Skip to main content
Log in

Immobilization of a lactase onto a magnetic support by covalent attachment to polyethyleneimine-glutaraldehyde-activated magnetite

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A magnetic immobilized lactase has been prepared using magnetite as the magnetic material. Magnetite was functionalized by treatment with polyethyleneimine and crosslinked with glutaraldehyde. Lactase was then covalently coupled to the activated magnetic matrix via the aldehyde groups. The conditions for optimal immobilization of enzyme are described. Eighty percent of the lactase activity was lost on immobilization and is thought to be owing to the orientation of enzyme binding to the matrix. The amount of protein coupled was 80% of that applied. The maximum lactase activity retained on the matrix following immobilization was 360 U/g matrix. The immobilized lactase showed optimal activity at pH 4.5 and 65 °C. The immobilized lactase was more heat stable than the free enzyme, and retained 83% of its original activity after 14 d at 55 °C. Galactose competitively inhibited the immobilized lactase preparation (Ki 20 mM). The presence of high initial concentrations of galactose (10% w/v) did not prevent total hydrolysis of lactose. Glucose and calcium ions were activators of the immobilized enzyme. The immobilized enzyme hydrolyzed high concentrations of lactose (up to 25% w/v) to completion within 4–6 h in a stirred batch reactor at 55 °C. There was no evidence of substrate inhibition at high substrate concentrations. The efficiency of hydrolysis of lactose by the immobilized lactase was better than that of the free enzyme. The magnetic immobilized lactase was demonstrated to be suitable for use in the enzymatic hydrolysis of both pure, and cheese whey permeate, lactose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hailing, P. J. and Dunnill, P. (1980),Enzyme Microb. Technol. 2, 2–10.

    Article  Google Scholar 

  2. Bolto, B. A. (1983),Prog. Polym. Sci. 9, 89–114.

    Article  CAS  Google Scholar 

  3. Methods in Enzymology, Volume XLIV,Immobilized Enzymes,K. Mosbach, ed., Academic, New York, 1976.

    Google Scholar 

  4. Weetall, H. H. (1976),Meth. Enzymol. 44, 134–148.

    Article  CAS  Google Scholar 

  5. Aizawa, M., Coughlin, R. W., and Charles M. (1975),Biotechnol. Bioeng. 17, 1369–1372.

    Article  CAS  Google Scholar 

  6. Jacobson, B. S., Cronin, J., and Branton, D. (1978),Biochim. Biophys. Acta 506, 81–96.

    Article  CAS  Google Scholar 

  7. Muzzarelli, R. A. A. (1985),The Polysaccharides, G. O. Aspinall, ed., Academic, NY,3, pp. 417–450.

    Google Scholar 

  8. Levy, J. and Fusee, M. C. (1979), US Patent 4,141,857.

  9. Wasserman, B.P., Hultin, H. O., and Jacobson, B. S. (1980),Biotechnol.Bioeng. 22, 271–287.

    Article  CAS  Google Scholar 

  10. Kennedy, J. F. and Cabral, J. M. S. (1985),Immobilized Cells and Enzymes: A Practical Approach, J. Woodward, ed., IRL Press, Oxford, pp. 19–37.

    Google Scholar 

  11. Van Leemputten, E. and Horisberger, M. (1977),Biotechnol. Bioeng. 16, 385–396.

    Article  Google Scholar 

  12. Munro, P. A., Dunnill, P. and Lilly, M. D. (1977),Biotechnol. Bioeng. 19, 101–124.

    Article  CAS  Google Scholar 

  13. Robinson, P. J., Dunnill, P., and Lilly, M. D. (1973),Biotechnol. Bioeng. 14, 603–606.

    Article  Google Scholar 

  14. Kennedy, J. F., Barker, S. A., and White, C. A. (1977),Carbohyd. Res. 54, 1–12.

    Article  CAS  Google Scholar 

  15. Clark, D. S., Bailey, J. E., Yen, R., and Rembaum, A. (1984),Enzyme Microb.Technol. 6, 317–320.

    Article  CAS  Google Scholar 

  16. Burns, M. A., Kvesitadze, G. I., and Graves, D. J. (1985),Biotechnol. Bioeng. 27, 137–145.

    Article  CAS  Google Scholar 

  17. DeFillippi, L. J. (1982), US Patent 4,343,901.

  18. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. (1951),J.Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  19. Hartree, E. F. (1972),Anal. Biochem. 48, 422–427.

    Article  CAS  Google Scholar 

  20. Dekker, R. F. H. (1986),Biotechnol. Bioeng. 28, 1438–1442.

    Article  CAS  Google Scholar 

  21. Dekker, R. F. H. (1983),Biotechnol. Bioeng. 25, 1127–1146.

    Article  CAS  Google Scholar 

  22. Cowan, D. A., Daniel, R. M., Martin, A. M., and Morgan, H. W. (1984),Biotechnol. Bioeng. 26, 1141–1145.

    Article  CAS  Google Scholar 

  23. Weetall, H. H., Havewala, N. B., Pitcher, W. H., Detar, C. C, Vann, W. P., and Yaverbaum, S. (1974),Biotechnol. Bioeng. 16, 689–696.

    Article  CAS  Google Scholar 

  24. Harju, M., Heikonen, M., Kreula, M., and Linko, M. (1980),Food Process Engineering, P. Linko, and J. Larinkari, eds., Applied Science Publishers, London,2, pp. 133–136.

    Google Scholar 

  25. Gekas, V. and Lopez-Leiva, M. (1985),Proc. Biochem. 20, 2–12.

    CAS  Google Scholar 

  26. Sarto, V., Marzetti, A., and Focher, B. (1985),Enzyme Microb. Technol. 7, 515–520.

    Article  CAS  Google Scholar 

  27. Weetall,H. H., Havewala, N. B., Pitcher, W. H., Detar, C. C, Vann, W. P., and Yaverbaum, S. (1974),Biotechnol. Bioeng. 16, 295–313.

    Article  CAS  Google Scholar 

  28. Deschavanne, P. J., Viratelle, O. M., and Yon, J. M. (1978),J. Biol. Chem. 253, 833–837.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dekker, R.F.H. Immobilization of a lactase onto a magnetic support by covalent attachment to polyethyleneimine-glutaraldehyde-activated magnetite. Appl Biochem Biotechnol 22, 289–310 (1989). https://doi.org/10.1007/BF02921763

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921763

Index Entries

Navigation