Skip to main content
Log in

A simple treatment to significantly increase signal specificity in immunohistochemistry

  • Protocols
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

It is increasingly important to understand a gene’s function at the protein level. Immunohistochemistry is used to identify new functions of phytohormones by finding their precise localization patterns. To facilitate protein immunolocalization, we developed a protocol that can significantly reduce background and give highly specific signals of antibody to traget proteins. The key improvement is to treat secondary antibodies by mixing with homogenized fresh and fixed plant tissue. Using this protocol, we have successfully carried out immunolocalization of proteins encoded by genesAP3 andHoMADS2, as well as plant hormones ABA and IAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AP3:

apatala 3

AP:

alkaline phosphatase

BS:

blocking solution

BSA:

bovine serum albumin

EDC:

1-(3-dimethylaminoprapyl)-3-ethyl carbodiimide

FAA:

formaldehydeacetic acid medium

HWB:

high-salt washing buffer

LWB:

low-salt washing buffer

PBS:

phosphate-buffered saline

PI:

pistallata

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, and Struhl K (eds) (1999) Short Protocols in Molecular Biology, John Wiley & Sons, New York.

    Google Scholar 

  • Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, and Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115: 591–602.

    Article  PubMed  CAS  Google Scholar 

  • Caruso JL, Pence VC, and Leverone LA (1995) Immunoassay methods of plant hormone analysis. In: Davies PJ, ed. Plant Hormones: Physiology, Biochemistry and Molecular Biology, Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • Dewitte W, Chiappetta A, Azmi A, Witters E, Strnad M, Rembur J, Noin M, Chriqui D, and Van Onckelen H (1999) Dynamics of cytokinins in apical shoot meristems of a day-neutral tobacco during floral transition and flower formation. Plant Physiol 119: 111–122.

    Article  PubMed  CAS  Google Scholar 

  • Engler JA, Montagu MV, and Engler G (1994) Hybridization in situ of whole-mount messenger RNA in plants. Plant Mol Biol Rep 12: 321–331.

    Article  CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, and Jurgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis ofArabidopsis. Nature 426: 147–153.

    Article  PubMed  CAS  Google Scholar 

  • Goto, K and Meyerowitz EM (1994) Function and regulation of theArabidopsis floral homeotic gene PISTILLATA. Genes Dev 8: 1548–1560.

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Yuan Z, and Jackson D (2003) Development regulation and significance of KNOX protein trafficking inArabidopsis. Development 130: 4351–4362.

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Bouche-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, and Hake S (1995) Selective trafficking of KNOTTEDI and its mRNA through plant plasmodesmata. Science 270: 1980–1983.

    Article  PubMed  CAS  Google Scholar 

  • Maliga P, Klessig DF, Cashmore AR, Gruissem W, and Varner JE (1995) Methods in Plant Molecular Biology: A Laboratory Course Manual. Cold Spring Harbor, New York, Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Moctezuma E (1999) Changes in auxin patterns in developing gynophores of the peanut plant (Arachis hypogaea L). Ann Bot 83: 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Muller A, Guan C, Galweiler T, Tanzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, and Palme K (1998) AtPIN2 defines a locus ofArabidopsis for root gravitropism control. EMBO J 17: 6903–6911.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama A, Park S, Xu ZJ, Nakajima M, and Yamaguchi I (2002) Immunohistochemistry of active gibberellins and gibberellin-inducible α-analase in developing seeds of morning glory. Plant Physiol 129: 1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Firml J, and Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426: 255–260.

    Article  PubMed  CAS  Google Scholar 

  • Schrautl D, Ullrich CI, and Hartung W (2004) Lateral ABA transport in maize roots (Zea mays): visualization by immunolocalization. J Exp Bot 55: 1635–1641.

    Article  Google Scholar 

  • Su HY, Li QZ, Li XG, and Zhang XS (2005) Characterization and expression analysis of a MADS box gene, HoMADS2, inHyacinthus orientalis L. Acta Genet Sin 32: 1191–1198.

    PubMed  CAS  Google Scholar 

  • Wang DH, Han T, Gong HQ, Zhang L, and Bai SN (2004) A simple method for protein recovery with ordinary electrophoresis apparatus. Plant Physiol Commun 40: 75–77.

    CAS  Google Scholar 

  • Zavala ME and Brandon DL (1983) Localization of a phytohormone using immunocytochemistry. J Cell Biol 97: 1235–1239.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Nong Bai.

Additional information

These authors contributed equally

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, HQ., Peng, YB., Zou, C. et al. A simple treatment to significantly increase signal specificity in immunohistochemistry. Plant Mol Biol Rep 24, 93–101 (2006). https://doi.org/10.1007/BF02914049

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02914049

Key words

Navigation