Skip to main content
Log in

In situ monitoring of biofilm formations ofEscherichia coli andPseudomonas putida by use of lux and GFP reporters

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A plasmid vector containing two reporter genes,mer-lux andlac-GFP, was transformed to bothEscherichia coli andPseudomonas putida. Their cellular activities and biofilm characteristics were investigated in flow-cell units by measuring bioluminescent lights and fluorescent levels of GFP. Bioluminescence was effective to monitor temporal cell activities, whereas fluorescent level of GFP was useful to indicate the overall cell activities during biofilm development. The light production rates ofE. coli andP. putida cultures were dependent upon concentrations of HgCl2. Mercury molecules entrapped inP. putida biofilms were hardly washed out in comparison with those inE. coli biofilms, indicating thatP. putida biofilms may have higher affinity to mercury molecules thanE. coli biofilms. It was observed thatP. putida expressed GFP cDNA in biofilms but not in liquid cultures. This may indicate that the genetic mechanisms ofP. putida were favorably altered in biofilm conditions to make a foreign gene expression possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Blenkinsopp, S. A. and J. W. Costerton (1991) Understanding bacterial biofilms.Trends. Biotech. 9: 138–143.

    Article  Google Scholar 

  2. Melo, L. F., T. R. Bott, M. Fletcjer, and B. Capdeville (1992) Biofilms-science and technology. NATO ASI series E, vol. 223, Kluwer Academic Publishers, London.

    Google Scholar 

  3. Lyttle, H. A. and G. H. Bowden (1993) The level of mercury in human dental plaque and interaction in vitro between biofilms ofStreptococcus mutants and dental amalgam.J. Dent. Res. 72:1320–1324.

    CAS  Google Scholar 

  4. Brown, M. and J. N. Lester (1979) Metal removal in activated sludge: the role of bacterial extracellular polymers.Wat. Res. 13: 817–837.

    Article  CAS  Google Scholar 

  5. Hintelmann, H., R. Ebinghaus, and R. D. Wilken (1993) Accumulation of mercury (II) and methylmercury by microbial biofilms.Wat. Res. 27: 237–242.

    Article  CAS  Google Scholar 

  6. Silver, S. and T. K. Misra (1988) Plasmid-mediated heavy metal resistances.Ann. Rev. Microbiol. 42: 717–743.

    Article  CAS  Google Scholar 

  7. Condee, C. W. and A. O. Summers (1992) Amerlux transcriptional fusion for real-time examination ofin vivo gene expression kinetics and promoter response to altered superhelicity.J. Bacteriol. 174: 8094–8101.

    CAS  Google Scholar 

  8. Virta, M., J. Lampinen, and Karp, M.. (1995) A luminescence-based mercury biosensor.Anal. Chem. 67: 667–669.

    Article  Google Scholar 

  9. Freitas dos Santos, L. M. and A. G. Livingston (1995) Membrane-attached biofilms for VOC wastewater treatment 1: Novelin situ biofilm thickness measurement technique.Biotechnol. Bioeng. 47: 82–89.

    Article  Google Scholar 

  10. Chalfie, M., Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher (1994) Green fluorescent protein as a marker for gene expression.Science. 203: 802–805.

    Article  Google Scholar 

  11. Crameri, A., E. A. Whitehorn, E. Tate, and W. P. C. Stemmer (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling.Nat. Biotechnol. 14: 315–319.

    Article  CAS  Google Scholar 

  12. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (1994) Current protocols in molecular biology, John Wiley & Sons, Inc., New York.

    Google Scholar 

  13. Selifonova, O., R. Burlage, and T. Barkay (1993) Bioluminescence sensors for detection of bioavailable Hg(II) in the environment.Appl. Environ. Microbiol. 59: 3083–3090.

    CAS  Google Scholar 

  14. Stewart, P. S., A. K. Camper, S. D. Handran, C.-T. Huang, and M. Warnecke (1977) Spatial distribution and coexistence ofKlebsiella pneumoniae andPseudomonas aeruginosa in biofilms.Microb. Ecol. 33: 2–10.

    Article  Google Scholar 

  15. Lawrence, J. R., P. J. Delaquis, D. R. Korber, and D. E. Caldwell (1987) Behaviour ofPseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments.Microb. Ecol. 14: 1–14.

    Article  CAS  Google Scholar 

  16. DeBeer, D., P. Stoodley, and Z. Lewandowski (1997) Measurements of local diffusion coefficients in biofilms by microinjection and confocal microscopy.Biotechnol. Bioeng. 53: 151–158.

    Article  CAS  Google Scholar 

  17. Srinivasan, R., P. S. Stewart, T. Griebe, C. I. Chen, and X. Xu (1995) Biofilm parameters influencing biocide efficacy.Biotechnol. Bioeng. 46: 553–560.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ho Khang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khang, YH., Burlage, R.S. In situ monitoring of biofilm formations ofEscherichia coli andPseudomonas putida by use of lux and GFP reporters. Biotechnol. Bioprocess Eng. 3, 6–10 (1998). https://doi.org/10.1007/BF02932475

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932475

Key words

Navigation