Skip to main content
Log in

Macrophage-directed lymphokines

  • Published:
Survey of Immunologic Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kelso, A.; MacDonald, H.R.: Precursor frequency analysis of lymphokine secreting alloreactive T lymphocytes. Dissociation of subsets producing interleukin 2, macrophage-activating factor, and granulocyte-macrophage colony-stimulating factor on the basis of Lyt-2 phenotype. J. exp. Med.156: 1366–1379(1982).

    Article  PubMed  CAS  Google Scholar 

  2. Miura, K.; Shimokawa, Y.; Honda, M.; Hayashi, H.: Lyt phenotype of lymphocytes producing murine macrophage chemotactic lymphokine. Cell. Immunol.75: 383–389 (1983).

    Article  PubMed  CAS  Google Scholar 

  3. Whitten, H.D.; Cruse, J.M.; Fudenberg, H.H.: Activation of macrophages by in vitro aUostimulated T ceils. Scand. J. Immunol.17: 335–343 (1983).

    Article  PubMed  CAS  Google Scholar 

  4. Guerne, P.A.; Piguet, P.F.; Vassalli, P.: Positively selected Lyt-2+ and Lyt-2- mouse T lymphocytes are comparable, after con A stimulation, in release of IL-2 and of lymphokines acting on B cells, macrophages, and mast cells, but differ in interferon production. J. Immun.130: 2225–2230 (1983).

    PubMed  CAS  Google Scholar 

  5. Zlotnik, A.; Roberts, W.K.; Vasil, A.; Blumenthai, E.; LaRosa, F.; Leibson, H.J.; Endres, R.O.;Graham, S.D., Jr.; White, J.; Hill, J.; Henson, P.;Klein, J.R.; Bevan, M.J.; Marrack, P.; Kappler, J.W.: Coordinate production by a T cell hybridoma of gamma interferon and three other lym phokine activities: multiple activities of a single- lymphokine ? J. Immun.131: 794–800 (1983).

    PubMed  CAS  Google Scholar 

  6. Higuchi, M.; Asada, M.; Kobayashi, Y.; Osawa, T.: Human T-cell hybridomas producing migration inhibitory factor and macrophage activating factors. Cell. Immunol.78: 257–265 (1983).

    Article  PubMed  CAS  Google Scholar 

  7. Le, J.; Vilchek, J.; Sadlik, J.R.; Cheung, M.K.; Balazs, I.; Sarngadharan, M.G.; Prensky, W.: Lymphokine production by human T cell hybridomas. J. Immun.130: 1231–1235 (1983).

    PubMed  CAS  Google Scholar 

  8. Remold, H.G.; Mednis, A.; Kawaguchi, T.; Bersch, N.; Golde, D.W.: Production of migration inhibitory factor by a human T-lymphoblast cell line. Cell. Immunol.78: 305–313 (1983).

    Article  PubMed  CAS  Google Scholar 

  9. Yamamoto, S.; Leonard, E.J.; Meltzer, M.: Molecular weight, isoelectric point, and stability of a murine lymphokine that induces macrophage tumoricidal activity. J. reticuloendoth. Soc.33: 343–351 (1983).

    CAS  Google Scholar 

  10. Ramb, C.; Malorny, U.; Feige, U.; Sorg, C.: Characterization of human lymphocyte derived chemotactic factors for mononuclear phagocytes I. Pro- duction and detection. Molec. Immunol.20: 317- 324 (1983).

    Article  CAS  Google Scholar 

  11. Ramb, C.; McEntire, J.E.; Sorg, C.: Characterization of human lymphocyte derived chemotactic factors for mononuclear phagocytes. II. Chemical characterization. Molec. Immunol.20: 325–332 (1983).

    Article  CAS  Google Scholar 

  12. Geczy, C.L; Farram, E.; Moon, D.K.; Meyer, P.A.; McKenzie, I.F.: Macrophage procoagulant activity as a measure of cell-mediated immunity in the mouse. J. Immun.130: 2743–2749 (1983).

    PubMed  CAS  Google Scholar 

  13. Farram, E.; Geczy, C.L.; Moon, D.K.; Hopper, K.: The ability of lymphokine and lipopolysaccharide to induce procoagulant activity in mouse macrophage cell lines. J. Immun.130: 2750–2756 (1983).

    PubMed  CAS  Google Scholar 

  14. Helin, H.J.; Fox, R.I.; Edgington, T.S.: The instructor cell for the human procoagulant monocyte response to bacterial lipopolysaccharide is a Leu3a+ T cell by fluorescence-activated cell sorting. J. Immun.131: 749–752 (1983).

    PubMed  CAS  Google Scholar 

  15. Steeg, P.S.; Moore, R.N.; Johnson, H.M.; Oppenhelm, J.J.: Regulation of murine macrophage Ia antigen expression by a lymphokine with immune interferon activity. J. exp. Med.156: 1780–1793 (1982).

    Article  PubMed  CAS  Google Scholar 

  16. King, D.P.; Jones, P.P.: Induction of Ia and H-2 antigens on a macrophage cell line by immune interferon. J. Immun.131: 315–318 (1983).

    PubMed  CAS  Google Scholar 

  17. Wong, G.H.; Clark-Lewis, I.; McKimm-Bresch- kin, L.; Harris, A.W.; Schrader, J.W.: Interferon- gamma induces enhanced expression of la and H-2 antigens on B lymphoid, macrophage, and myeloid cell lines. J. Immun.131: 788–793 (1983).

    PubMed  CAS  Google Scholar 

  18. Steeg, P.S.; Johnson, H.M.; Oppenheim, J.J.: Regulation of murine macrophage Ia antigen expression by an immune interferon-like lymphokine: inhibitory effect of endotoxin. J. Immun.129: 2402–2406(1982).

    PubMed  CAS  Google Scholar 

  19. Lu, C.Y.; Unanue, E.R.: Spontaneous T-cell lymphokine production and enhanced macrophage Ia expression and tumoilcidal activity in MRL-lpr mice. Clin. Immunol. Immunopathol.25:213–222 (1982).

    Article  PubMed  CAS  Google Scholar 

  20. Blumenthal, E.J.; Roberts, W.K.; Vasil, A.; Talmage, D.W.: Macrophage activation: dissociation of cytotoxic activity from Ia-A antigen expression. Proc. natn. Acad. Sci. USA80: 2031–2035 (1983).

    Article  CAS  Google Scholar 

  21. Guyre, P.M.; Morganelli, P.M.; Miller, R.: Recombinant immune interferon increases immunoglobulin G Fc receptors on cultured human mono- nuclear phagocytes. J. clin. Invest.72: 393–397 (1983).

    Article  PubMed  CAS  Google Scholar 

  22. Moscicki, R.A.; Amento, E.P.; Krane, S.M.; Kurnick, J.T.; Colvin, R.B.: Modulation of surface antigens of a human monocyte cell line, U937, during incubation with T lymphocyte-conditioned medium: detection of T4 antigen and its presence on normal blood monocytes. J. Immun.131: 743- 748 (1983).

    PubMed  CAS  Google Scholar 

  23. Foils, G.; Hauck, M.; Dezso, B.; Medgyesi, G.A.; Fust, G.: Effect of low molecular weight lymphokine components on the Fc and C3b receptor- mediated macrophage functions: Cell. Immunol.78: 276–284(1983).

    Article  Google Scholar 

  24. Coleman, D.L.; Root, R.K.; Ryan, J.L.: Enhancement of macrophage Fc-dependent phagocytosis by resident thymocytes: effect of a unique heat- stable lymphokine. J. Immun.130: 2195–2199 (1983).

    PubMed  CAS  Google Scholar 

  25. Clement, L.T.; Lehmeyer, J.E.: Regulation of the growth and differentiation of a human monocytic cell line by lymphokines. I. Induction of superox- ide anion production and chemiluminescence. J. Immun.130: 2763–2766 (1983).

    PubMed  CAS  Google Scholar 

  26. Onozaki, K.; Akagawa, K.S.; Haga, S.; Miura, K.; Hashimoto, T.; Tokunaga, T.: Role of lymphokines in regulation of macrophage differentiation. Cell. Immunol.76: 129–136 (1983).

    Article  PubMed  CAS  Google Scholar 

  27. Meltzer, M.S.; Benjamin, W.R.; Farrar, J.J.: Macrophage activation for tumor cytotoxicity: induction of macrophage tumoricidal activity by lymphokines from EL-4, a continuous T cell line. J. Immun.129: 2802–2807 (1982).

    PubMed  CAS  Google Scholar 

  28. Nacy, C.A.; James, S.L.; Benjamin, W.R.; Farrar, J.J.; Hockmeyer, W.T.; Meltzer, M.S.: Activation of macrophages for microbicidal and tumoilcidal effector functions by soluble factors from EL-4, a continuous T cell line. Infect. Immunity40: 820- 824(1983).

    CAS  Google Scholar 

  29. Gemsa, D.; Debatin, K.M.; Kramer, W.; Kubelka, C.; Deimann, W.; Kees, U.; Krammer, P.H.: Macrophage-activating factors from different T cell clones induce distinct macrophage functions. J. Immun.131: 833–844 (1983).

    PubMed  CAS  Google Scholar 

  30. Tabor, D.R.; Saluk, P.H.: Differential activation of resident macrophage subsets with two sources of lymphokine preparations. Infect. Immunity40: 177–183(1983).

    CAS  Google Scholar 

  31. Johnson, W.J.; Marino, P.A.; Schreiber, R.D.; Adams, D.O.: Sequential activation of murine mono-nuclear phagocytes for tumor cytolysis: differential expression of markers by macrophages in the several stages of development. J. Immun.131: 1038- 1043 (1983).

    PubMed  CAS  Google Scholar 

  32. Dean, R.T.; Virelizier, J.L.: Interferon as a macrophage activating factor. I. Enhancement of cytotoxicity by fresh and matured human monocytes in the absence of other soluble signals. Clin. exp. Immunol.51: 501–510 (1983).

    PubMed  CAS  Google Scholar 

  33. Fischer, D.G.; Golightly, M.G.; Koren, H.S.: Potentiation of the cytolytic activity of peripheral blood monocytes by lymphokines and interferon. J. Immun.130: 1220–1225 (1983).

    PubMed  CAS  Google Scholar 

  34. Arenzana-Seisdedos, F.; Virelizier, J.L.: Interferons as macrophage-activating factors. II. Enhanced secretion of interleukin 1 by lipopolysac- charide-stimulated human monocytes. Eur. J. Immunol.13:437–440(1983).

    Article  PubMed  CAS  Google Scholar 

  35. Wisseman, C.L., Jr.; Waddell, A.: Interferon-like factors from antigen and mitogen-stimulated human leukocytes with antiilckettsial and cytolytic actions onRickettsia pronazekii infected human endothelial cells, fibroblasts, and macrophages. J. exp. Med.157: 1780–1793 (1983).

    Article  PubMed  CAS  Google Scholar 

  36. Pace, J.L.; Russell, S.W.; Tortes, B.A.; Johnson, H.M.; Gray, P.W.: Recombinant mouse gamma interferon induces the priming step in macrophage activation for tumor cell killing. J. Immun.130: 2011–2013 (1983).

    PubMed  CAS  Google Scholar 

  37. Pace, J.L.; Russell, S.W.; Schreiber, R.D.; Altman, A.; Katz, D.H.: Macrophage activation: priming activity from a T-cell hybridoma is attributable to interferon-gamma. Proc. natn. Acad. Sci. USA80: 3782–3786(1983).

    Article  CAS  Google Scholar 

  38. Mannel, D.N.; Falk, W.: Interferon gamma is required in activation of macrophages for tumor cytotoxicity. Cell. Immunol.79: 396–402 (1983).

    Article  PubMed  CAS  Google Scholar 

  39. Schreiber, R.D.; Pace, J.L.; Russell, S.W.; Altman, A.; Katz, D.H.: Macrophage activating factor produced by a T cell hybridoma: physiochemical and biosynthetic resemblance to gamma-interferon. J. Immun.131: 826–832 (1983).

    PubMed  CAS  Google Scholar 

  40. Nathan, C.F.; Murray, H.W.; Wiebe, M.E.; Rubin, B.Y.: Identification of interferon-7 as the lympho- kine that activates human macrophage oxidative metabolism and antimicrobial activity. J. exp. Med.158: 670–689 (1983).

    Article  PubMed  CAS  Google Scholar 

  41. Kleinerman, E.S.; Schroit, A.J.; Fogler, W.E.; Fidler, I.J.: Tumoricidal activity of human monocytes activated in vitro by free and liposome- encapsulated human lymphokines. J. clin. Invest.72:304–315(1983).

    Article  PubMed  CAS  Google Scholar 

  42. Pidgeon, C.; Schreiber, R.D.; Schultz, R.M.: Macrophage activation: synergism between hybridoma MAF and poly(I). Poly(C) delivered by liposomes. J. Immun.131: 311–314 (1983).

    PubMed  CAS  Google Scholar 

  43. Ralph, P.; Nacy, C.A.; Meltzer, M.S.; Williams, N.; Nakoinz, I.; Leonard, E.J.: Colony-stimulating factors and regulation of macrophage tumoricidal and microbicidal activities. Cell. Immunol.76: 10–21 (1983).

    Article  PubMed  CAS  Google Scholar 

  44. James, S.L.; Leonard, E.J.; Meltzer, M.S.: Macrophages as effector cells of protective immunity in murine Schistosomiasis. IV. Coincident induction of macrophage activation for extracellular killing of schistosomula and tumor cells. Cell. Immunol.74: 86–96 (1982).

    Article  PubMed  CAS  Google Scholar 

  45. James, S.L.; Skamene, E.; Meltzer, M.S.: Macrophages as effector cells of protective immunity in murine Schistosomiasis. V. Variation in macrophage schistosomulacidal and tumoricidal activities among mouse strains and correlation with resistance to reinfection. J. Immun.131: 948–953 (1983).

    PubMed  CAS  Google Scholar 

  46. Byrne, G.I.; Faubion, C.L.: Inhibition ofChlamy diapsittaci in oxidatively active thioglycolate-elicited macrohages: distinction between lymphokine- mediated oxygen-dependent and oxygen-independent macrophage activation. Infect. Immunity40: 464–471 (1983).

    CAS  Google Scholar 

  47. Murray, H.W.; Byrne, G.I.; Rothermel, C.D.; Cartelli, D.M.: Lymphokine enhances oxygen-independent activity against intracellular pathogens. J. exp. Med.158: 234–239 (1983).

    Article  PubMed  CAS  Google Scholar 

  48. Murray, H.W.; Cartelli, D.M.: Killing of intracellularLeishmania donovani by human mononuclear phagocytes. Evidence for oxygen-dependent and -independent leishmanicidal activity. J. clin. Invest.72:32–44(1983).

    Article  PubMed  CAS  Google Scholar 

  49. Nacy, C.A.; Fortier, A.H.; Pappas, M.G.; Henry, R.R.: Susceptibility of inbred mice toLeishmania tropica infection: correlation of susceptibility with in vitro defective macrophage microbicidal activities. Cell. Immunol.77: 298–307 (1983).

    Article  PubMed  CAS  Google Scholar 

  50. Nakagawara, A.; Desantis, N.M.; Nogueira, N.; Nathan, C.F.: Lymphokines enhance the capacity of human monocytes to secrete reactive oxygen intermediates. J. clin. Invest.70: 1042–1048 (1982).

    Article  PubMed  CAS  Google Scholar 

  51. Beaman, L.; Benjamini, E.; Pappagianis, D.: Activation of macrophages by lymphokines: enhancement of phagosome-lysosome fusion and killing ofCoccidioides immitis. Infect. Immunity39: 1201–1207 (1983).

    CAS  Google Scholar 

  52. Leu, R.W.; Hefley, S.M.; Herriott, M.J.: Decreased Fc and C3 receptor function in macrophage populations which are refractory to migration inhibitory factor, C3 activators, and immune complex. Cell. lmmunol.80: 31–42 (1983).

    Article  CAS  Google Scholar 

  53. Homma, Y.; Onozaki, K.; Fukutomi, Y.; Hashimoto, T.: The mechanism of cell surface changes of guinea pig macrophages activated with purified migration inhibitory factor/macrophage activation factor. Cell. Immunol.72: 231–238 (1982).

    Article  PubMed  CAS  Google Scholar 

  54. Tushinski, R.J.; Stanley, E.R.: The regulation of macrophage protein turnover by a colony stimulating factor (CSF-1). J. cell. Physiol.116: 67–75 (1983).

    Article  PubMed  CAS  Google Scholar 

  55. Chen, B.D.; Hsu, S.; Lin, H.S.: Binding, internalization and degradation of colony-stimulating factor by peritoneal exudate macrophages. Biochim. biophys. Acta721: 366–373 (1982).

    Article  PubMed  CAS  Google Scholar 

  56. Guilbert, L.J.; Nelson, D.J.; Hamilton, J.A.; Williams, N.: The nature of 12-O-tetradecanoylphor- bol-13-acetate (TPA)-stimulated hemopoiesis, col- ony-stimulating factor (CSF) requirement for colony formation, and the effect of TPA on (125I)CSF- 1 binding to macrophages. J. cell. Physiol.115: 276–282 (1983).

    Article  PubMed  CAS  Google Scholar 

  57. Chen, B.D.; Lin, H.S.; Hsu, S.: Tumor-promoting phorbol esters inhibit the binding of colony-stimulating factor (CSF-1) to murine peritoneal exudate macrophages. J. cell. Physiol.116: 207–212 (1983).

    Article  PubMed  CAS  Google Scholar 

  58. Chen, B.D.; Lin, H.S.; Hsu, S.: Lipopolysaccharide inhibits the binding of colony-stimulating factor (CSD-1) to murine peritoneal exudate macrophages. J. Immun.130: 2256–2260 (1983).

    PubMed  CAS  Google Scholar 

  59. Abe, E.; Miyaura, C.; Tanaka, H.; Shiina, Y.; Kuribayashi, T.; Suda, S.; Nishii, Y.; DeLuca, H.F.; Suda, T.: la,25-Dihydroxy-vitamin D3 promotes fusion of mouse alveolar macrophages both by a direct mechanism and by a spleen cell mediated indirect mechanism. Proc. natn. Acad. Sci. USA80: 5583–5587 (1983).

    Article  CAS  Google Scholar 

  60. Wilkins, J.A.; Sigurdson, L.; Jordon, Y.; Rutherford, W.J.; Warrington, R.J.: Immunoregulatory factors from a human macrophage-like cell line. II. A human T-cell lymphokine-induced suppressor factor for lymphocyte proliferation. Cell. Immunol.77:329–337(1983).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D.Y. Macrophage-directed lymphokines. Surv. immunol. Res. 3, 154–160 (1984). https://doi.org/10.1007/BF02918783

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02918783

Keywords

Navigation