Skip to main content
Log in

Rhodotorula mucilaginosa, a carotenoid producing yeast strain from a patagonian high-altitude lake

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The red yeastRhodotorula mucilaginosa strain CRUB 0138 (previously identified asR. lactosa) was isolated from a high-altitude Patagonian Lake Toncek (1700 m a.s.l.), and assigned withmucilaginosa species. Its biochemical, physiological and molecular features were assessed and compared toR. mucilaginosa PYCC 5166 type strain using a polyphasic approach; in addition, biomass and carotenoid pigment production at different C/N ratios were determined in an incubator shaker. Phenetic characterization by means of 70 current physiological tests including assimilation of aldaric acids and aromatic compounds, and also the ability to grow with amino acids as sole carbon sources, was carried out. According to numerical taxonomy calculations, similarity indexes betweenR. mucilaginosa CRUB 0138 and PYCC 5166 type strain were 0.86 and 0.77, corresponding to a complete set of physiological tests and MSP-PCR (Mini/Micro Satellite Primed PCR; (GTG)5, M13 and (GAC)5 primers were employed) fingerprinting. Killer activity against 2 native strains,Rhodosporidium kratochvilovae andR. mucilaginosa was detected. Maximum biomass-glucose conversion efficiency (87%) and maximum carotenoid yield (2.32 mg/L) were obtained at C/N=5 in culture medium containing 10 and 40 g/L glucose, respectively. Different C/N ratios did not influence carotenoid pigment production but low C/N enhanced biomass yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bogoev V.M., Kenarova A.E., Vasilev V.L., Gyosheva M.M.: Quantitative distribution of microbial biomass in the soil profile of a high-mountain grassy ecosystem.Folia Microbiol.47, 56–60 (2002).

    Article  CAS  Google Scholar 

  • Brizzio S., van Broock M.: Characterization of wild yeast killer from Nahuel Huapi National Park (Patagonia, Argentina).J.Food Technol.Biotechnol.4, 273–278 (1998).

    Google Scholar 

  • Buzzini P., Rubinstein L., Martini A.: Production of yeast carotenoids by using agro-industrial by-products.Agro-Industry Hi-Tech.12, 7–10 (2001).

    Google Scholar 

  • Fell J.W., Statzell-Tallman A.:RhodotorulaF.C. Harrison, pp. 800–827 in C.P. Kurtzman, J.W. Fell (Eds):The Yeasts, a Taxonomic Study, 4th ed. Elsevier Science, Amsterdam 1998.

    Google Scholar 

  • Flores-Costera L.B., Martin, R., Sanchez S.: Citrate, a possible precursor of astaxanthin inPhaffia rhodozyma: influence of varying levels of ammonium, phosphate and citrate in a chemically defined medium.Appl.Microbiol.Biotechnol.55, 341–347 (2001).

    Article  Google Scholar 

  • Fonseca A.: Utilization of tartaric acid and related compounds by yeasts: taxonomic implications.Can.J.Microbiol.38, 1242–1251 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Frengova G., Simova E., Pavlova K., Beshkova D.: Formation of carotenoids byRhodotorula glutinis in whey ultrafiltrate.Biotechnol.Bioeng.44, 888–894 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Frengova G., Simova E., Beshkova D.: Effect of temperature changes on the production of yeast pigments co-cultivated with lactic-acid bacteria in hey ultrafiltrate.Biotechnol.Lett.17, 1001–1006 (1995).

    Article  CAS  Google Scholar 

  • Gadanho M., Sampaio J.P.: Polyphasic taxonomy of the basidiomycetous yeast genusRhodotorula: Rh. glutinis sensu stricto andRh. dairenensis comb.nov.FEMS Yeast Res.2, 47–58 (2002).

    PubMed  CAS  Google Scholar 

  • Gadanho M., Almeida J.M.G.C.F., Sampaio J.P.: Assessment of yeast diversity in aquatic environmental samples by microsatellite-primed PCR.Antonie van Leeuwenhoek84, 217–227 (2003).

    Article  PubMed  CAS  Google Scholar 

  • de Haan A., Burke R.M., de Bont J.A.M.: Microbial production of food colorants.Med.Fac.Landbouww Rijksuniv.Gent56, 1655–1660 (1991).

    Google Scholar 

  • Hagler A.N., Ahearn D.G.: Ecology of aquatic yeast, pp. 181–205 in A.H. Rose, J.S. Harrison (Eds):The Yeasts, Vol. I, 2nd ed. Academic Press, London 1987.

    Google Scholar 

  • Kakizono T., Kobayashi M., Nagai S.: Effect of carbon nitrogen on encystment accompanied with astaxanthin formation in a green alga,Haematococus pluvialis.J.Ferment.Bioeng.74, 403–405 (1992).

    Article  CAS  Google Scholar 

  • Libkind D., Brizzio S., Ruffini A., Gadanho M., van Broock M., Sampaio J.P.: Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina.Antonie van Leeuwenhoek84, 313–322 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Marová I., Breierová E., Slovák B., Kočí R., Pokorná J., Omelková J.: Comparison of carotenoid production by some yeast strains under stress conditions.Folia Microbiol.46, 248 (2001).

    Google Scholar 

  • Meyer W., Mitchell T.G., Freedman E.Z., Vilgalys R.: Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains ofCryptococcus neoformans.J.Clin.Microbiol.31, 2274–2280 (1993).

    PubMed  CAS  Google Scholar 

  • Modenutti B.E.: Summer population ofHexarthra bulgarica in a high elevation lake of south Andes.Hydrobiologia259, 33–37 (1994).

    Article  Google Scholar 

  • Nelis H.J., De Leenheer A.P.: Microbial sources of carotenoid pigments used in foods and feeds.J.Appl.Bacteriol.70, 181–191 (1991).

    CAS  Google Scholar 

  • Pavlova K., Grigorova D., Hristozova T., Angelov A.: Yeast strains from Livingston Island, Antarctica.Folia Microbiol.46, 397–401 (2001).

    Article  CAS  Google Scholar 

  • Perrier V., Dubreucq E., Galzy P.: Fatty acid and carotenoid composition ofRhodotorula strains.Arch.Microbiol.164, 173–179 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Rayner R.W.:A Mycological Color Chart. Commonwealth Mycological Institute and British Mycological Society, London 1970.

    Google Scholar 

  • Sakaki H., Nochide H., Nakanishi T., Miki W., Fujita T., Komemushi S.: Effect of culture condition on the biosynthesis of carotenoids inRhodotorula glutinis no. 21.Seibutsukogaku77, 55–59 (1999).

    CAS  Google Scholar 

  • Sampaio J.P.: Utilization of low molecular weight aromatic compounds by heterobasidiomycetous yeasts: taxonomic implications.Can.J.Microbiol.45, 491–512 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Sampaio J.P., Gadanho M., Santos S., Duarte F., Pais C., Fonseca A., Fell J.W.: Polyphasic taxonomy of the genusRhodosporidium: R. kratochvilovae and related anamorphic species.Internat.J.Syst.Evol.Microbiol.51, 687–697 (2001).

    CAS  Google Scholar 

  • Sedmark J.J., Weerasinghe D.K., Jolly S.O.: Extraction and quantitation of astaxanthin fromPhaffia rhodozyma.Biotech.Technol.4, 107–112 (1990).

    Article  Google Scholar 

  • Shih C., Hang Y.: Production of carotenoids byRhodotorula rubra from sauerkraut brine.Lebensm.Wissen.Technol.29, 570–572 (1995).

    Article  Google Scholar 

  • Simpson K.L., Nakayama T.O.M., Chichester C.O.: Biosynthesis of yeast carotenoids.J.Bacteriol.88, 1688–1694 (1964).

    PubMed  CAS  Google Scholar 

  • Slovák B., Kočí R., Márová I., Pokorná J., Drdák M.: Oxidative stress influences the content and composition of carotenoids produced byRhodotorula glutinis.Folia Microbiol.46, 254–255 (2001).

    Google Scholar 

  • Somashekar D., Joseph R.: Inverse relationship between carotenoid and lipid formation inRhodotorula gracilis according to the C/N ratio of the growth medium.World J.Microbiol.Biotechnol.16, 491–493 (2000).

    Article  CAS  Google Scholar 

  • Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J.: Polyphasic taxonomy, a consensus approach to bacterial systematics.Microbiol.Rev.60, 407–438 (1996).

    PubMed  CAS  Google Scholar 

  • Yamane Y., Higashida K., Nakashimada Y., Kakizono T., Nishio N.: Influence of oxygen and glucose on primary metabolism and astaxanthin production byPhaffia rhodozyma in batch and fed-batch cultures: kinetic and stoichiometric analysis.Appl.Environ.Microbiol.63, 4471–4478 (1997).

    PubMed  CAS  Google Scholar 

  • Yarrow D.: Methods for the isolation, maintenance and identification of yeasts, pp. 77–100 in C.P. Kurtzman, J.W. Fell (Eds):The Yeasts, a Taxonomic Study, 4th ed. Elsevier Science, Amsterdam 1998.

    Google Scholar 

  • Zagarese H.E., Tartarotti B., Cravero W., Gonzalez P.: UV damage in shallow lakes: the implications of water mixing.J.Plankton Res.20, 1423–1433 (1998).

    Article  Google Scholar 

  • Zagarese H.E., Díaz M., Queimaliños C., Pedrozo F., Úbeda C.: Mountain lakes in northwestern Patagonia.Verh.Internat.Verein.Limnol.27, 1–6 (1999).

    Google Scholar 

  • Zhang X.J., Yao T.D., Ma X.J., Wang N.L.: Microorganisms in a high altitude glacier ice in Tibet.Folia Microbiol.47, 241–246 (2002).

    Article  CAS  Google Scholar 

  • Zlatanov M., Pavlova K., Grigorova D.: Lipid composition of some yeast strains from Livingston Island, Antarctica.Folia Microbiol.46, 402–406 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Libkind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libkind, D., Brizzio, S. & van Broock, M. Rhodotorula mucilaginosa, a carotenoid producing yeast strain from a patagonian high-altitude lake. Folia Microbiol 49, 19–25 (2004). https://doi.org/10.1007/BF02931640

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931640

Keywords

Navigation