Skip to main content
Log in

Protease determination using an optimized alcohol enzyme electrode

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A new method for the determination of protease activities is described. In this large family, trypsin is used as a protease model that cleaves the enthyl or methyl ester of artificial substrates producing ethanol or methanol. Alcohol is detected using an alcohol oxidase enzyme electrode. The H2O2 production that occurs is measured amperometrically. At 30°C, in a 0.1M phosphate buffer, pH 7.5, the enzyme electrode response for ethanol was calibrated at 3.10−6–3.10−3 M and for methanol from 3.10−7 to 4.10−4 M in the cell measurement. Trypsin levels as determined by the proposed method and by a conventional spectrophotometric method are in good agreement when using the same measurement conditions. A detection limit of 10 U·L−1 and a linear calibration curve of 10–100,000 U·L−1 in the sample were obtained. Measuring time for the required trypsin solution concentration was from 4 min (for the most dilute samples) to 1 min (for the most concentrate samples). In a typical experiment, protease measurements did not inactivate the alcohol oxidase on the probe, nor did a more classical use for alcohol detection. The procedure developed could permit any protease estimation on the condition that they hydrolyze ester bonds from synthetic substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark, L. C., Jr. and Lyons, C. (1962),Ann. NY Acad. Sci. 102, 29–45.

    Article  CAS  Google Scholar 

  2. Guilbault, G. G. (1984),Analytical Uses of Enzymes, Marcel Dekker, New York.

    Google Scholar 

  3. Turner, A. P. F., Karube, I., and Wilson, G. S. (1987),Biosensors, Fundamentals and Applications, Oxford University Press, New York.

    Google Scholar 

  4. Romette, J. L. and Thomas, D. (1988), inMethods in Enzymology vol. 137, Mosback, K. ed., Academic, San Diego, CA, pp. 44–61.

    Google Scholar 

  5. Coughland, M. P., Kierstan, M. P. J., Border, P. M., and Turner, A. P. F. (1988),J. Microb. Meth. 8, 1–50.

    Article  Google Scholar 

  6. Schmid, R. D. and Scheller, F. (1989),Biosensors, Applications in Medicine, Environmental Protection and Process Control. GBF Monographs, vol. 13, VCH, New York.

    Google Scholar 

  7. Hall, E. A. H. (1990),Biosensors, Open University Press, Buckingham.

    Google Scholar 

  8. Buck, R. P., Hatfield, W. E., Umana, M., and Bowden, E. (1990), inBiosensor Technology, Fundamentals and Applications, Marcel Dekker, New York.

    Google Scholar 

  9. Coulet, P. R., Bardeletti, G., and Sechaud, F. (1991), inBioinstrumentation and Biosensors, Wise, D. L., ed., Marcel Dekker New York, pp. 755–795.

    Google Scholar 

  10. Guilbault, G. G., Suleiman, A. A., Fatibello-Filho, O., and Nabirahni, M. A., (1991), inBioinstrumentation and Biosensors, Wise, D. L., ed., Marcel Dekker, New York, pp. 659–692.

    Google Scholar 

  11. Blum, L. J. and Coulet, P. R. (1991),Biosensor Principles and Applications, Marcel Dekker, New York.

    Google Scholar 

  12. Nanjo, M. and Gulbault, G. G. (1975),Anal. Chim. Acta. 75, 169–180.

    Article  CAS  Google Scholar 

  13. Belgith, H., Romette, J. L., and Thomas, D. (1987),Biotech. Bioeng. 30, 1001–1005.

    Article  Google Scholar 

  14. Kitagawa, Y., Ameyama, M., Nakashima, K., Tamiya, E., and Karube, I. (1987),Analyst 112, 1747–1749.

    Article  CAS  Google Scholar 

  15. Hikuma, M., Kubo, T., Yasuda, T., Karube, I., and Susuki, S. (1979),Biotech. Bioeng. 21, 1845–1853.

    Article  CAS  Google Scholar 

  16. Blaedel, W. J. and Engstrom, R. C. (1980),Anal. Chem. 52, 1691–1697.

    Article  CAS  Google Scholar 

  17. Mascini, M., Memoli, A., and Olana, F. (1989),Enzyme Microb. Technol. 11, 297–301.

    Article  CAS  Google Scholar 

  18. Karube, I. and SangMok Chang, M. E. (1991), inBiosensor Principles and Applications, Blum, L. J. and Coulet, P. R., eds., Marcel Dekker, New York, pp. 267–301.

    Google Scholar 

  19. Albery, W. J., Bartlett, P. N., Cass, A. E. G., and Sim, K. W. (1987),J. Electroanal. Chem. 218, 127–134.

    Article  CAS  Google Scholar 

  20. Sim, K. W. (1990),Biosensors Bioelectron. 5, 311–325.

    Article  CAS  Google Scholar 

  21. Kulys, J. and Schmid, R. D. (1991),Biosensor Bioelectronics 6, 43–48.

    Article  CAS  Google Scholar 

  22. Guilbault, G. G., Danielson, B., Mandenius, C. F., and Mosback, K. (1983).Anal. Chem. 55, 1582–1585.

    Article  CAS  Google Scholar 

  23. Zhao, J. and Buck, R. P. (1991),Biosensors Bioelectronics 6, 681–687.

    Article  CAS  Google Scholar 

  24. Smith, V. J., Green, R. A., and Hopkins, T. R. (1989),J. Assoc. Off. Anal. Chem. 72, 30–33.

    CAS  Google Scholar 

  25. Peguin, S., Coulet, P. R., and Bardeletti, G. (1989),Anal. Chim. Acta. 222, 83–93.

    Article  CAS  Google Scholar 

  26. Bardeletti, G., Sechaud, F., and Coulet, P. R. (1991), inBiosensor Principles and Applications, Blum, L. J. and Coulet, P. R., eds., Marcel Dekker, New York, pp. 7–45.

    Google Scholar 

  27. Scheller, T. and Schubert, F. (1992), inBiosensors, Elsevier, Amsterdam, pp. 307–310.

    Google Scholar 

  28. Godfrey, T. and Reichelt, J. (1983),Industrial Enzymology. The Application of Enzymes in Industry, The Nature Press.

  29. Bardeletti, G., Sechaud, F., and Coulet, P. R. (1986),Anal. Chim. Acta. 187, 47–54.

    Article  CAS  Google Scholar 

  30. Rick, W. (1981), inMethods of Enzymatic Analysis, vol. 2, VCH Verlagsgesellschadt mbH, Weinheim, pp. 1013–1024.

    Google Scholar 

  31. Monsan, P. and Combes, D. (1988), inMethods in Enzymology, vol. 137, Mosback, K. ed., Academic, San Diego, CA, pp. 584–598.

    Google Scholar 

  32. Sahm, H. and Wagner, F. (1973),Eur. J. Biochem. 36, 250–256.

    Article  CAS  Google Scholar 

  33. Kato, N., Omori, Y., Tani, Y., and Gata, K. (1976),Eur. J. Biochem. 64, 341–350.

    Article  CAS  Google Scholar 

  34. Danielson, B. (1991), inBiosensor Principles and Applications, Blum, L. J., and Coulet, P. R., eds., Marcel Dekker, New York, pp. 83–105.

    Google Scholar 

  35. Dixon, M. and Webb, E. C. (1979),Enzymes, 3rd ed., Academic, New York, pp. 261–262.

    Google Scholar 

  36. Sarath, G., De la Motte, R., and Wagner, F. W. (1989), inProteolytic Enzymes—a Practical Approach, Beynon, B. J. and Bond, J. S., eds, IRL Press, Oxford, pp. 25–55.

    Google Scholar 

  37. Bergmeyer, H. U., Bernt, E., Grossl, M., and Michal, G. (1981), inMethods of Enzymatic Analysis, VCH Verlasgesellschadt mbH, Weinheim, pp. 308–317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardeletti, G., Carillon, C. Protease determination using an optimized alcohol enzyme electrode. Appl Biochem Biotechnol 43, 177–188 (1993). https://doi.org/10.1007/BF02916451

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916451

Index Entries

Navigation