Zellen bewahren, dann aber wieder Körnchen in ihr Protoplasma absondern, um dieselben dann wieder in das Drüsenlumen zu entleeren, und so eine bis jetzt nicht bestimmbare Zeitlänge hindurch ihren secretorischen Cyklus wiederholen. Diese Zellen sollen also auch nach Nicolas in gar keiner Beziehung zu den Schleimzellen stehen; sie sondern ein besonderes Product ab, dessen chemische Zusammensetzung und Function nicht genau angegeben werden können.

Nach dieser Darlegung wird man leicht begreifen, weshalb ich durch eigene Untersuchungen die zwischen den in Rede stehenden Zellen existirenden Beziehungen kennen zu lernen wünschte. Hier nachstehend die Resultate meiner Untersuchungen²):

¹⁾ Nicolas, Journal international d'anatomie et de physiol. 1891, vol. VIII, pag. 1.

²⁾ Zur Härtung sind die concentrirte wässerige Pikrinsäurelösung, die von Paneth so empfohlen wird (Immersion für die Dauer, von zwei Tagen in die Lösung, Auswaschen ein Tag lang in Wasser

Die Duodenaldrüsen der Maus (Taf. XIX, Fig. 1) sind kurz, sodass sie selbst bei sehr starker Vergrösserung in einem einzigen Gesichtsfeld des Mikroskops ganz überblickt werden können. Das erleichtert natürlich die Vergleichung der sie auskleidenden Elemente. Sie sind geradlinig oder in kaum wahrnehmbarer Weise gekrümmt, und ihr tiefes Ende ist leicht keulenförmig. Sie sind dicht an einander gelagert und ist deshalb das dazwischenliegende Bindegewebe sehr spärlich.

Von den sie auskleidenden drei Zellarten (Protoplasma-, Schleim- und Paneth'sche Zellen) bieten die Protoplasmazellen dieselben Modificationen dar, die wir bei den im vorhergehenden Kapitel studirten schlauchförmigen Drüsen wahrgenommen haben. Im Blindsack (Fig. 1 a) zeigen sie den in den tiefern Theil der Zelle gerückten ovalen Kern; die Umrisse der Zellen sind nicht sehr deutlich, und ihr freies Ende wird von einer sehr feinen Umrisslinie begrenzt. — Weiter oben in der Drüse, gegen deren Mitte, fängt am freien Ende ein deutlicher gestrichelter Saum an zu erscheinen, der schnell an Dicke zunimmt (Fig. 1 b), bis er, noch vor der Drüsenmündung, dem die Zottenoberfläche auskleidenden fast gleichkommt. Also auch hier kann man nicht sagen, dass der gestrichelte Saum ein Unterscheidungsmerkmal zwischen dem Zottenund dem Drüsenepithel bilde. — Die Kerne bleiben, in der ganzen Drüse, im basalen Ende der Zellen; erst an der Basis der Zotten fangen sie an gegen die Mitte der Zellen zu rücken; gleichzeitig werden sie etwas kleiner und rundlicher und ihre Chromatinsubstanz färbt sich intensiver mit Safranin.

Was das Protoplasma anbetrifft habe ich keine bedeutenden Unterschiede gefunden, wie z. B. jene, welche bei den Rectumdrüsen des Kaninchens existiren. Sowohl in den Drüsen, wie auf den Zotten erscheint es als ein sehr feines Netzwerk mit vorwiegend parallel zur Achse der Zelle gerichteten Bälkchen. Natürlich sehe ich hier von den Zellen ab, in welchen der Darm Fett absorbirt; denn, wie bekannt, in diesen Fällen ist das Protoplasma der Zellen der freien Oberfläche reichlich damit versorgt, während es in dem der Drüsen fehlt¹).

Alkohol), sowie die Flemming 'sche und die Hermann'sche Flüssigkeit (Immersion in dieselben 1 oder 2 Tage lang, Auswaschen in fliessendem Wasser, 1 Tag lang Alkohol) vorzuziehen.

¹⁾ Dieses lässt sich leicht an Präparaten feststellen, die in Flem-

Die Zellen nehmen gewöhnlich an Grösse etwas zu. In Fig. 2 habe ich vergleichshalber einige Zellen des Blindsacks (A) mit anderen, der oberen Hälfte einer Zotte entnoumenen (B) zusammengestellt. Diese letzteren sind etwas gekrümmt durch den Druck, der von unten auf sie ausgeübt wird; doch ist dies nicht constant, und andererseits verändert sich die allgemeine Form der Zelle sehr, je nach dem Contractionszustand der Zotte, dem Vorhandensein oder Nichtvorhandensein von Fetttröpfehen im Epithel und anderen uns hier nicht interessirenden Bedingungen. Die Zellen des Drüsenblindsacks hatten (in mit Hermann'scher Flüssigkeit gehärteten Präparaten) eine Länge von 15—20 μ und eine Breite von 4,5 μ ; die der Zotte waren im Durchschnitt 24 μ lang und 6—8 μ breit.

Was die Schleimzellen betrifft, so ist deren Zahl verhältnissmässig sehr gering. In vielen Drüsen (auf Schnitten von 5 µ Dicke) sieht man davon 2—3; in nicht wenigen gewahrt man gar keine; in einigen wenigen sind deren 4 oder mehr, bis zu 7 oder 8. — Was ihre Lage anbetrifft, finden sie sich nie oder fast nie im Drüsenblindsack. Sie fangen gewöhnlich in einer gewissen Entfernung von ihm an (Fig. 1 e) und setzen sich, in langen Zwischenräumen auf einander folgend, durch die ganze Drüse und dann auf der ganzen freien Oberfläche der Schleimhaut bis gegen das Ende der Zotten fort. — Sie haben die Form eines länglichen Beehers.

Der oberflächliche Theil derselben wird von der Schleimsubstanz eingenommen, der tiefe Theil dagegen vom Kern, der
weder gegen die Drüsenmembran gedrückt, noch dünn und lang
ist wie in anderen Drüsen. Der Kern ist gewöhnlich oval, von
sehr spärlichem Protoplasma umgeben und unterscheidet sich, dem
Aussehen und der Lage nach, wenig von dem des benachbarten
protoplasmatischen Epithels. — Auch in den Zotten bewahren
die Schleimzellen die längliche Form; doch rückt der Kern
(Fig. 2 B) etwas mehr gegen die Mitte der Zelle; das Protoplasma
nimmt an Umfang zu, indem es den Kern ringsum einschliesst
und den ganzen tiefern Theil der Zelle einnimmt; die Schleim-

ming'scher Flüssigkeit gehärtet, in Alkohol und dann in Cedernholzöl gebracht, in Paraffin in Schnitte zerlegt, in Xylol, in Alkohol getaucht und endlich in Glycerin conservirt wurden. Die vom Osmium geschwärzten Fetttröpfchen bleiben sehr gut erhalten.

substanz dagegen erscheint als ein dicker Klumpen, der das verbreiterte freie Ende der Zelle einnimmt und hier austritt, um sich mit dem im Drüsenlumen enthaltenen Schleim zu vereinigen.

Die Schleimsubstanz erscheint, wenn sie in frischen Drüsen ¹) ohne Hinzufügung von Flüssigkeit oder in einige Augenblicke vorher in Müller'scher Flüssigkeit zerzüpfelten Drüsen untersucht wird, unter der Form feiner kugelförmiger, ziemlich blasser Körnchen (Fig. 4 a).

Diese Structur verliert sich jedoch leicht, wie dies gewöhnlich auch bei andern Drüsen geschieht, unter dem Einfluss der Flüssigkeiten, die wir auf die Gewebe einwirken lassen, um sie zu härten, zu untersuchen u. s. w. Paneth hat beobachtet, dass die Körnehen erhalten bleiben, wenn man zur Härtung die Stücke einen Tag oder länger in Pikrinsäure liegen lässt, und ich kann seine Beobachtung bestätigen und hinzufügen, dass sie noch besser erhalten bleiben, wenn man die Härtung in Hermann'scher Flüssigkeit vornimmt. Doch kommt sowohl bei dieser als bei jener die körnige Structur nicht in allen Zellen gleich gut zur Erscheinung; in einigen ist sie kaum angedeutet, in andern hat die Schleimsubstanz ein homogenes Aussehen angenommen, ohne dass man den Grund für dieses verschiedene Verhalten finden kann.

Die Schleimsubstanz färbt sich in den in Alkohol oder Pikrinsäure gehärteten Stücken unter dem Einfluss einer wässerigen Safraninlösung intensiv gelb. Die Farbe geht jedoch verloren, wenn man zur Conservirung des Präparats Glycerin oder auch die Zuckerlösung hinzufügt. Die Farbe bleibt dagegen in den in Pikrinsäure gehärteten Präparaten erhalten, wenn man eine schon vorher mit Safranin gefärbte Zuckerlösung hinzufügt.

In den in Flemming'scher und mehr noch in den in Hermann'scher Flüssigkeit gehärteten Stücken färbt sich die Schleimsubstanz schön mit Methylenblau oder mit Hämatoxylin, während alle anderen Theile des Gewebes ungefärbt bleiben. Diese Reaction ist es besonders, die, wie wir sehen werden, mir zur Lösung der Aufgabe, die ich mir gestellt hatte, diente.

Um nun auf die Paneth'schen Zellen zurückzukommen,

¹⁾ Beim eben getödteten Thier haftet das Epithel zäh an der Oberfläche der Schleimhaut und der Membran der Drüsen; um es zu erlangen wird man gut thun, einige Stunden vorher getödtete Thiere zu benutzen.

so schien es mir anfangs, dass ich zu keinem anderen Schlusse kommen könnte, als meine Vorgänger im Studium dieser Frage. Diese Zellen schienen mir sowohl nach ihrer Form, als nach ihrer Grösse, Anordnung, nach dem starken Lichtbrechungsvermögen und den Reactionen ihrer Körnehen ganz und gar verschieden zu sein von den Schleimzellen. Doch ein eingehenderes Studium liess mich erkennen, dass zwischen einer Zellenform und der anderen stets abgestufte Uebergangsformen existiren, und ich kam so nach und nach zu der festen Ueberzeugung, dass die Panethschen Zellen nur die jugendliche Form der Schleimzellen sind.

Zu dieser Erkenntniss gelangt man mit ganz verschiedenen Präparationsmethoden. Wenn wir z. B. ganz dünne Schnitte von in Flemming'scher Flüssigkeit gehärteten Drüsen untersuchen, die mit Saffranin gefärbt sind1) und in Damarharz eingeschlossen wurden, scheint es auf den ersten Blick, dass die Paneth'schen Zellen mit den Schleimzellen nichts gemein haben. Jene (Fig. 1 c) haben eine sehr breite Basis und sind oft pyramidenförmig; ihr Kern liegt quer zur Achse des Elements und zeigt durch häufige Einbuchtungen unregelmässig gestaltete Umrisse; in ihrem Protoplasma sind die charakteristischen rundlichen oder ovalen Körnchen in grosser Zahl vorhanden, die intensiv roth gefärbt und von verhältnissmässig bedeutender Grösse sind. Doch ist diese Grösse nicht bei allen die gleiche; gewöhnlich ist sie geringer in dem dem Drüsenlumen zugewendeten Theil der Zelle, beträchtlicher dagegen in dem Theil, in welchem der Kern sich be-Die Körnehen scheinen in eine farblose, sehr durchsichtige Substanz getaucht, und nur auf äusserst dünnen und mit den besten Objectivlinsen untersuchten Schnitten vermag man zu erkennen, dass die Körnchen wie in den Maschen eines aus sehr feinen Bälkchen bestehenden Protoplasmanetzes liegen (Fig. 7), das sich mit grosser Treue in mehreren Figuren Nicolas' wiedergegeben findet 2).

Die Schleimzellen hingegen haben die Form eines Kelches ohne Untersatz (Fig. 1 e); in dem verhältnissmässig dicken Fussgestell befindet sich der ovale Kern; die Höhlung des Kelches

¹⁾ Man thut gut, das Safranin in Anilinwasser aufzulösen; die gefärbten Schnitte werden entweder in Alkohol oder in einer alkoholischen Pikrinsäure- oder in einer $10/_{00}$ igen alkoholischen Chromsäurelösung (Martinotti) ausgewaschen.

²⁾ L. c. Tafel 3.

wird durch den Schleim ausgedehnt, der sich wie eine durch das Safranin rosa gefärbte homogene Masse präsentirt. Keine Spur von granulöser Structur und noch weniger von durch Saffranin stark gefärbten Körnehen ist im Schleim zu entdecken.

Mit der Untersuchung fortfahrend bekommt man jedoch häutig Uebergangsformen zu sehen. Vor allem bemerkt man Paneth'sche Zellen, die (wie bereits von Anderen hervorgehoben worden) nicht im Blindsack liegen, sondern sich weiter oben (Fig. 1 c'), manchmal über die Mitte der Drüse hinaus befinden. Sie sind natürlich nicht mehr pyramidenförmig, sondern sind länger und schmäler geworden und nähern sich so der Form der eigentlichen Schleimzellen. Wie in diesen ist der Kern bestrebt eine parallel zur Längsachse der Zelle gerichtete Lage einzunehmen. Sie enthalten noch zahlreiche stark gefärbte Körnchen, deren Grösse jedoch etwas abgenommen hat.

Weiter sieht man Zellen, die man wegen der safraninophilen Körnehen, die sie enthalten, noch als zur Kategorie der Paneth'schen Zellen gehörig erkennt; doch sind die Körnehen klein, sehr klein geworden (Fig. 1 d, Fig. 5 a und b), der Zellkörper und der Kern haben die Form der entsprechenden Theile der Schleimzellen angenommen, und ausserdem hat eine bemerkenswerthe Modification in der zwischen den Körnehen liegenden Substanz stattgefunden: die selbe ist reichlicher geworden und hat die Eigenschaft angenommen, dass sie sich mit Safranin rosafärbt, und zwar mit der gleichen Intensität wie der Schleim der Schleimzellen.

Die letzte Uebergangsform wird durch Zellen dargestellt, die den Schleimzellen in allem gleichen, die aber noch, in ihrem Schleim zerstreut, äusserst feine und intensiv roth gefärbte Körnchen als ein Zeichen ihrer primitiven Abstammung aufweisen.

Die Färbung mit Safranin ist nicht die einzige, die diese Eigenthümlichkeiten darthut.

Wenn in Flemming'scher Flüssigkeit gehärtete Schnitte mit Vesuvin gefärbt werden, heben sich die schleimbereitenden Zellen von den zwischen ihnen liegenden Protoplasmazellen durch die grössere Homogenität und das stärkere Liehtbrechungsvermögen ihres Schleiminhaltes ab, sowie durch das intensivere Colorit, das ihnen vom Vesuvin ertheilt wurde. Nun wohl, jene schleimbereitenden Zellen, welche im tieferen Theil der Drüse

liegen, zeigen oft, in ihrem Schleim zerstreut, glänzende Körnchen, die, was Lichtbrechungsvermögen und Schärfe der Umrisse betrifft, ganz und gar den in den Paneth'schen Zellen befindlichen gleichen, von denen sie sich nur durch einen kleineren Durchmesser unterscheiden.

Noch elegantere und überzeugendere Figuren erhält man durch Färbung der Schnitte mit Methylenblau oder Hämatoxylin, welche die Kerne nur sehr wenig, die Schleimsubstanz dagegen intensiv färben. Fig. 3 ist einem mit Methylenblau gefärbten Man bemerkt dort die Paneth'schen Präparat entnommen. Zellen aa, die sich im Blindsack befinden. Weiter oben sieht man zwei Zellen b b derselben Art, die jedoch kleinere Körnchen enthalten, namentlich in der Nähe des freien Endes der Zelle; die zwischen diesen kleinen Körnehen liegende Substanz hat bereits eine ähnliche blaue Farbe angenommen, wie sie für die Schleimsubstanz charakteristisch ist. In e endlich sieht man den optischen Querschnitt einer Zelle, die, obgleich sie noch äusserst kleine Körnchen zeigt, dem Aussehen und der Färbung der zwischen den Körnehen liegenden Substanz nach sieh doch in nichts von den wirklichen Schleimzellen unterscheidet.

Nach diesen Resultaten wollte ich nun versuchen, die Gegenprobe zu erhalten, indem ich die gelbe Reaction anwendete, die den Schleim darbietet, wenn die Schnitte von in Alkohol oder in Pikrinsäure gehärteten Präparaten mit einer concentrirten wässerigen Safraninlösung behandelt werden. Das Resultat konnte kein günstigeres sein. Nach einer halben Stunde erlangt man eine vollständige Differenzirung: die Körnchen der Panethschen Zellen zeigen eine lebhaft rothe Farbe, wie das Protoplasma und der Kern, und die zwischen ihnen liegende Substanz bleibt ungefärbt oder nimmt eine etwas gelbliche Farbe an; die vollkommenen schleimbereitenden Zellen dagegen werden von einem aufgequollenen und gelb gefärbten homogenen Schleimsubstanzklümpchen ausgedehnt. Zwischen jenen Zellen und diesen existirt sodann eine ganze Reihe von Uebergangsformen, dargestellt durch Zellen, deren Secret immer kleiner werdende rothe Körnehen, getaucht in eine immer reichlicher werdende und intensiv gelb gefärbte Substanz, enthält 1).

¹⁾ Diese Präparate konute ich conserviren dadurch, dass ich

Mit diesen verschiedenen Methoden hatte ich also das Vorhandensein von Uebergangselementen zwischen den Paneth'schen Zellen und den Schleimzellen nachgewiesen, welche, abgesehen von den anderen Modificationen, diese Eigenthümlichkeit zeigen, dass ihr Secret aus Körnchen besteht, welche die Reactionen der Paneth'schen Körnchen darbieten, und in eine Substanz getaucht sind, die dagegen die Reactionen der Schleimsubstanz zeigt. Diese zwischen den Körnchen liegende Substanz schien mir gewöhnlich ein homogenes Aussehen zu haben; nie, auch nicht bei Härtung in Pikrinsäure, hatte ich in ihr klar und deutlich iene granulöse Structur gesehen, welche eben die Pikrinsäure im Schleim, wenn nicht aller so doch einer gewissen Zahl von Schleimzellen conservirt. Es leuchtet ein, wie wichtig es für mich war, diese granulöse Structur zu erkennen, denn das wäre ein anderer und sehr wichtiger Beweisgrund zur Feststellung der schleimigen Natur der in Rede stehenden Substanz gewesen.

Ich erreichte meinen Zweck dadurch, dass ich zur Härtung die Hermann'sche Flüssigkeit anwendete. Wenn ganz dünne Schnitte (von weniger als 5 μ Dicke) von in dieser Weise gehärteten Stücken mit Hämatoxylin gefärbt und bei starker Vergrösserung untersucht werden, gewahrt man (Fig. 6a), dass die violette Färbung sich ausschliesslich auf dem Secret der Schleimzellen fixirt hat — alle anderen Theile des Gewebes sind ungefärbt geblieben — und dass dieses Secret aus kugelförmigen oder (infolge des gegenseitigen Drucks) etwas polyedrischen Körnehen mit wenig markirten Umrissen, und von merklich gleicher Dicke in einer und derselben Zelle besteht. Um dieses Resultat zu erlangen, ist es nothwendig, dass der Schnitt sehr dünn, das Objectiv tadellos und mit homogener Immersion und das Licht

eine mit Safranin gefärbte concentrische wässerige Zuckerlösung anwendete. In diesen Präparaten, die ich seit länger als einem Jahre conservire, sieht man, dass in nicht wenigen Paneth'schen Zellen die Körnchen eine gelbrothe Farbe angenommen haben, während sie in den anderen immer lebhaft roth gefärbt erscheinen, was beweist, dass auch die wirklichen Paneth'schen Körnchen nicht immer einander gleich sind. Dies bestätigt sich auch in den in Flemming'scher oder Hermann'scher Flüssigkeit gehärteten, mit Safranin gefärbten und in Alkohol, Bergamottöl und Canadabalsam gebrachten Präparaten; die kleineren Körnchen färben sich viel intensiver als die grösseren.

sehr lebhaft sei; ist das natürliche Licht schwach, so ersetze man es durch künstliches Licht. Werden diese Bedingungen nicht erfüllt, so kommt die körnige Structur nicht immer zur Erscheinung, denn da die Körnchen ziemlich undeutliche Umrisse haben, treten diese nicht hervor und das Schleimklümpehen macht den Eindruck, als habe man eine homogene blaue Masse vor sich. Die violette Färbung ist lebhafter und die Körnchen treten deutlicher hervor in den Schleimzellen der Drüsen als in denjenigen der Zottenoberfläche. Bei Anwendung von Hämatoxylin bleiben die Körnchen der Paneth'schen Zellen ungefärbt.

Lässt man dagegen der Behandlung mit Hämatoxylin die Färbung mit Safranin vorausgehen 1), dann erhält man eine Doppelfärbung; die Körnehen der Paneth'schen Zellen (ebenso wie die Kerne, besonders die in Mitosis befindlichen) nehmen eine glänzend rothe Farbe an, während die Körnehen der Schleimklümpehen sich violett färben. Nun wohl, untersucht man in diesen Präparaten die Secretklümpehen jener Zellen, die ich als Uebergangszellen bezeichnete, dann sieht man, dass sie aus zwei Arten von Körnehen bestehen: aus violetten Körnehen, zwischen denen sich Körnehen von lebhaft rother Farbe befinden. Obgleich die ersteren keine sehr deutlichen Umrisse haben und die letzteren äusserst klein sind, so tritt doch, wenn man mit einem apochromatischen homogenen Objectiv und mit weiter Oeffnung

¹⁾ Die ganz dünnen Schnitte werden mittelst einer sehr verdünnten Eiweisslösung, auf dem Deckgläschen fixirt und mittelst Xvlols vom Paraffin und darauf mittelst absoluten Alkohols vom Xylol befreit. Sodann lässt man das Gläschen auf einer verdünnten Safraninlösung (8 Tropfen concentrirter wässeriger Safraninlösung auf 1 Gramm Wasser), die man in ein Uhrgläschen thut, schwimmen, erhitzt diese bis sich Dämpfe zu entwickeln anfangen und überlässt sie dann ein paar Stunden lang sich selbst. Darauf: Auswaschen, einige Secunden lang, in absolutem Alkohol, Immersion, 15 Minuten lang, in Hämatoxylin, Auswaschen, einige Secunden lang, in destillirtem Wasser, Einlegen auf einige Secunden in mit HCL (0,5 %) gesäuerten Alkohol und endlich Auswaschen, einige Minuten lang, in Brunnenwasser. Einlegen in absoluten Alkohol, Bergamottöl und Damarharz. Man achte darauf, dass die Färbung mit Hämatoxylin keine zu intensive sei, denn sonst werden in den Uebergangszellen die feinen safraninophilen Körnchen innerhalb des blau gefärbten dicken Schleimklümpchens nicht sichtbar.

des Abbe'schen Apparats untersucht, der Farbenunterschied der Körnchen sehr deutlich hervor (Fig. 6 b).

Diese Beobachtungen zeigen also, dass die Paneth'schen Zellen junge Schleimzellenformen darstellen. Sie secerniren grosse, glänzende, safraninophile Körnchen, die sie in das Drüsenlumen ergiessen. Aelter werdend fahren sie eine gewisse Zeit lang fort, Körnchen von gleicher Natur zu secerniren, die jedoch kleiner sind; und gleichzeitig scheiden sie auch Körnchen aus, die sich intensiv mit Hämatoxylin färben. In einem weitern Stadium hört die Erzeugung von safraninophilen Körnchen ganz und gar auf und das Secretklümpehen wird gänzlich von mit Hämatoxylin färbbaren Körnchen gebildet; die Zelle ist so eine wirkliche Schleinzelle geworden. Während nun diese Veränderungen im Innern der Zelle stattfinden, nimmt diese auch die den Schleimzellen eigene Kelehform an und rückt allmählich vom Blindsack der Drüsen nach deren Mündung hinauf, und dann auch auf die Zotten.

Die Paneth'schen Zellen mit kleinen Körnehen sind auch von Nicolas beobachtet worden; doch hielt er sie für die junge Form der Paneth'schen Zelle, deren ausgewachsene Form grössere Körnehen ausgeschieden haben würde; während aus meinen Untersuchungen, wie wir gesehen haben, das vollständige Gegentheil hervorgeht.

Früher hätte die Thatsache, dass die Schleimzellen beim Aelterwerden die ehemische Natur ihres Seerets veränderten, sonderbar erscheinen können. Doch kann sie uns nicht mehr befremden jetzt wo wir gesehen haben, wie bei allen bis jetzt studirten Thieren, wenn man vom Blindsack der Drüse gegen deren Mündung vorschreitet, eine mehr oder weniger erhebliche Modification der Merkmale des Schleims stattfindet. Diese Unterschiede, die wir nun im Duodenum der Maus beobachtet haben, sind sicherlich nicht grösser als diejenigen, die ich bei den Schleimzellen des Reetums vom Kaninchen beschrieben habe, welche letzteren sich, je nach ihrer Lage in der Drüse, der Essigsäure und den Farbmitteln gegenüber so verschieden verhalten.

Die Zellenerzeugung in den schlauchförmigen Drüsen des Duodenum der Maus ist eine sehr lebhafte; das wird durch die zahlreichen Mitosen bewiesen, die man in jeder Drüse wahrnimmt und die die Aufmerksamkeit Aller, die sich in diesen letzten Jahren mit dem Gegenstand beschäftigten, erregt haben¹). Sie werden in der Regel in der tiefern Hälfte der Drüse angetroffen; selten findet man sie in der oberflächlichen Hälfte, und noch seltener in der Nähe der Mündung. Die Mitosen fangen im Blindsacke an; zuweilen sieht man sie an der äussersten Spitze des Blindsacks zwischen je zwei Paneth'schen Zellen.

Der Körper der in Mitosis befindlichen Zellen schien mir immer protoplasmatisches Aussehen zu haben. Zum Unterschied von dem, was man so häufig in den Rectumdrüsen des Hundes beobachtet, sah ich keine in Mitosis befindlichen Kerne in Zellen, die schon Schleim enthielten, was jedoch nicht sagen will, dass es in ihnen keine solche gebe.

Darmschleimhaut von der Drüsen ermangelnden Thieren.

Nachdem wir nun gesehen haben, welchen bedeutenden Antheil die schlauchförmigen Drüsen an der Regeneration des Darmepithels haben, wird es uns interessiren zu erfahren, wie diese Regeneration bei solchen Thieren stattfindet, deren Darm keine schlauchförmigen Drüsen besitzt. Sind es hier vielleicht die Epithelzellen der freien Oberfläche, welche an der gleichen Stelle, wo sie ihre Function ausüben, sich durch Mitosis vermehren?

Um diese Frage zu beantworten, werden wir den Darm einiger dieser Thiere untersuchen. Es ist nothwendig, die Untersuchung nicht an einer Species allein, sondern an mehreren vorzunehmen, weil der Darm einiger uns den Regenerationsprozess in seinem einfachsten Ausdrucke darbietet; während der Darm anderer, wie z. B. der des Tritons uns sehon complicirtere Figuren zeigt und deshalb eine Uebergangsform zu dem mit Drüsen versehenen Darm der höheren Thiere darstellen kann.

Darm des Tritons.

Beim ausgewachsenen Thiere hat er, vom Magen bis zum After genossen, eine Länge von etwa 14—18 cm. Er hat nicht überall den gleichen Durchmesser; er ist dicker an dem vorderen

¹⁾ Neuerdings hat Reinke einige sonderbare Structureigenhümlichkeiten dieser in Mitosis befindlichen Kerne beschrieben.

Theile, wo er (in mit Kleinenberg'scher Flüssigkeit und Alkohol gehärteten Präparaten) einen Durchmesser von 2-2,5 mm hat, während er im hinteren Theile wenig mehr als 1 mm im Durchmesser misst. — Der Länge nach aufgeschnitten, gewahren wir auf seiner Schleimhaut keine wirklichen Zotten. Dieselbe bildet vielmehr aneinandergrenzende Falten, welche, je nach dem Theil des Darms, in welchem sie ihren Sitz haben, eine verschiedene Configuration und Anordnung zeigen. Im hinteren Theile sind sie der Längsachse des Darms entsprechend gelagert, haben einen regelmässig wellenförmigen Verlauf und die zwischen ihnen bestehenden Beziehungen sind derartige, dass die Convexitäten einer Falte sich den Concavitäten der ihr unmittelbar seitlich anliegenden Falte anpassen (Taf. XIX, Fig. 8). Im vorderen Theile des Darms dagegen wird der Verlauf der Falten, je mehr wir uns dem Magen nähern, immer unregelmässiger, die Ondulationen bilden sich in eine Ziekzacklinie um und die Ziekzacklinien der verschiedenen Falten verschmelzen mit einander. Ausserdem sind im hinteren Theile des Darms, da derselbe hier enger ist, die Falten niedriger, dicker, näher an einander gelegen und höchstens in einer Zahl von zehn vorhanden; während sie im vorderen Theile viel höher und dünner sind und in jedem Querschnitt dieses Darmabschnitts in einer Zahl von 14-16 wahrgenommen werden.

Die Darmschleimhaut ermangelt der schlauchförmigen Drüsen. Hier befinde ich mich nicht in Uebereinstimmung mit Paneth, der (l. c. p. 174) schreibt: "Beim Triton hingegen, dessen Dünndarm sehr schöne, sogar verzweigte Krypten hat, setzt sich das Epithel unterschiedlos, mit einem sehr deutlichen Stäbchenbesatz versehen, in dieselben fort" und seine Behauptung mit einer Figur belegt (l. c. Fig. 7 a), die eine Drüse darstellen soll, welche, sich gabelförmig theilend, mit zwei Blindsäcken endigt. Ich glaube, dass Paneth die von ihm gezeichnete Figur wohl gesehen, aber nicht richtig gedeutet hat. Sie stellt nichts anderes dar als den Verticalschnitt von Darmfalten, die dicht aneinander liegen und so das Aussehen einer Drüse bieten. Die Darmfalten theilen sich oft in ihrem Verlauf. Nun wohl, macht man Schnitte an der Stelle, wo die Theilung eben erst begonnen hat, dann sind die aus jener Theilung hervorgehenden beiden Falten noch ganz nahe beieinander gelegen und simuliren den Längsschnitt einer Drüse; je weiter entfernt von der Theilungsstelle man dagegen die Schnitte macht, desto mehr entfernen sich die beiden Falten von einander und werden von einander unabhängig. Ich glaube, dass Paneth, wenn er Schnitte in Serien gemacht hätte, sich hiervon leicht überzeugt haben würde. Die von ihm wiedergegebene Figur stellt eine noch niedrige Falte dar, die zwischen zwei viel höheren ihren Ursprung nimmt.

Wegen des oben beschriebenen wellenförmigen Verlaufs der Darmfalten werden bei einem Verticalschnitt der Darmwände die Epithelzellen nicht alle ihrer Länge nach durchschnitten, wie es der Fall sein würde, wenn die Schleimhaut eine glatte Oberfläche hätte. Auch wenn man den Darm ganz genau in seiner Quere durchschneidet (Fig. 9) werden einige Falten quer getroffen, andere hingegen (und das sind die zahlreichsten) unter verschiedenen Schiefgraden. Dementsprechend werden dabei auch die sie auskleidenden Epithelzellen sehr häufig schief oder quer durchschnitten. Das ist der Grund, weshalb die Präparate vom Epithel des Tritons weniger demonstrativ und weniger deutlich ausfallen, als man auf Grund der bedeutenden Grösse der dasselbe bildenden Elemente annehmen möchte.

Das Epithel, wenigstens soweit es das die obere Hälfte der Falten auskleidende Epithel betrifft, ist schon vielfach beschrieben worden (von den neueren Beschreibungen führe ich hier die Paneth's und Nicolas' an), sodass ich mich hier nicht lange aufzuhalten brauche. Es wird (Fig. 11 A) von grossen Protoplasmazellen mit dickem gestricheltem Saum gebildet, zwischen denen sich becherförmige Zellen befinden. Diese letzteren haben einen in der Richtung der Längsaxe der Zelle ausgedehnten ovalen Kern, der (im Gegensatz zu dem was man bei anderen Thieren beobachtet) nicht gegen die Basis der Zelle gedrängt wird, sondern in einer gewissen Entfernung von derselben liegt. Er pflegt sich etwas intensiver zu färben als die Kerne der Protoplasmazellen. Zwischen den Zellen sieht man oft Leukocyten (Fig. 11 A), und diese können sich sowohl gegen die Basis, als gegen das freie Ende der Elemente hin befinden. Ausserdem beobachtet man im Innern einer gewissen Anzahl Protoplasmazellen Vacuolen, in denen sich (Fig. 11 A) kugelrunde Körperchen von verschiedenem Durchmesser befinden, welche oft einen Theil der sie bildenden Substanz von den Kernfärbemitteln stark gefärbt zeigen. Diese en claves wurden vor Kurzem eingehend

von Nicolas beschrieben, der sie für ein besonderes Sekretionsproduct der Protoplasmazellen hält. Ich bleibe dabei, aus Gründen, die ich an anderer Stelle sagen werde, sie für ein Product des Zerfalls der in die Epithelschicht eingewanderten und später in den Körper der protoplasmatischen Epithelzellen gelangten Leukocyten zu halten.

Die Schleimzellen sind ziemlich regelmässig in der Epithelschicht vertheilt. Ihr numerisches Verhältniss zu den Protoplasmazellen lässt sich aus den Fig. 10 und 12 ersehen.

Die die obere Hälfte der Falten auskleidenden Zellen liegen hier in einer einzigen Schicht. Von Ersatzzellen ist keine Spur vorhanden. Ausserdem befinden sich ihre Kerne alle im Ruhezustand. Einen Kern, der sich in Mitosis befände, habe ich nie beobachtet. Wie regeneriren sich also diese Elemente? Existirt ausserhalb der Epithelschicht ein Erzeugungsherd derselben, der den schlauchförmigen Drüsen der Säugethiere entspricht?

Um eine Antwort hierauf zu finden, müssen wir das die untere Hälfte der Falten bekleiden de Epithel studiren, das sich auf den durch die Vereinigung der Grundflächen zweier benachbarter Falten gebildeten Wölbungen (Fornices) fortsetzt. Diese ganze Epithelzone werden wir der Kürze halber Epithel der Fornices nennen (Fig. 12 y), während wir das obenbeschriebene, die obere Hälfte der Falten bekleidende Epithel als Epithel der Kämme bezeichnen werden (Fig. 12 x).

Vergleicht man nun das Epithel der einen Zone mit dem der andern, dann gewahrt man mehrere Unterschiede.

Vor allem pflegen die Zellen der Wölbungen (Fornices) etwas kleiner als die der Kämme zu sein, wie aus dem Vergleich von A und B in Fig. 20 hervorgeht.

Was die Constitution der Zellen anbetrifft, variirt die der Protoplasmazellen von einer Zone zur andern nicht in erheblichem Grade. Ueberall wird das Protoplasma von einem feinen Netzwerk mit in der Richtung des grössern Durchmessers der Zelle ausgezogenen Maschen gebildet, das besonders in mit Pikrinsäure, Safranin und Zuckerlösung behandelten Präparaten deutlich hervortritt. Die Umrisse der Zellen treten etwas weniger in der Zone der Wölbungen hervor. — Was den gestrichelten Saum an-

belangt, so ist derselbe vorhanden und ist von bedeutender Dicke in beiden Zonen, sogar bei den die tieferen Theile der Fornices bekleidenden Zellen.

Im Ganzen genommen existiren zwischen den Protoplasmazellen der beiden Zonen nicht jene erheblichen Unterschiede, die wir bei den Säugethieren zwischen den Zellen der Drüsenblindsäcke und jenen der freien Darmoberfläche wahrgenommen haben und die in der verschiedenen Dichtigkeit des Protoplasmas und im Fehlen des gestrichelten Saumes bestehen. Die einzigen Anzeichen, die die Zellen der Fornices als die jüngeren erscheinen lassen könnten (und sie sind in Wirklichkeit von geringem Belang), wären ihr geringerer Durchmesser und die geringere Deutlichkeit ihrer seitlichen Umrisse.

Deutlicher treten die Unterschiede dagegen bei den Schleimzellen hervor. Sie betreffen nicht so sehr die Form der Zelle als vielmehr die Merkmale des in ihr enthaltenen Schleims.

Der Schleim erscheint bei den im frischen Zustande untersuchten Elementen in allen Zellen unter der Form homogener Körnchen mit wenig markirten Umrissen. Wird dagegen der Darm mit den verschiedenen zur Härtung dienenden Flüssigkeiten behandelt, dann gewahrt man, dass das Verhalten des Schleims, je nach den Zellen die man betrachtet, ein verschiedenes ist und dass bei vielen derselben (wie wir dies übrigens auch schon bei den Säugethieren gesehen haben) die meisten der obengenannten Flüssigkeiten die granulöse Structur mehr oder weniger verschwinden machen. Nunwohl, im allgemeinen kann man sagen, dass diese Structur um so besser erhalten bleibt, je tiefer die Schleimzellen in den Fornices gelegen sind, während sie in den auf den Kämmen der Darmfalten gelegenen Zellen leicht verschwindet. Dieser Unterschied tritt sehr deutlich bei den in Pikrinsäure gehärteten, mit einer wässerigen Safraninlösung gefärbten und in concentrirter Zuckerlösung conservirten Präparaten hervor 1). Zelle b der Fig. 14 hatte in einer Fornix ihren Sitz und man

¹⁾ Der nicht geöffnete Darmabschnitt wurde auf einige Stunden in Kleinenberg'sche Flüssigkeit, dann auf einen Tag in 50% igen Alkohol und auf einen Tag in 70% igen Alkohol gelegt, endlich 12 Stunden lang in fliessendem Wasser ausgewaschen und, nachdem er die gewöhnliche Reihe der Manipulationen durchgemacht, in Paraffin eingeschlossen.

bemerkt bei ihr (abgesehen von den Besonderheiten der Form, von denen ich später sprechen werde), dass das Schleimklümpchen von einem Aggregat gut begrenzter Körnchen gebildet wird; noch deutlicher sieht man diese Körnchen, zerstreut und isolirt, in jener Protoplasmazone, die sich zwischen dem Schleimklümpehen und dem Kern befindet. - Zelle c dagegen ist einem Kamme entnommen. In derselben ist das Schleimklümpehen in eine homogene Substanz reducirt, in welcher sich ein feines und zierliches Netzwerk ausbreitet. Bei starker Vergrösserung erkennt man, dass die Bälkehen desselben kreisförmige Maschen begrenzen. Diese Form der Maschen lässt sich leicht erklären; durch die Einwirkung der angewendeten Reagentien haben die kugelförmigen Schleimkörnehen dieser Zellen, indem sie blass wurden und aufquollen, ihre Umrisse verloren und das Aussehen einer homogenen Masse angenommen; dadurch ist die zwischen den einzelnen Körnchen liegende Substanz zur Erscheinung gekommen, welche, in Anbetracht der Kugelform der Körnehen, die Configuration eines Netzes mit kreisförmigen Maschen haben muss. Doch ist es nicht überflüssig, darauf hinzuweisen, dass man in diesen aufgequollenen Schleimklümpehen oft, wie eben bei der Zelle der Fig. 14 c, Körnehen bemerkt, die ihre Individualität bewahrt haben und denjenigen der Zelle b sehr ähnlich sind.

Bei den in Alkohol allein, oder vorher in Sublimat (Sublimat 2, Chlornatrium 1, Wasser 100) und dann in Alkohol gehärteten Präparaten verändert sich die granulöse Structur der Schleimsubstanz noch mehr. Die Körnchen quellen derart auf, dass das dazwischen liegende Netzwerk auseinandergeht und so das Schleimklümpchen wie eine homogene Masse erscheint, in welcher unregelmässig gestaltete Körnchen, die die Ueberbleibsel des Netzes darstellen, zerstreut liegen.

Auch beim Triton bleibt die granulöse Structur des Schleims am besten in solchen Präparaten erhalten, die in Hermannscher Flüssigkeit gehärtet, verschiedenartig gefärbt und in Canadabalsam oder Damarharz eingeschlossen wurden. Hier wird sie sowohl in den Zellen der Fornices als in jenen der Kämme beobachtet, doch ist auch hier zwischen diesen und jenen ein Unterschied; denn in der Fornices tritt sie deutlich in fast allen Zellen (Fig. 11 B), und in einigen sogar sehr deutlich hervor, sodass man die Umrisse und die Grösse jedes Körnchens unterscheiden

kann; auf den Kämmen dagegen sind die Körnehen nicht selten zu compacten Haufen vereinigt (Fig. 11 A), in welchen sich ihre Umrisse nicht deutlich erkennen lassen.

Werden die Schnitte von in Hermann'scher Flüssigkeit gehärteten Stücken nicht in Balsam gebracht, sondern ohne Weiteres in Wasser untersucht, dann gewahrt man einen andern Unterschied: Im Schleim der Zellen der Kämme und einiger Zellen der Fornices werden die Körnchen unter der Einwirkung des Wassers blass und lassen das zwischen ihnen liegende Netzwerk erkennen; während in den anderen Zellen der Fornices die Körnchen unverändert bleiben und nur etwas aufquellen. Diese Veränderungen kann man selbst stattfinden sehen, wenn man den Schnitt zuerst in einem Tropfen Alkohol untersucht und dann auf einer Seite des Deckgläschens einen Tropfen Wasser hinzuthut und die Einwirkung desselben auf die Elemente des Schnittes verfolgt.

Von Wichtigkeit ist sodann die Thatsache, dass sowohl in diesen Präparaten wie in den mit Pikrinsäure, Sublimat oder Alkohol behandelten keine markirte Grenze zwischen den Zellen der einen und der andern Art existirt; es sind zahlreiche Uebergangsstadien vorhanden zwischen den Zellen, in denen die Körnchen sich erhalten und jenen, in denen sie sich zu einer homogenen Masse verschmolzen haben. Solche Uebergangsstadien können sogar in einer und derselben Zelle beobachtet werden. - Das in Fig. 15 dargestellte Gebilde befand sich an dem untersten Theil einer Fornix und war in Hermann'scher Flüssigkeit gehärtet worden. In einem Tropfen Alkohol untersucht, hatte seine ganze Schleimmasse eine granulöse Structur; als darauf ein Tropfen Wasser beigefügt wurde, traten die Körnehen deutlich und isolirt nur in der Nähe des Kerns hervor, während die gegen das freie Ende der Zelle gelegenen Körnchen zu einer von dem gewöhnlichen Netzwerk durchzogenen homogenen Schleimmasse verschmolzen, sodass sie sich nur noch durch die (ihnen von der Hermann'schen Flüssigkeit verliehene) braunere Farbe vom Schleim der auf dem Kamme gelegenen Zellen unterschieden.

Diesen morphologischen Unterschieden zwischen dem Schleim der Fornices und dem der Kämme entsprechen auch Unterschiede im Verhalten der verschiedenen Färbemittel gegenüber. In der folgenden Tabelle gebe ich die Unterschiede an, welche noch jetzt in den Präparaten, die dieser meiner Darlegung als Grundlage dienen und die ich in den Monaten April bis Juni 1890 anfertigte, deutlich hervortreten, Unterschiede also, welche sich in 19—21 Monaten noch nicht verwischt haben.

Präparation smethode.	JungerSchleim.	Ausgew. Schleim.
1. Alkohol, Safranin, Zucker.	Kastaniengelb.	Schwefelgelb.
2. Kleinen berg'sche Flüssigkeit, Safranin, Zucker.	Kastaniengelb.	Hellgelb, fast schwefelgelb.
3. Hermann'sche Flüssig- keit, Untersuchung in Wasser.	Bräunlich.	Weniger intensiv bräunlich.
4. Her mann'sche Flüssig- keit, Safranin, Chrom- Alkohol, Alkohol, Damar- harz.	Safraninroth.	Gelb oder rothgelb.
5. Hermann'sche Flüssig- keit, Safranin, Zucker.	Rothviolett.	Kastanieugelb.
 Hermann'sche Flüssig- keit, Hämatoxylin, al- kohol. Salzsäurelösung, Damarharz. 	Fast farblos.	Intensiv violett.

Als jungen Schleim habe ich hier solchen betrachtet, der eine deutlich körnige Structur hat und dieselbe den Reagentien gegenüber am zähesten bewahrt; er befindet sich, wie ich schon sagte, in einer gewissen Zahl Zellen des Epithels der Fornices, besonders in dem am tiefsten gelegenen Theil dieser letzteren. Wir werden später sehen, welche Gründe mich bewogen, ihn als jungen Schleim zu betrachten. Betreffs des ausgewachsenen Schleims hielt ich mich an die becherförmigen Zellen des Epithels der Kämme.

Ich habe also zwei extreme Typen in Betracht gezogen. Denn auch hier beeile ich mich zu bemerken, dass zwischen diesen Extremen alle Uebergangsstadien vorhanden sind; und so findet man z. B. in den Präparaten der Nr. 1 zahlreiche Zellen, deren Schleim bei der Färbung alle Abstufungen vom Kastaniengelb zum Schwefelgelb darbietet, in denen der Nr. 4 Abstufungen vom Roth zum Gelb u. s. w.

In der Darmschleimhaut des Tritons giebt es also nicht zwei in der Form und der Constitution des betreffenden Schleims immer und deutlich sich voneinander unterscheidende Schleimzellenarten; sondern es giebt zwei durch eine Reihe von Uebergangsstadien miteinander verbundene Schleimzellenformen.

Wenn nun die Beschreibung, die ich bisher vom Darmepithel des Tritons gegeben habe, uns gestattet hat, Untersuchungen zwischen den dasselbe bildenden Protoplasma- und Schleimzellen zu finden, je nach der Stelle, an welcher sie in der Schleimhaut gelegen sind, so hat sie uns doch noch nicht in den Stand gesetzt, die Frage zu beantworten: wie regeneriren sich die Elemente des Epithels?

Um diese Frage zu beantworten, müssen wir vor allem untersuchen, ob unter den den Darm des Tritons auskleidenden cylindrischen Zellen solche vorhanden sind, die im Begriffe stehen, sich zu theilen.

Nun wohl, in ihren Kernen babe ich nie Figuren gesehen, die auf eine directe Theilung hindeuteten. Dagegen habe ich zuweilen ganz deutliche mitotische Kerne geschen, welche, wie die in den schlauchförmigen Drüsen der Säugethiere existirenden, der Oberfläche näher liegen als die im Ruhezustand befindlichen Kerne (Fig. 16). Doch muss ich gleich bemerken, dass diese Mitosen äusserst selten sind. Auf fast 500 vollständigen Schnitten vom Parm des Tritons, die ich noch bewahre und die so präparirt wurden, dass sie die in ihnen enthaltenen Mitosen aufweisen mussten, gelang es mir nur drei solche Mitosen aufzufinden. Zwei befanden sich an der Basis einer Falte, die dritte auf deren Scheitel. Diese spärlichen Mitosen reichen also nicht aus, um die Regeneration des Darmepithels zu erklären; wir müssen die Lösung der Frage wo anders suchen.

Man findet die Lösung der Frage nur, wenn man den tieferen Theil der Epithelschicht untersucht. Und hier gewahren wir wieder Unterschiede zwischen dem Epithel der Kämme und dem der Fornices. Das erstere ist ein einfaches, nur aus einer Zellenschicht bestehendes Epithel. Das letztere dagegen zeigt uns zwischen den tieferen Enden seiner cylindrischen Zellen andere Zellen (Fig. 10 c), welche sich, je nach dem Punkte den man betrachtet, in verschiedener Zahl darbieten. Bald sind sie nämlich spärlich und in einer gewissen Entfernung von einander gelegen (Fig. 11 B), bald bilden sie eine fast ununterbrochene Lage oder sind, sogar auf gewissen Strecken, in zwei Lagen angeordnet.

Besonders muss man vorsichtig zu Werke gehen, um das

Vorhandensein dieser Lage tiefer Zellen festzustellen, denn wenn man z. B. schräg zur Längsachse der cylindrischen Zellen gerichtete Schnitte macht, kann es geschehen, dass der Unerfahrene Figuren vor sich hat, die er als zu einem geschichteten Epithel gehörig deutet, auch wenn es sich um ein aus einer einzigen Lage bestehendes Epithel handelt. Und diese Schrägheit der Schnitte ist, wie gesagt, beim Darm des Tritons, wegen des unbeständigen Verlaufs seiner Falten, sehr häufig. Um alle Irrthumsquellen zu vermeiden ist es nothwendig ganz dünne Schnitte anzufertigen, die verschiedenen zu einer und derselben Serie gehörigen Schnitte untereinander zu vergleichen und dafür zu sorgen, dass die cylindrischen Zellen parallel zu ihrer Längsachse getroffen werden.

Im Darmepithel des Tritons existiren also wahre Ersatzzellen; es verwirklicht sich hier was man irrthümlich beim Darmepithel der Säugethiere angenommen und beschrieben hatte. — Doch noch mehr. — Diese Ersatzzellen nehmen nicht nur den zwischen den unteren Enden der cylindrizellen frei gelassenen Platz ein, sondern sie dringen auch in Gruppen in's Bindegewebe der Schleimhaut ein und nehmen hier die Form von Sprossen oder epithelialen Zapfen an.

Diese subepithelialen Sprossen (Fig. 12 u. 13) bleiben stets in ununterbrochenen Beziehungen mit der den Darm bekleidenden Epithellage und erscheinen in Schnitten von sehr verschiedener Grösse. — Die kleinsten werden von wenigen Zellen dargestellt, welche zum Theil noch in dem den Darm bekleidenden Epithel liegen, zum Theil die Grenzlinie zwischen dem Epithel und der Schleimhaut unterbrechen und in diese letztere hineinragen. — Die grössten dagegen bestehen aus einigen Dutzenden von Zellen. Sie gehen mit breiter Basis von der Epithelschicht ab; kaum in die Schleimhaut gedrungen, beschreiben sie zuweilen eine Curve, sodass sie parallel zur Oberfläche der Schleimhaut zu liegen kommen (Fig. 3 c') und laufen schliesslich in ein abgerundetes Ende aus. In ihrem kurzen Verlaufe werden sie vom Oberflächenepithel durch eine dünne Bindegewebsschicht getrennt, in welcher man nicht selten einige Blutgefässe beobachtet (Fig. 13 c). - Diese kurzen Sprossen dringen in die Schleimhaut in sehr verschiedener Richtung ein, sodass man in einem und demselben Darmquerschnitt einige ihrer Länge nach, andere quer durchschnitten sieht (Fig. 12 u. 13). Diese letztern erscheinen sehr oft als gänzlich vom Bindegewebe eingehüllte und mit dem Oberflächenepithel nicht mehr im Zusammenhang stehende Zellinseln, sodass man sie beim ersten Blick für selbständige Epithelzelleninseln halten könnte. Das ist leicht begreiflich: die Fortsetzung kann man nur in jenen Schnitten wahrnehmen, die die Basis, mit welcher der Zapfen auf der betreffenden Epithelschicht aufsitzt, betreffen. Die Schnitte in Serien heben jeden Zweifel darüber. Denselben Zapfen, der in gewissen Schnitten ganz und gar isolirt scheint, sieht man in den folgenden Schnitten sich in die darüberliegende Epithelschicht fortsetzen.

Die Zahl und die Grösse dieser Sprossen variirt je nach den Regionen des Darms. In dem unmittelbar auf den Magen folgenden Darmabschnitt sind die Ersatzzellen vorwiegend in den tiefen Schichten des Oberflächenepithels gelegen; die Zapfen sind klein, kurz und werden nur in den tiefsten Theilen der Fornices an der Basis der Falten beobachtet. Weiter nach dem After gehend dagegen werden die Zapfen zahlreicher und länger und setzen sich nicht nur vom ganzen Epithel der Fornices ab, sondern steigen auch weiter hinauf und werden selbst in Beziehung mit dem Epithel der Kämme gesehen; in einigen Fällen habe ich Sprossen in geringer Entfernung vom Scheitel des Kamms gesehen.

Die diese Sprossen bildenden Zellen sind, da sie dicht aneinander liegen, von unregelmässig polyedrischer Gestalt. bestehen aus einem verhältnissmässig grossen Kern und einer Protoplasmazone, die denselben umgiebt und sehr spärlich ist, sodass die Kerne ganz nahe bei einander zu liegen kommen. Die Umrisse der Zellen sind sehr fein und ziemlich sehwer zu erkennen, selbst in Präparaten die in Pikrinsäure gehärtet wurden (Fig. 13 c"), obgleich diese die Umrisse der oberflächlichen Epithelelemente doch gut zu erhalten pflegt¹).

Ueber ihre epitheliale Natur kann kein Zweifel obwalten, und zwar aus folgenden Gründen: 1) Weil ihre Constitution darauf hinweist. Denn ihre Kerne differiren nur wenig von den

¹⁾ Beiläufig sei bemerkt, dass man zwischen den Zellen dieser Epithelzapfen regelmässig Leukocyten sieht, die in allem den im Darmbekleidungsepithel befindlichen gleichen.

der wirklichen cylindrischen Zellen; sie sind kaum etwas kleiner, sind rundlich statt oval, und die Bälkehen ihres Netzwerks sind etwas feiner. Was das Protoplasma anbetrifft, so differirt dieses nur insofern, als es in den Zellen der Zapfen weniger compact ist; sodass z. B. in den in Pikrinsäure gehärteten Präparaten, in denen das feine Protoplasmanetz deutlicher hervortritt, dieses letztere grössere Maschen zeigt als das Protoplasmanetz in den Zellen des oberflächlichen Epithels; doch erscheint es, wie in diesen, durch die wässerige Safraninlösung stark roth gefärbt (in den durch Zuckerlösung conservirten Präparaten). — 2) Weil man an jenen Stellen der Präparate, wo die Zapfen in Zusammenhang mit der Epithelschicht stehen, alle Uebergangsformen von den Zellen der Zapfen zu jenen des oberflächlichen Cylinderepithels nebeneinander gelagert sieht, d. h. gewahrt, dass die Zellen länger werden, ihr Protoplasma vermehren und die Form ändern, je mehr sie sich der Epitheloberfläche nähern (Fig. 13 c'). — 3) Weil man zwischen den gewöhnlichen Epithelelementen solche eingelagert sieht, die bereits in ihrem Protoplasma eine Gruppe von Schleimkörnchen enthalten, d. h. Elemente, die man als junge Schleimzellen betrachten muss (Fig. 13 c und c', Fig. 14 a). Die beste Methode, um diese so interessante Thatsache klar zu stellen, ist die, dass man die Präparate in Pikrinsäure härtet, mit einer wässerigen Safraninlösung färbt und in Zucker conservirt1). Durch den Gegensatz der zwischen der rothen Farbe, welche das Protoplasma der Epithelzellen der Zapfen annimmt, und der kastaniengelben Farbe des jungen Schleims besteht. heben sich die in Rede stehenden Zellen deutlich ab. scheinen als von einem Kern gebildet, dem ein rundlicher oder ovaler Haufen feiner und zusammengedrängter Schleimkörnchen dicht anliegt; das Protoplasma wird gar nicht wahrgenommen oder es stellt nur einen sehr kleinen Theil der Zelle dar (Fig. 14 a). In einem einzigen Zapfen kann man 2,3 und mehr solche junge Schleimzellen sehen. - Der Schleim, den sie enthalten, zeigt sich immer unter der Form deutlicher Körnchen, und der Farbenton dieser letzteren ist der gleiche, den der Schleim jener cylindri-

¹⁾ Man wähle ein Stück vom hinteren Darmabschnitt, weil, wie ich schon sagte, hier die Sprossen besser entwickelt sind.

schen Zellen mit deutlichen Schleimkörnehen, die am tiefsten Theile der Fornices existiren, angenommen hat.

Diese schleimbereitenden Zellen der subepithelialen Sprossen werden, indem sie mit den sie umgebenden Protoplasmazellen zusammen in die Höhe rücken, nach und nach zu einem Theil der oberflächlichsten Schicht des Oberflächenepithels. Zu diesem Zwecke modificiren sie sich, werden sie länger und erreichen schliesslich mit dem einen Ende die freie Epitheloberfläche, und auf diese Weise fangen sie an, die in ihnen enthaltenen Schleimkörnchen auszuscheiden. Als eine solche junge, aber schon an der Oberfläche gelegene Zelle glaube ich die Zelle b der Fig. 14 bezeichnen zu können. Sie gehörte schon dem oberflächlichen Epithel an, unterschied sich aber von den ausgewachsenen Schleimzellen dadurch, dass ihr Schleimklümpehen verhältnissmässig klein und am Kern durch einen langen Streifen Protoplasma getrennt war, in welchem man hier und dort einige isolirte Schleimkörnchen bemerken konnte.

Den Beweis für den lebhaften Regenerationsprocess, der in den sowohl der tiefen Schicht des Bekleidungsepithels, als den Zapfen angehörenden Ersatzzellen stattfindet, wird uns in keinen Zweifel zulassender Weise von den dort vorhandenen zahlreichen Mitosen geliefert. Dieselben fällen, wie im Allgemeinen in allen Geweben des Tritons, durch ihre Grösse und die Deutlichkeit, mit welcher die einzelnen sie bildenden ehromatischen Fäden hervortreten, sehr in die Augen. In jedem Stadium des Processes sind die Mitosen deutlich zu erkennen, sodass es leicht fällt, sie zu zählen. In jedem Darmschnitt von 5-10 µ Dicke findet man deren mindestens zehn¹). Ich halte es für überflüssig, den vielen von den Beobachtern wiedergegebenen Figuren der Mitosen in den verschiedenen Geweben des Tritons die von mir im Darmepithel beobachteten hinzuzufügen. Doch konnte ich mich nicht enthalten, hier zwei im Doppelsternstadium befindliche Mitosen abzuzeichnen (Fig. 13 u. 17); die erstere gehörte einem subepithelialen Zapfen an, die andere dagegen befand sich in der tiefsten Schicht des Oberflächenepithels. Das Protoplasma der mitotischen Zellen pflegt sehr hell und durchsichtig zu sein, be-

¹⁾ Die von mir verwendeten Tritonen waren stets gut ernährt worden.

sonders um die Kerne herum. Ich habe nicht feststellen können, ob etwa zwei Mitosenarten existirten, d. h. eine für die Protoplasmazellen, die andere für die Schleimzellen. Doch habe ich auf diesen Punkt nicht in besonderer Weise mein Augenmerk gerichtet.

Durch Vergleichung des Darms von im April getödteten Tritonen mit dem Darm von Thieren derselben Species, die unter den gleichen Bedingungen gehalten, aber im Juni getödtet wurden, konnte ich feststellen, dass die Epithelzapfen in diesen letzteren zahlreicher waren und mehr Mitosen enthielten.

Die Epithelzapfen können nicht als Drüsen betrachtet werden, weil sie aus unreifen Zellen bestehen und ihnen ein Lumen fehlt. Bedenkt man jedoch, dass auch die wirklichen Drüsen in einer gewissen Periode ihrer Entwicklung oft von festen Zapfen junger Epithelelemente dargestellt werden, so ist man geneigt zu schliessen, dass die Epithelzapfen des Darms vom Triton phylogenetisch den schlauchförmigen Drüsen der höheren Thiere entsprechen.

Kurz zusammengefasst, findet auch im Darm des Tritons die Regeneration der Elemente durch indirecte Theilung statt. Der Sitz der Mitosen ist nur für eine geringe Zahl von Elementen im oberflächlichen Epithel; für die grössere Zahl ist er zwischen den jungen Ersatzzellen, welche sich sowohl an der Basis der cylindrischen Zellen als in den subepithelialen Zapfen befinden. Beim Triton ist es bemerkenswerth, dass nicht wenige von diesen Ersatzzellen Schleimsubstanz absondern, trotzdem sie mit der freien Oberfläche des Epithels noch nicht in Beziehung stehen. Auch beim Triton findet ein Reifen der schleimbereitenden Zellen statt, und der Schleim, den sie absondern, verändert sich immer mehr in seinem Aussehen und seinen Reactionen, je älter die ihn erzeugenden Zellen werden und je mehr sie aus der Tiefe der Epithelschicht gegen die freie Oberfläche vorrücken. Es ist also die Meinung jener Forscher, die, wie Paneth1), glauben, dass die Schleimzellen aus den protoplasmatischen Epithelzellen hervorgehen und sich, nach Entleerung ihres Inhalts, wieder in solche umbilden können, nicht annehmbar.

¹⁾ l. c. pag. 185.

Erklärung der Abbildungen auf Tafel XVIII und XIX¹).

Tafel XVIII.

- Schlauchförmige Drüse des Rectums von Mus musculus Fig. 1. (Kleinberg'sche Flüssigkeit, Vesuvin, Damarharz). Man bemerkt 2 Mitosen aa und sieht die Modificationen, welche die schleimbereitenden Zellen (b, b', b") darbieten, wenn man vom Blindsack gegen die Drüsenmündung vorschreitet. Ebenso sieht man die abgestuften Modificationen der Protoplasmazellen, welche im oberflächlichen Theil der Drüse dunkler und körniger werden. - 290 d.
- Fig. 2. Theile von Längsschnitten einer Rectumdrüse des Hundes (Hermann'sche Flüssigkeit, Doppelfärbung mit Safranin und Hämatoxylin, Damarharz). A Blindsack. Man sieht das Drüsenepithel, und im Lumen die Secretmassen. Im Epithel gewahrt man eine Protoplasmazellen-Mitose a, und weiter unten zwei schleimbereitende Zwillingszellen b. - B, aus dem oberflächlichen Drittel der Drüse, in kurzer Entfernung von der Mündung. Die Mitosen fehlen, die Protoplasmazellen sind zahlreicher als im Blindsack. Beide Zellenformen sind sodann grösser und haben deutlichere Umrisse als im Blindsack. -580 d.
- Rectumdrüsen des Hundes. Verschiedene Schleimzellenformen. Fig. 3. A, von einer in Alkohol gehärteten Schleimhaut, Schnitte in Glycerin conservirt: a Zellen aus dem Blindsack, b Zelle in kurzer Entfernung von der Drüsenmündung. - B von einer in Hermann'scher Flüssigkeit gehärteten Schleimhaut, Doppelfärbung mit Hämatoxylin und Saffranin: a Zelle aus dem Blindsack, b Zellen aus dem mittleren Theil der Drüse, e Zelle in kurzer Entfernung von der Drüsenmündung. - 400 d.
- Rectumdrüsen des Hundes. Mitosen von Schleimzellen (Hermann'sche Flüssigkeit, Doppelfärbung mit Safranin und Hämatoxylin). Die Figuren sind zum Theil Quer- und zum Theil Längsschnitten der Drüsen entnommen. aa Aequatorialplatten. - b Zelle mit Aequatorialplatte und Andeutung einer farblosen Spindel. In den um diese herum liegenden Schleimzellen sieht man den Kern nicht, der in einer tiefen

¹⁾ In vielen Figuren wurden die Farben der Präparate nicht reproducirt.

- Ebene lag (ein Gleiches bemerkt man in den Figuren a' und c' c'). c c c' c' Doppelsterne. d Zwillingszellen mit seitwärts gelegenen Kernen. e Zwillingszellen mit nach dem tiefen Ende der betreffenden Zellen gerückten Kernen. In e wurde das die Schleimsubstanz durchziehende feine Netzwerk gezeichnet; in den Figuren ab e d wurde dasselbe der Kürze halber fortgelassen. 820 d (Apochr. 1,5 mm von Zeiss).
- Fig. 5. Verticalschnitt vom Duodenum des Hundes (Härtung in Alkohol). a zusammengezogene Zotten mit ihren glatten Längsmuskeln. b schlauchförmige Drüsen. c c Confluenz zweier Drüsen in einen einzigen an der Basis der Zotten ausmündenden Schlauch. d Lymphoïdgewebe zwischen den Drüsen. e Lymphoidschicht unter den Drüsenblindsäcken. f und g die beiden Schichten der Muscularis mucosae. i Submucosa. 25 d.
- Fig. 6. Schlauchförmige Drüsen des Duodenum vom Hunde (Härtung in Alkohol, Pikrocarmin, Glycerin). A Blindsack. B Abschnitt nahe der Mitte der Drüse. C Zottenepithel. Erklärung im Texte. Circa 860 d (Apochr. 1,5 mm von Zeiss).
- Fig. 7. Duodenum des Hundes. Querschnitt des Blindsacks einer schlauchförmigen Drüse (Alkohol, Paraffin, wässerige Safraninlösung, Zuckerlösung). Erklärung im Texte. -- Vergrösserung wie bei der vorhergehenden Figur.
- Fig. 8. Duodenum des Hundes (Alkohol, Pikrocarmin, Glycerin). Aus dem Längsschnitte einer Drüse, unmittelbar oberhalb des Blindsacks untersucht. Das Objectiv wurde so eingestellt, dass man die Protoplasmazellen im optischen Querschnitt sieht, so dass die grössere Achse der Zellen parallel der Achse des Mikroskops ist. a Umrisslinie der Drüse. b Drüsenzellen. Erklärung im Texte.

Tafel XIX.

Schlauchförmige Duodenaldrüsen der Maus.

- Fig. 1. Drüsen im Längsschnitt (Flemming'sche Flüssigkeit, Safranin, alkoholische Chromsäurelösung, Damarharz). 760 d (1/12" homog. Immersion von Reichert). a, b Protoplasmazellen. c c' Paneth'sche Zellen. d Paneth'sche Zelle mit ganz feinen Körnchen und Schleiminhalt. e ausgewachsene Schleimzelle. f Mitose.
- Fig. 2. Cylindrische Zellen (Hermann'sche Flüssigkeit, Hämatoxylin, Alkohol mit HCl, Damarharz). 840 d. (Apochr. 1,5 mm von Zeiss). A aus einer Drüse, nahe deren Blindsack. B von

einer Zotte, in kurzer Entfernung von deren Gipfel; zwischen den Protoplasmazellen sieht man eine schleimbereitende Zelle, bei welcher der Schleim nur das oberflächliche Drittel des Körpers einnimmt.

- Fig. 3. Tangentialschnitt vom Drüsenblindsack (Flemming'sche Flüssigkeit, Methylenblau). Vergrösserung wie in vorhergehender Figur. aa Paneth'sche Zellen; in einer ist der Kern nicht sichtbar. b b Paneth'sche Zellen mit Körnchen, die kleiner sind als in den vorhergehenden Zellen; die zwischen den Körnchen liegende Substanz am freien Ende der Zelle färbt sich schön blau (Reaction der Schleimsubstanz). c Zelle mit sehr feinen Körnchen, die zwischen den Körnchen liegende Substanz ist wirkliche Schleimsubstanz.
- Fig. 4. Drüse, dem Thiere 2 Stunden nach dem Tode entnommen und mittelst Zerzupfens in Müller'scher Flüssigkeit untersucht. — aa schleimbereitende Zellen, deren Körnchen viel weniger markirte Umrisse haben als die der Paneth'schen Zellen bb.
- Fig. 5. Elemente einer Drüse (Flemming'sche Flüssigkeit, Safranin, Damarharz). 840 d. (Apochr. 1,5 mm von Zeiss). a Epithelzellen ihrer Länge nach durchschnitten; zwischen ihnen gewahrt man eine schleimbereitende Zelle mit ganz feinen Paneth'schen Körnchen. b b b schleimbereitende Zellen, wie die vorhergehenden, aber im optischen Querschnitt gesehen; die Paneth'schen Körnchen variiren in der Grösse in den verschiedenen Zellen.
- Fig. 6. Schleimbereitende Zellen aus einer Drüse. Von den Zellen sieht man nur das Schleimklümpehen (Hermann'sche Flüssigkeit, Safranin, Hämatoxylin, Damarharz). 1200 d. etwa (Apochr. 1,5 mm von Zeiss). a ausgewachsenes Schleimklümpehen; die Körnchen sind alle mit Hämatoxylin gefärbt. b von einer jungen Schleimzelle: das Schleimklümpehen besteht aus Körnchen, die mit Hämatoxylin, und aus anderen kleineren, die intensiv mit Safranin gefärbt sind.
- Fig. 7. Paneth'sche Zellen (Flemming'sche Flüssigkeit, Safranin, Damarharz). 1000 d. (Apochr. 1,5 mm von Zeiss).

Darmschleimhaut des Tritons.

- Fig. 8. Zwei Längsfalten der Schleimhaut aus dem hinteren Darmabschnitt, nur etwas vergrössert gezeichnet.
- Fig. 9. Querschnitt vom Darm, in geringer Entfernung vom Magen (Pikrinsäure, Safranin, alkoholische Chromsäurelösung, Da-

- marharz). 22 d. Man sieht quer oder schräg durchschnittene Falten.
- Fig. 10. Von einem Querschnitt (Hermann'sche Flüssigkeit, Vesuvin, Damarharz). 110 d. Man sieht zwei quer durchschnittene und mit aus Protoplasma- und Schleimzellen bestehendem Epithel bekleidete Falten. a Muskelschicht. b Schleimhaut. ccc Ersatzzellennester.
- Fig. 11. Von einem Querschnitt des Darms (Hermann'sche Flüssigkeit, Vesuvin, Damarharz). A Epithel in geringer Entfernung von dem Scheitel einer Falte. In der Schleimzelle zeigt der Schleim zum Theil noch eine körnige Structur. Links von derselben sieht man eine Protoplasmazelle, welche drei runde Körperchen (enclaves) enthält, von denen zwei sich wenig, das dritte dagegen in einem Theil seiner Substanz sich intensiv mit Vesuvin gefärbt hatten. Rechts von der Schleimzelle sieht man einen Leukocyt, der in einer in den Körper zweier Protoplasmazellen gegrabenen Höhle liegt. B Epithel einer Wölbung (Fornix). In der Tiefe sieht man zwei Ersatzzellenkerne. Von den beiden Schleimzellen hat die eine deutliche, die andere weniger deutliche Schleimkörnchen.
- Fig. 12. Von einem Querschnitt des Darms, in kurzer Entfernung vom After (Pikrinsäure, Safranin, Zucker). 110 d. Man sieht eine Falte der Schleimhaut. a und b Muskelschichten. c Schleimhaut. ddd Blutgefässe. ee Schleimzellen in der Länge oder schräg durchschnitten. In f hat der Schnitt das Epithel etwas schief getroffen. g g g subepitheliale Sprossen.
- Fig. 13. Ein Theil der vorhergehenden Figur. 270 d. a Oberflächenepithel, das in a' etwas schief durchschnitten ist. b b ausgewachsene Schleimzellen. c, c', c" subepitheliale Sprossen. In c und c' sieht man zwei Zellen, die bereits Schleim absondern, welcher aus kastaniengelb gefärbten Körnchen bestand, während er hier (um die Farbe zu ersparen) als dunkle homogene Masse gezeichnet wurde.
- Fig. 14. Drei Schleimzellen aus einem Querschnitt des Darms (Pikrinsäure, Safranin, Zucker). 700 d. (Apochr. 1,5 mm von Zeiss).

 a ganz junge Zelle, die in einem subepithelialen Zapfen ihren Sitz hatte. b junge Zelle vom tiefsten Theil einer Fornix. c ausgewachsene Zelle vom Scheitel einer Falte. Im Präparat ist der Schleim in a und b unter der Form von kastaniengelb gefärbten Körnchen; in c dagegen sind nur noch einige gelb gefärbte Körnchen erhalten, die anderen sind unter dem Einfluss der Zuckerlösung blass geworden und haben fast gänzlich die hellgelbe Farbe verloren, die sie unter dem Einfluss des Safranins angenommen hatten; dagegen kommt das zwischen ihnen liegende Netzwerk zur Erscheinung.

Ueber die schlauchförmigen Drüsen des Magendarmkanals etc. 375

- Fig. 15. Junge Schleimzelle aus dem tiefsten Theil einer Fornix. Starke Vergrösserung. — Erklärung im Texte.
- Fig. 16. Mitose in den oberflächlichen Epithelzellen (Pikrinsäure, Safranin, Alkohol, Damarharz). 250 d. Die Epithelschicht ist schräg durchschnitten; die Umrisse der einzelnen Epithelzellen sind nicht deutlich zu sehen.
- Fig. 17. In Mitosis befindliche Zelle zwischen den Ersatzzellen der tiefen Schicht des Oberflächenepithels (Flemming'sche Lösung, Safranin, Damarharz). 390 d. Das Epithel war etwas schräg durchschnitten worden; die Umrisse seiner Zellen sind nicht deutlich zu schen.

(Aus dem histolog. Laboratorium der I. medizinischen Klinik Prof. v. Korányi's in Budapest.)

Studien über den Bau des Chromatins in der sympathischen Ganglienzelle.

Von

Dr. Friedrich Vas

an der I. medizinischen Klinik.

Hierzu Tafel XX.

Die Methode Nissl's 1) zur Darstellung der Chromatinstructur an der Nervenzelle kann man derzeit als die zuverlässigste betrachten. Die Wichtigkeit dieser Methode muss anerkannt werden, wenn man bedenkt, dass es bisher unmöglich war, eine scharfe Grenze zwischen physiologischen Zuständen

¹⁾ Nissl, Tageblatt der 58. Versammlung Deutscher Naturforscher und Aerzte. 1885. Strassburg.