Skip to main content
Log in

Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Enzymes were first immobilized on inorganic supports through silane coupling agents over 25 yr ago. Since that initial report, literally hundreds of laboratories have utilized this methodology for the immobilization of enzymes, antigens, antibodies, receptors, and other high and low mol wt compounds. Today silane coupling is one of the commonly used techniques in the arsenal of the biochemist for the binding of material of all sorts to inorganic surfaces. Inorganic materials come in a variety of shapes, sizes, and characteristics. Today silane coupling is one of the most used coupling methods for the preparation of biosensing devices. Sol-gel entrapped enzymes are also produced by the application of silane technology by the polymerization of the silane to form glass-like materials with entrapped protein. This review will discuss the general preparation and characterization of silane coupled proteins with special emphasis on enzymes and describe in detail the actual methods for the silanization and specific chemical coupling of proteins to the silanized carrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Weetall, H. H. (1969), Trypsin and papain covalently coupled to porous glass: preparation and characterization.Science 166, 615.

    Article  CAS  Google Scholar 

  2. Messing, R. A. (1975), Porous inorganic carrier materials.U.S. Patent No. 3,892,580.

  3. Weetall, H. H. and Filbert, A. M. (1974) Porous glass for affinity chromatography applications, inMethods in Enzymology 34, 59.

  4. Eaton, D. A. (1974), Immobilized enzymes, inImmobilized Biochemicals and Affinity Chromatography, Dunlap, R. B., ed., Plenum, New York, NY.

    Google Scholar 

  5. Weetall, H. H. (1976), Covalent coupling methods for inorganic supports,Meth. Enzymol. 44, 134.

    Article  CAS  Google Scholar 

  6. Weetall, H. H. and Detar, C. C. (1975), Covelent attachment of proteins to inorganic supports directly by activation with cyanogen bromide.Biotechnol, Bioeng. 17, 295.

    Article  CAS  Google Scholar 

  7. Messing, R. A. and Stinsan, H. R. (1974), Immobilization of enzymes by bisdiazotized orthodianisidine.Mol. Cell. Biochem. 4, 217.

    Article  CAS  Google Scholar 

  8. Bursecz, C. F. (1983), Epiamine coupling to inorganic supports.US Patent No. 4,415,664.

  9. Royer, G. P. and Green, G. M. (1975), Immobilized pronase.Biochim. Biophys. Res. Comm. 44, 426.

    Article  Google Scholar 

  10. Emery, A. N., Hough, J. S., Novais, J. M., and Lyons, T. P. (Feb. 1972), Immobilization through metal bridge formation.Chem. Eng., (London), p. 71.

  11. Barker, S. A., Emery, A. N., and Novais, J. M. (1971),Process Biochem. 5, 11.

    Google Scholar 

  12. Messing, R. A. (1974), Enzymes immobilized on porous ceramics.Biotechnol. and Bioeng. 16, 1419.

    Article  CAS  Google Scholar 

  13. Weetall, H. H. (1988), Enzymes immobilized on inorganic supports, inAnalytical Uses of Immobilized Biological Compounds for Detection, Medical, and Industrial Uses, Reidel, New York, NY.

    Google Scholar 

  14. Goldstein, L., Levin, Y., and Katchalski, E. (1964), A water-insoluble polyanionic derivative of trypsin. 2. effect of polyelectrolyte carrier on kinetic behavior of bound trupsin.Biochemistry 3, 1913.

    Article  CAS  Google Scholar 

  15. Goldstein, L. and Katchalski, E. (1968), Use of water-insoluble enzyme derivatives in biochemical analysis and separation.Fresenius Z. Anal. Chem. 243, 375.

    Article  CAS  Google Scholar 

  16. Weetall, H. H., Havawala, N. B., Garfinkel, H. M., Buehl, W. M., and Baum, G. (1974), Covalent binding of Glucoamylase to porous glass through silane coupling. Number of covalent bonds.Biotechnol. Bioeng. 16, 169.

    Article  CAS  Google Scholar 

  17. Weetall, H. H. (1970), Immobilized antigens and antibodies. Preparation and characterization.Biochem. J. 117, 257.

    CAS  Google Scholar 

  18. Blanch, H. W., Arnold, F. H., and Wilke, C. R. (1984), Mass transfer effects in affinity chromatography.Eur. Cong. Biotechnol 3rd 1, 613.

    CAS  Google Scholar 

  19. Weetall, H. H. (1972), Insolubilized antigens and antibodies, inChemistry of Biosurfaces, Vol. 2, Hair, M. L., ed., Marcel Dekker, New York.

    Google Scholar 

  20. Ernst-Cabrera, K. and Wilchek, M. (1986), Coupling of ligands to primary hydroxy-containing silica for high-performance affinity chromatography.Anal. Biochem. 159, 267.

    Article  CAS  Google Scholar 

  21. Hubbard, H. L., Eller, T. D., Mais, D. E., Halushka, P. V., Baker, R. H., Blair, I. A., Vrbanac, J. J., and Daniel, R. (1987), Extraction of thromboxane B2 from urine using an immobilized antibody column for subsequent analysis by gas chromatography-mass spectrometry.Prostaglandins 33, 149.

    Article  CAS  Google Scholar 

  22. Dakour, J., Lundblad, A., and Dopf, D. (1988), Separation of blood group A-active oligosaccharides by high-pressure liquid affinity chromatography with concanavalin A immobilized by metal interactions on the stationary phase.Anal. Biochem. 161, 140.

    Article  Google Scholar 

  23. Massom, L. R. and Jarrett, H. W. (1989), Purification of argininosuccinase by high-pressure immunoaffinity chromatography on monoclonal antiargininosuccinase-silica.J. Chromatogr. 482, 252.

    Article  CAS  Google Scholar 

  24. Liapis, A. I., Anspach, B., Findley, M. E., Davies, J., Hearn, M. T. W., and Unger, K. K. (1989), Biospecific adsorption of lysozyme onto monoclonal antibody ligand immobilized on nonporous silica particles.Biotechnol. and Bioeng. 34, 467.

    Article  CAS  Google Scholar 

  25. Hayashi, T., Sakamoto, S., Shikanabe, M., Wada, I., and Yoshida, H. (1989), HPLC analysis of human epidermal growth factor using immunoaffinity percolumn. I. Optimization of immunoaffinity column.Chromatographia 27, 11.

    Google Scholar 

  26. Phillips, T. M., Faantz, S. C., and Chiemlinska, J. J. (1988), Isolation of bioactive lymphocyte receptors by high performance immunoaffinity chromatography.BioChromotragraphy 3, 149.

    CAS  Google Scholar 

  27. Kiselev, A. V., Kolikov, V. M., Michedlishvili, B. V., Nikitin, Yu. S., and Khokholva, T. D. (1983), Chromatography of viruses on chemically modified macroporous silicas.Dokl. Akad. Nauk SSSR 272, 1158.

    CAS  Google Scholar 

  28. Babashak, J. V. and Phillips, T. M. (1988), Use of avidin-coated glass beads as a support for high-performance immunoaffinity chromatography.J. Chromatogr. 444, 21.

    Article  CAS  Google Scholar 

  29. Lingwood, C. A. (1984), Production of glycolipid affinity matrices by use of heterobifunctional crosslinking agents.J. Lipid Res. 25, 1010.

    CAS  Google Scholar 

  30. Swalen, J. D., Allara, D. L., Andrade, J. D., Chandross, E. A., Garoff, S., Israelachvili, J., McCarthy, T. J., Murray, R., and Pease, R. F. (1987), Molecularu monolayers and films. A panel report for the Materials Sciences Division of the Department of Energy.Langmuir 3, 932.

    Article  CAS  Google Scholar 

  31. Whitesides, G. M., Mathias, J. P., and Seto, C. T. (1991), Molecular selfassembly and nanochemistry: a chemical strategy for the synthesis of nanostructures.Science 254, 1312.

    Article  CAS  Google Scholar 

  32. Sundaram, M., Chalmers, S. A., Hopkins, P. F., and Gossard, A. C. (1991), New quantum structures.Science 254, 1326.

    Article  CAS  Google Scholar 

  33. Goss, C. A., Carych, D. H., and Majda, M. (1991), Application of (3-mercaptopropol)trimethoxyxylane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates.Anal. Chem. 63, 85–88.

    Article  CAS  Google Scholar 

  34. Dulcey, C. S., Georgei, J. H., Jr., Krauthamer, V., Stenger, D. A., Fare, T. L., and Calvert, J. M. (1991), Deep UV photochemistry of chemisorbed monolayers: Patterned coplanar molecular assemblies.Science 252, 551.

    Article  CAS  Google Scholar 

  35. Hale, P. D., Inagaki, T., Karan, H. I., Okaomot, Y., and Skotheim, T. A. (1989), A new class of amperometric biosensors incorporating a polymeric electron-transfer mediator.J. Am. Chem. Soc. 1111, 3482.

    Article  Google Scholar 

  36. Dixon, J. E., Stolzenbach, F. E., Lee, C-I. T., and Kaplan, N. O. (1974), Immobilized lactate dehydrogenases.Isr. J. Chem. 12, 529.

    CAS  Google Scholar 

  37. Ellerby, L. M., Nishida, C. R., Nishida, F., Yamanaka, S. A., Dunn, B., Valentine, J. S., and Zink, J. I. (1992), Encapsulation of proteins in transparent porous silicate glasses prepared by sol-gel method.Science 225, 1113.

    Article  Google Scholar 

  38. Weetall, H. H. (1974), Immobilized enzymes: analytical applications.Anal. Chem. 36, 602A.

    Article  Google Scholar 

  39. Weetall, H. H. (1971), Enzymes immobilized on inorganic carriers.Res. Dev. 22, 18.

    CAS  Google Scholar 

  40. Rover, G. P. and Andrews, J. P. (1973), Immobilized aminopeptidase.J. Biol. Chem. 248, 1807.

    Google Scholar 

  41. Kleine, R., Spengenberg, P., and Flemming, C. (1976), Preparation and some properties of immobilized trypsin from the crayfishCambarus affinis Say. Hoppe-Seyler's Z. Physiol. Chem. 357.

  42. Kovalenko, G. A., and Sokolovskii, V. D. (1992), Double immobilization of enzymes on inorganic matrices.Biotechnol. and Bioeng. 39, 523.

    Article  Google Scholar 

  43. Fadda, M. B., Dessi, M. R., Rinaldi, A., and Satta, G. (1989), Sandy alumina as substrate for economic and highly efficient immobilization of betaglucosidase.Biotechnol. Bioeng. 33, 777.

    Article  CAS  Google Scholar 

  44. Suzuki, T., Toriyama, M., Hosono, H., and Abe, Y. (1991), Application of a microporous glass-ceramics with skeleton of calcium titanium phosphate to carriers for immobilization of enzymes.J. Ferment. Bioeng. 5, 384.

    Article  Google Scholar 

  45. Kurth, H-H., Gaeb, S., Turner, W. V., and Kettrup, A. (1991), A high-performance liquid chromatography system with an immobilized enzyme reactor for detection of hydrophilic organic peroxides.Anal. Chem. 63, 2586.

    Article  CAS  Google Scholar 

  46. Kumaran, S., Meier, H., Danna, A. M., and Tran-Minh, C. (1991), Immobilization of thin enzyme membranes to construct glass enzyme electrodes.Anal. Chem. 63, 1914.

    Article  CAS  Google Scholar 

  47. Hansen, E. H. and Mikkelsen, H. S. (1991), Enzyme-immobilization by the glutardialdehyde procedure an investigation of the effects of reducing the schiff-bases generated as based on studying the immobilization of glucose oxidase to silanized controlled pore glass.Anal. Let. 24, 1419.

    CAS  Google Scholar 

  48. Hayashi, S., Ito, K., Nonoguchi, M., Takasaki, Y., and Imada, K. (1991), Immobilization of furctosyl-transferring enzyme fromAureobasidium-sp on shirasu porous glass.J. Ferment. Bioeng. 72, 68.

    Article  CAS  Google Scholar 

  49. Janowski, F., Fisher, G., Urbaniak, W., Foltynowicz, Z., and Maciniec, B. (1991), Aminopropylsilane treatment for the surface of porous glasses suitable for enzyme immobilization.J. Chem. Technol. Biotechnol. 51.

  50. Van Hekken, D. L., Thompson, M. P., and Strange, E. D. (1990), Immobilization of potato acid phosphatase on succinamidopropyl glass beads for the dephosphorylation of bovine whole casein.J. Dairy Sci. 73, 2720.

    Article  Google Scholar 

  51. Looby, D., Racher, A. J., Griffiths, J. B., and Dowsett, A. B. (1990), The immobilization of animal cells in fixed and fluidized porous glass sphere reactors, inPhysiology of Immobilized Cells, Elsevier, New York, NY.

    Google Scholar 

  52. Rogalski, J., Dawidowicz, A., Fiedurek, J., and Leonowicz, A. (1990), The controlled porous glass CPG with reactive epoxy groups as support for affinity chromatography II. Modified CPG as support of substrates or coenzymes of glucose oxidase GOD for its purification and immobilization.Acta Biotechnol. 10, 283.

    Article  CAS  Google Scholar 

  53. Pluym, B., Slegers, G., and Claeys, A. (1988), Immobilization of human polymorphonuclear leukocyte myeloperoxidase onto controlled pore glass derivatives.Enzyme Microb. Technol. 10, 656.

    Article  CAS  Google Scholar 

  54. Wojtas-Wasilewska, M., Luterek, J., Leonowicz, A., and Dawidowicz, A. (1988), Dearomatization of lignin derivatives by fungal protocarechate 3,4-dioxygenase immobilized on porosity glass.Biotechnol. Bioeng. 32, 507.

    Article  CAS  Google Scholar 

  55. Manjon, A., Iborra, J. L., Gomez, J. L., Gomez, E., Bastida, J., and Bodalo, A. (1987), Evaluation of the effectiveness factor along immobilized enzyme fixed-bed reactors design of a reactor with naringinase covalently immobilized into glycophase-coated porous glass.Biotechnol. Bioeng. 30, 491.

    Article  CAS  Google Scholar 

  56. Hossain, M. M. and Do, D. D. (1985), Fundamental studies of glucose oxidase immobilization on controlled pore glass.Biotechnol. Bioeng. 27, 842.

    Article  CAS  Google Scholar 

  57. Church, F. C., Swaisgood, H. E., and Catignani, G. L. (1984), Compositional analysis of proteins following hydrolysis by immobilized proteases.J. Appl. Biochem. 6, 205.

    CAS  Google Scholar 

  58. Cabral, J. M. S., Cardoso, J. P., Novias, J. M., and Kennedy, J. F. (1984), A simple kinetic model for the hydrolysis of alpha-d-glucans using glucoamplase EC-3.2.1.3 immobilized on titanium-IV activated porous silica.Enzyme Microb. Technol. 6, 365.

    Article  CAS  Google Scholar 

  59. Mannens, G., Slegers, G., Lambrecht, R., De Langhe, H., Puttemans, K., and Block, C. (1987), Immobilization of acetate kinase and phosphotrans-acetylase on derivatized glass beads.Enzyme Microb. Technol. 9, 285.

    Article  CAS  Google Scholar 

  60. Yoshioka, M., Mukai, Y., Matsui, T., Udagawa, A., and Funakubo, H. (1991), Immobilization of ultra-thin layer of monoclonal antibody on glass surface.J. Chromatogr. Biomed. Appl. 566, 361.

    Article  CAS  Google Scholar 

  61. Shukla, G. L. and Prabhu, K. A. (1988), Whole cell immobilization ofd-glucose isomerase enzyme on glass support.J. Basic Microbiol. 28, 457.

    Article  CAS  Google Scholar 

  62. Facchini, P. J. and Dicosmo, F. (1991), Secondary metabolite biosynthesis in cultured cells ofCatharanthus-roseus L. G. Don immobilized by adhesion to glass fibers.Appl. Microbiol. Biotechnol. 35, 382.

    Article  CAS  Google Scholar 

  63. Fiedurek, J. and Lobarzewski, J. (1990), Glucoamylase biosynthesis by cells ofAspergillus-niger CO58-III immobilized in sintered glass and pumice stones.Starch Staerke 42, 358.

    Article  CAS  Google Scholar 

  64. Niwa, K., Hampson, B. S., and Nicholson, M. L. (1990), Large scale production of proteins by mammalian cells immobilized on ceramic matrix, inTrends in Animal Cell Culture Technology, Murakami, H. ed., VCH Pub., New York, NY.

    Google Scholar 

  65. Lau, H. P., Charlton, R. R., Yang, E. K., and Miller, W. K. (1989), Immobilization of antigens and antibodies on chromium dioxide magnetic particles for use in immunodiagnostic assays, inTargeted Diagnosis and Therapy. 2. Covalently Modified Antigens and Antibodies in Diagnosis and Therapy. Marcel Dekker, New York.

    Google Scholar 

  66. Martins, M. B. F., Cruz, M. E. M., Cabral, J. M. S., and Kennedy, J. F. (1987), Urease immobilization or an alkylamine derivative of titanium-IV porous silica. Kinetics and operational stability.J. Chem. Technol. Biotechnol. 39, 201.

    Google Scholar 

  67. Putnam, J. E. (1987), Monoclonal antibody production in a ceramic matrix, inCommerical Production of Monoclonal Antibodies: A Guide for Scale-Up, Seaver, S. S., ed., Marcel Dekker, New York, NY.

    Google Scholar 

  68. Cuendet, P., Gratzel, M., Rao, K. K., and Hall, D. O. (1984), Immobilized enzymes on semiconducting powder photogeneration of hydrogen by titanium dioxide and cadmium sulfide bound hydrogenases.Photobiochem. Photobiophys. 7, 311.

    Google Scholar 

  69. Gilpin, R. K., Ehtesham, S. E., and Gregory, R. B. (1991), Liquid chromatographic studies of the effect of temperature on the chiral recognition of tryptophan by silica-immobilized bovine albumin.Anal. Chem. 63, 2825.

    Article  CAS  Google Scholar 

  70. Lin, J., Chang, J., Herron, J., and Christensen, D. (1991), Immobilization of antibodies on silica surfaces for biosensor applications.Abs. Am. Chem. Soc. 201st Nat. Meeting, Atlanta, GA, April 14–19.

  71. Kozhukharova, A., Batsalova, K., Popova, Y. A., Kirova, N., Klisurski, D., and Simeonov, D. (1990), Properties and use of beta-galactosidase immobilized in hydrogel form silica.Bioteckhnologiya, (1), 61.

    Google Scholar 

  72. Andersson, S., Allenmark, S., Erlandsson, P., and Nilsson, S. (1990), Direct liquid chromatographic separation of enantiomers on immobilized protein stationary phases VIII. A comparison of a series of sorbents based on bovine serum albumin and its fragments.J. Chromatogr. 498, 81.

    Article  CAS  Google Scholar 

  73. Gonzalez, R., Monsan, P., and Ros, O. (1989), Covalent immobilization of aminated silica of beta-galactosidase fromAspergillus-fonsecaeus.Interferon y Biotecnol. 5, 229.

    Google Scholar 

  74. Thompson, R. A., Anderson, S., and Allenmark, S. (1989), Direct liquid chromatographic separation of enantiomers on immobilized protein stationary phases VII. Sorbents obtained by entrapment of cross-linked bovine serum albumin in silica.J. Chromatogr. 465, 263.

    Article  CAS  Google Scholar 

  75. Bhatia, S. K., Shiver-Lake, L. C., Prior, K. J., Georger, J. H., Calver, T. J. M., Bredehorst, R., and Ligler, F. S. (1989), Use of thioterminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces.Anal. Biochem. 178, 408.

    Article  CAS  Google Scholar 

  76. Bergold, A. F. and Carr, P. W. (1989), Improved resolution of glycoproteins by chromatography with concanavalin A immobilized on microparticulate silica via temperature-programmed elution.Anal. Chem. 61, 1117.

    Article  CAS  Google Scholar 

  77. Kitaoka, M., Taniguchi, H., and Sasaki, T. (1989), A simple method of cellulase immobilization on a modified silica support.J. Ferment. Bioeng. 67, 182.

    Article  CAS  Google Scholar 

  78. Kojuharova, A., Popova, Y., Kirova, N., Klissurski, D., Simeonov, D., and Spasov, L. (1988), Characterization and application of glucose oxidase immobilized in silica hydrogel.J. Chem. Technol. Biotechnol. 42, 95.

    Google Scholar 

  79. Ramirez, O. T. and Mutharasan, R. (1989), Physical immobilization characteristics of a hybridoma in a glass bead packed-bed reactor.Biotechnol. Bioeng. 33, 1072.

    Article  CAS  Google Scholar 

  80. Ogii, S. A., Tertykh, V. A., and Mitin, Yu. V. (1987), Silica-immobilized papain in synthesis of BOC-leu enkephalin.Dokl. Akad. Nauk. Ukr. SSR. Ser. B. Geol. Khim. Biol. Nauki. 9, 76.

    Google Scholar 

  81. Ignatchenko, A. P., Bogomaz, V. I., Tugai, V. A., and Chuiko, A. A. (1987), Isolation and purification of proteolytic enzymes on organo-silica supports with immobilized gramicidin S.Urk. Biokhim. Zh. 59, 28.

    CAS  Google Scholar 

  82. Gillies, B., Yamazaki, H., and Armstrong, D. W. (1987), Natural flavor esters production by candida-cylindracea lipase adsorbed to silica gel, inBiocatalysis in Organic Media, International Symposium, Laane, C., Trapper, J., and Lilly, M. D., eds., Elsevier Science Pub., New York, NY.

    Google Scholar 

  83. Berry, M. J., Davies, J., Smith, C. G., and Smith, I. (1991), Immobilization of FV antibody fragments on porous silica and their utility in affinity chromatography.J. Chromatogr. 587, 161.

    Article  CAS  Google Scholar 

  84. O'Daly, J. P., Crumbliss, A. L., and Henkens, R. W. (1990), Activity of carbonic anhydrase immobilized on porous silica beads in organic media.Biotechnol. Appl. Biochem. 12, 11.

    Google Scholar 

  85. Lobarzewski, J., Wojcik, A., and Blaszczynska, T. (1989), New matrices for the purification of pectinases by affinity chromatography.Acta Biotechnol. 9, 239.

    Article  CAS  Google Scholar 

  86. Sorensen, J. E. and Emborg, C. (1989), Influence of immobilization techniques on the quality of immobilized enzyme products based on porous silica carrier.Enzyme Microb. Technol. 11, 26.

    Article  Google Scholar 

  87. Germain, P. and Crichton, R. R. (1988), Characterization of a chemically modified beta-amylase immobilized on porous silica.J. Chem. Technol. Biotechnol. 41, 297.

    CAS  Google Scholar 

  88. Lobarzewski, J., Kolarz, B. N., Wojcik, A., Wojaczynska, M., Trochimczuk, A., and Blaszczynska, T. (1988), Immobilization of enzymes on porous silica supports.Acta Biotechnol. 8, 47.

    Article  CAS  Google Scholar 

  89. Shimizu, K. and Ishihara, M. (1987), Immobilization of cellulolytic and hemicellulolytic enzymes on inorganic supports.Biotechnol. Bioeng. 29, 236.

    Article  CAS  Google Scholar 

  90. Sokol, S. V., Kiseleva, L. I., Mishunin, I. F., and samodumova, I. M. (1990), Selective immobilization of metalloenzymes in an acremonium-chrysogenum polyenzyme system on silica gels.Mikrobiol. Zh. (Kiev),52, 24.

    Google Scholar 

  91. Wojcik, A., Lobarzewski, J., Blaszczynska, T., and Fiedurek, J. (1987), Silica gels activated by boron trichloride and aliphatic diamines as supports for glucoamylase immobilization.Biotechnol. Bioeng. 30, 983.

    Article  CAS  Google Scholar 

  92. Pugniere, M., Juan, C. S., Coletti-Previero, M-A., and Previero, A. (1988), Immobilization of enzymes on alumina by means of pyridoxal 5′-phosphate.Biosci. Rep. 8, 263.

    Article  CAS  Google Scholar 

  93. Dekker, F. R. H. (1990), Application of magnetic immobilized betaglucosidase in the enzymatic saccharification of steam-exploded lignocellulosic residues.Appl. Biochem. Biotechnol. 23, 25.

    CAS  Google Scholar 

  94. Garcia, A., III, Oh, S., and Engler, C. R. (1989), Cellulase immobilization of iron and oxide and characterization.Biotechnol. Bioeng. 33, 321.

    Article  CAS  Google Scholar 

  95. Babashak, J. V. and Phillips, T. M. (1988), Isolation of a specific membrane protein by immunoaffinity chromatography with biotinylated antibodies immobilized on avidin coated glass beads.J. Chromatogr. 476, 187.

    Article  CAS  Google Scholar 

  96. Crumbliss, A. L., McLachlan, K. L., O'Daly, J. P., and Henkens, R. W. (1988), Preparation and activity of carbonic anhydrase immobilized on porous silica beads and graphite rods.Biotechnol. Bioeng. 31, 796.

    Article  CAS  Google Scholar 

  97. Haysashi, S., Kinoshita, J., Nonoguchi, M., Takasaki, Y., and Imada, K. (1991), Continuous production of 1 kestose by beta-fructofuranosidase immobilized on shirasu porous glass.Biotechnol. Lett. 13, 889.

    Article  Google Scholar 

  98. Kern, H. W. (1990), Production and stability of lignin peroxidases ofPhanerochaete chrysosporium cultivated on glycerol in the presence of solid manganese-IV oxide.Appl. Microbiol. Biotechnol. 33, 582.

    Article  CAS  Google Scholar 

  99. Kovalenko, G. A. and Sokolovskii, V. D. (1987), Epoxidation of propene by microbial cells immobilized on inorganic supports.Biotekhnologiya 0(5), 612.

    CAS  Google Scholar 

  100. Liang, S-P., Lee, T. T., and Laursen, R. A. (1991), Single-step electroelution of proteins from SDS-polyacrylamide gels and immobilization on diisothiocyanate glass beads in prepacked capillary columns for solid-phase microsequencing.Anal. Biochem. 197, 163.

    Article  CAS  Google Scholar 

  101. Nakajima, M., Watanabe, A., Nabetani, H., Horikita, H., and Nakoa, S-I. (1988), New enzyme reactor with forced flow of the substrate through an enzyme immobilized ceramic membrane.Agric. Biol. Chem. 52, 357.

    CAS  Google Scholar 

  102. Nakajima, M., Watanabe, A., Jimbo, N., Nishizawa, K., and Nakao, S-I. (1989), Forced-flow bioreactor for sucrose inversion using ceramic membrane activated by silanization.Biotechnol. Bioeng. 33, 856.

    Article  CAS  Google Scholar 

  103. Wojcik, A., Lobarzewski, J., and Blaszczynska, T. (1990), Immobilization of enzymes to porous-bead polymers and silica gels activated by graft polymerization of 2,3-epoxypropylmethacrylate.J. Chem. Technol. Biotech. 48, 287.

    CAS  Google Scholar 

  104. Yoshida, Y., Kawase, M., Majima, T., and Shiraishi, T. (1990), A bioreactor with immobilized enzyme on porous ceramics.Kakkokogaku Kaishi 68, 267.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This review will also be published in The Proceedings of The Mosbach Symposium on Biochemical Technology, Held December 2–4, 1992 Lund, Sweden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weetall, H.H. Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports. Appl Biochem Biotechnol 41, 157–188 (1993). https://doi.org/10.1007/BF02916421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916421

Index Entries

Navigation